EP2880695A1 - Procede de fabrication d'un module thermo electrique, notamment, destine a generer un courant electrique dans un vehicule automobile et module thermo electrique obtenu par ledit procede. - Google Patents

Procede de fabrication d'un module thermo electrique, notamment, destine a generer un courant electrique dans un vehicule automobile et module thermo electrique obtenu par ledit procede.

Info

Publication number
EP2880695A1
EP2880695A1 EP13740284.8A EP13740284A EP2880695A1 EP 2880695 A1 EP2880695 A1 EP 2880695A1 EP 13740284 A EP13740284 A EP 13740284A EP 2880695 A1 EP2880695 A1 EP 2880695A1
Authority
EP
European Patent Office
Prior art keywords
manufacturing
electrical connection
connection means
brazing
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13740284.8A
Other languages
German (de)
English (en)
Inventor
Patrick Boisselle
Cédric DE VAULX
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP2880695A1 publication Critical patent/EP2880695A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Definitions

  • thermoelectric module in particular, for generating an electric current in a motor vehicle and thermoelectric module obtained by said method.
  • present invention relates to a method of manufacturing a thermoelectric module, in particular for generating an electric current in a motor vehicle and a thermoelectric module obtained by said method.
  • thermo modules using so-called electric thermo elements, for generating an electric current in the presence of a temperature gradient between two of their opposite faces, said first and second contact faces, according to the phenomenon known as the Seebeck effect.
  • These modules comprise a stack of first tubes, intended for the circulation of the exhaust gases of an engine, and second tubes, intended for the circulation of a heat transfer fluid of a cooling circuit.
  • the first faces of the thermoelectric elements are thermally connected with the cold tubes and the second faces of the thermoelectric elements are thermally connected with the hot tubes.
  • the electric thermoelectric elements are thus subjected to a temperature gradient coming from the difference in temperature between the hot exhaust gases and the cold cooling fluid.
  • thermo elements arranged in such modules are of two types:
  • P-type elements making it possible to establish an electrical potential difference in a positive direction, when they are subjected to a given temperature gradient
  • the P type thermoelectric elements alternate with the N type thermoelectric elements. They are grouped in pairs, each pair being formed of a P type thermoelectric element and an N type thermoelectric element.
  • the module to allow a flow of current between first faces of the thermoelectric elements of the same pair and a flow of current between the second faces of each of the electric thermo elements of two neighboring pairs.
  • the current flows in series through the electric thermoelectric elements alternatively passing from a P type thermoelectric element to an N type thermoelectric element.
  • the module comprises a plurality of electrical tracks, each of which between it connecting the first faces of the electric thermo elements of the same pair or the second faces of each of the electric thermo elements belonging to two neighboring pairs to allow the flow of current described above.
  • thermoelectric elements it is known to assemble the electric thermo elements to the first and second electrical tracks by a heat treatment. During this heat treatment, the electric tracks, made of metal, and the electric thermoelectric elements are caused to expand under the effect of the temperature freely before the joining takes place. Once the parts to be assembled have reached the correct temperature, the joining is achieved and then we begin to cool all.
  • the invention aims to improve the situation.
  • thermoelectric module comprising a plurality of electric thermo elements, capable of generating an electric current under the action of a temperature gradient exerted between two of their faces, said first and second contact faces, wherein
  • thermoelectric elements are then bristled at their second contact face with second electrical connection means, the brazing being effected at a second, so-called cold temperature, lower than the hot temperature.
  • first brazing phase that is to say that performed at the hot temperature
  • second brazing phase that is to say the one carried out at the cold temperature
  • the second electrical connection means are joined together on the side of the second active faces of the electric thermoelectric elements, with expansion and expansion. contractions much weaker since the brazing is carried out with a lower temperature, which therefore limits the stresses exerted on the electric thermo elements.
  • the electrical thermoelectric elements are bristled at their first contact surface in pairs so that each pair is electrically connected by one of the first electrical connection means and soldering of the electric thermoelectric elements to the level of their second contact face so that each of the second electrical connection means electrically connects two pairs of electric thermo elements.
  • the thermoelectric module is thus configured so that the current can circulate in series through the thermoelectric elements by passing between two thermoelectric elements of the same pair by the first electrical connection means and between two adjacent electrical thermoelectric elements belonging to two adjacent pairs by their second electrical connection means.
  • the hot temperature is greater than 500 ° C.
  • the cold temperature is below 300 ° C.
  • the cold temperature is, for example, greater than 100 ° C.
  • the first electrical connection means are, for example, nickel.
  • the second electrical connection means are, in particular, copper.
  • the first electrical connection means are assembled to tubes, called hot tubes, comprising walls and in which a hot fluid is intended to circulate, prior to soldering the first electrical connection means to the thermoelectric elements. electric.
  • the first connection means are, for example, sprayed hot on the hot tubes.
  • the hot tubes are assembled on the first means of electrical connection by compression.
  • the hot tubes are, in particular, stainless steel.
  • a brazing material said first brazing material, whose brazing temperature is greater than that of the heated walls, is chosen for soldering between the electric thermoelectric elements and the first electrical connection means. by the hot fluid.
  • the first brazing material makes it possible to carry out brazing at the hot temperature.
  • the first brazing material is, in particular, an alloy of aluminum and silicon.
  • a brazing material said second brazing material, whose brazing temperature is lower than that of the first brazing material, is chosen for brazing between the electric thermoelectric elements and the second electrical connection means. .
  • This second brazing material thus makes it possible to braze at the cold temperature.
  • the second brazing material is, for example, an alloy of tin and silver.
  • thermal conduction means are assembled to the second means of electrical connection by compression.
  • the thermal conduction means are, in particular, metal fins. They are, for example, thermally connected to tubes, called cold tubes, intended to receive a second fluid whose temperature is lower than that of the hot fluid circulating in the hot tubes. Said cold tubes and said metal fins may be assembled mechanically.
  • the invention also relates to a thermoelectric module obtained by the manufacturing method as described above.
  • FIG. 1 schematically illustrates, in exploded perspective view, an exemplary embodiment of a portion of a thermoelectric device comprising a thermoelectric module according to the invention
  • FIG. 2 is a diagrammatic side view illustrating the assembly of a portion of the thermoelectric module of the invention according to a first step of an exemplary implementation of the method according to the invention;
  • FIG. illustrates a second step of the process of FIG.
  • FIG. 4 is a view similar to that of FIG. 2 in an alternative embodiment of the method according to the invention;
  • FIG. 5 illustrates a second step of the method of FIG.
  • thermoelectric module 10 is part of a thermoelectric device 1, comprising a first circuit 2, said to be hot, capable of allowing the circulation of a fluid hot, in particular, the exhaust gas of an engine, and a second circuit 7, said cold, capable of allowing the circulation of a cold fluid, especially a heat transfer fluid of a cooling circuit, of lower temperature than hot fluid.
  • the hot circuit comprises tubes 8, called hot, able to allow the circulation of the hot fluid.
  • Said hot tubes 8 comprise walls defining an internal volume of the hot tubes 8. When the hot fluid circulates inside the hot tubes, it heats said walls.
  • the cold circuit includes tubes 9, said to be cold, capable of allowing the circulation of the cold fluid.
  • thermoelectric module 10 comprises elements 3p, 3n, said electrical thermo, for generating an electric current in the presence of a temperature gradient.
  • substantially parallelepiped shaped elements generating an electric current, according to the Seebeck effect, when they are subjected to said gradient between two of their opposite faces 4a, 4b, said first 4a and second 4b faces active.
  • Such elements allow the creation of an electric current in a load connected between said active faces 4a, 4b.
  • such elements are constituted, for example, silicides of manganese (MnSi) or silicides of magnesium (Mg2Si).
  • thermoelectric elements are, for a first part, elements 3p of a first type, called P, making it possible to establish a difference of electric potential in a direction, called positive, when they are subjected to a given temperature gradient , and, for the other part, elements 3n of a second type, said N, allowing the creation of a difference of electric potential in an opposite direction, said negative, when they are subjected to the same temperature gradient.
  • the thermoelectric device 1 also comprises thermal conduction means, here metal fins 5, in heat exchange relation with the cold tubes 9 and the electric thermo elements 3p, 3n.
  • thermal conduction means here metal fins 5, in heat exchange relation with the cold tubes 9 and the electric thermo elements 3p, 3n.
  • the electric thermo elements 3n, 3p are in contact, on the one hand, with the hot tubes 8 and, on the other hand with the metal fins 5, so that said electric thermo elements 3p, 3n generate the current expected when subjected to a temperature gradient.
  • the metal fins 5 which fulfill the function of establishing the thermal contact with the electric thermo elements, for the cold circuit.
  • the hot tubes 8 they can be chosen to be compatible with the circulation of binding fluids, in particular high temperature and / or corrosive as exhaust gases from an engine.
  • mechanical fin 5 is meant an element having two large opposite planar surfaces and of much smaller thickness than its width and its length, making it possible to establish a surface contact, for example, with the second active faces 4b of the electric thermoelectric elements. .
  • the fins are formed of a heat conductive material, especially a metallic material such as copper or aluminum.
  • the metal fins 5 are, for example, coated with an electrically insulating material.
  • the hot tubes 8 are, in particular, substantially flat tubes comprising two large opposite parallel faces on which the electric thermo elements 3p, 3n are arranged, for example, by their first active face 4a opposite the second active face 4b. in contact with the metal fins 5.
  • They may be configured to allow the circulation of exhaust gas and are, in particular, stainless steel. They are formed, for example, by profiling, welding and / or brazing. They may have a plurality of channels for passing the first fluid.
  • the hot tubes 8 are, in particular, coated at the level of said large faces with a layer of electrically insulating material.
  • the metal fins 5 are arranged, in particular, substantially parallel to the flat faces of the hot tubes 8. They have, for example, orifices for the passage of the cold tubes 9.
  • the cold tubes 9 are, for example, aluminum or copper and have a round section and / or oval complementary shape to the passage holes in the fins.
  • the contact between the cold tubes 9 and the metal fins 5 is achieved, in particular, by an expansion of the material of the tubes as in the known heat exchangers under the name of mechanical exchangers in the field of heat exchangers for motor vehicles.
  • thermoelectric elements 3n, 3p are distributed in layers provided between the tubes 1 for circulating the first fluid and the metal fins 5.
  • Each sheet comprises a plurality of electric thermoelectric elements 3n, 3p arranged according to a rectangular distribution.
  • electrical connections are established between the plies 6 of thermoelectric elements.
  • An electrical connector not shown, allows the device to be connected to an external electrical circuit.
  • the metal fins 5 are arranged in pairs so that a first metal fin 5 of a pair thermally connects a first ply 6 in thermal relation with a first hot tube 8 and a second metal fin 5 of the same pair thermally connects a web 6 in heat exchange relation with a second hot tube 8, adjacent to the first hot tube.
  • the thermoelectric module 1 0 comprises first 1 1 and second 1 2 electrical connection means, including electrical tracks, electrically connecting the electric thermo elements 3n, 3p applied to the same hot tube 8.
  • the first electrical connection means 1 1 are, in particular, nickel
  • the second electrical connection means 12 are, for example, copper.
  • the P-type thermoelectric elements and the N-type thermoelectric elements, provided between the same circulation tube of the first fluid and the same circulation tube of the second fluid may be connected together so as to allow the circulation the series current of an element of the first type to an element of the second type. It is also possible to connect to each other by means of electrical connection the contact faces of electric thermo elements of the same type for parallel mounting of said elements.
  • the thermoelectric elements 3n, 3p thus associated form a basic conduction cell and the cells obtained may be associated in series and / or in parallel.
  • the P type thermoelectric elements alternate with the N type thermoelectric elements. They are grouped in pairs, each pair being formed of a P-type thermoelectric element and of an N-type thermoelectric element.
  • the thermoelectric module 10 is configured to allow a flow of current between the first contact faces 4a of the thermoelectric elements of the same pair. and a flow of current between the second contact faces 3b of each of the thermoelectric elements of two neighboring pairs.
  • the current flows in series through the electric thermoelectric elements alternately passing from a P type thermoelectric element to an N type thermoelectric element.
  • the first electrical connection means 1 1 connect the first faces. contact 3a thermo electric elements of the same pair and the second electrical connection means connect the second contact faces 3b of each of the electric thermo elements belonging to two neighboring pairs to allow the flow of current described above.
  • the pairs of electric thermoelectric elements are situated in the width of the hot tubes 8 so that two adjacent pairs of electric thermoelectric elements 3n, 3p are similar along the length of the hot tubes 8.
  • the first electrical connection means 1 1 extend perpendicularly to the second electrical connection means 12.
  • the pairs of electric thermoelectric elements are located one after the other. other so that two adjacent pairs of electric thermo elements 3n, 3p are aligned in the same direction, in particular, the length of the hot tubes 8.
  • the first electrical connection means 1 1 extend parallel to the second means electrical connection 12.
  • thermoelectric module 10 of the invention such as the module example described above:
  • thermoelectric elements 3n, 3p soldering the electric thermoelectric elements 3n, 3p at their first contact face 4a to the first electrical connection means 1 1, the brazing being effected at a first temperature, called hot temperature, as represented in FIG. 2,
  • thermoelectric elements 3n, 3p are then brazed at their second contact face 4b to the second electrical connection means 12, the brazing is performed at a second temperature, called cold, below the hot temperature, as shown in Figure 3.
  • the hot temperature is, for example, greater than 500 ° C and the cold temperature is in particular less than 300 ° vs.
  • thermoelectric elements 3n, 3p are bridged at their first contact surface 1 1 in pairs so that each pair is electrically connected by one of the first electrical connection means 1 1 and the brazing of the elements is carried out.
  • electrical thermo 3n, 3p at their second contact face 4b so that each of the second electrical connection means 12 electrically connects two pairs of electric thermo elements 3n, 3p.
  • a first high-temperature brazing material 30 is used, for example an alloy of aluminum and silicon.
  • a second low temperature brazing material 31 is used, for example an alloy of tin and silver.
  • the first brazing material 30 is selected having a brazing temperature greater than that of the walls of the hot tubes 8 heated by the hot fluid.
  • the soldering temperature of the second brazing material 31 is less than the brazing temperature of the first brazing material 30.
  • first and second electrical connection means 1 1, 12 following brazing of the first and second electrical connection means 1 1, 12 to the thermoelectric elements 3n, 3p, assembling, for example by compression, the hot tubes 8 to the first electrical connection means 1 1.
  • the metal fins 5 can be assembled to the second electrical connection means 12, also by compression, for example simultaneously with the assembly of the hot tubes 8 to the first connection means.
  • the first electrical connection means 1 1 are assembled to the hot tubes 8, prior to the soldering the first electrical connection means 1 1 to the electric thermo elements 3n, 3p.
  • the first electrical connection means 1 1 are, for example, sprayed hot on the hot tubes 8, in particular using a plasma torch.
  • the assembly of the metal fins 5 to the second electrical connection means 12 is, for example, compression.
  • the invention also provides for assembling the cold tubes 9 directly to the electric thermoelectric elements 3n, 3p via the second electrical connection means 12. This assembly therefore does not have a metal fin 5 and the cold tubes 9 are, in this case, similar to the hot tubes 8, arranged parallel to these and assembled to the electric thermo elements 3n, 3p in the same way as the hot tubes 8.

Abstract

L'invention concerne un procédé de fabrication d'un module thermo électrique (10) comprenant une pluralité d'éléments thermo électriques (3n, 3p), susceptibles de générer un courant électrique sous l'action d'un gradient de température exercé entre deux de leurs faces, dites première et deuxième faces de contact (4a, 4b), procédé dans lequel : - on effectue un brasage des éléments thermo électriques (3n, 3p) au niveau de leur première face de contact (4a) à des premiers moyens de connexion électrique (11), le brasage s'effectuant à une première température, dite chaude, - on brase ensuite les éléments thermo électriques (3n, 3p) au niveau de leur deuxième face de contact (4b) à des deuxièmes moyens de connexion électrique (12), le brasage s'effectuant à une deuxième température, dite froide, inférieure à la température chaude. L'invention concerne aussi un module thermo électrique (10) obtenu par le procédé de fabrication tel que décrit précédemment.

Description

Procédé de fabrication d'un module thermo électrique, notamment, destiné à générer un courant électrique dans un véhicule automobile et module thermo électrique obtenu par ledit procédé. La présente invention concerne un procédé de fabrication d'un module thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile et un module thermo électrique obtenu par ledit procédé.
Actuellement, il a déjà été proposé des modules thermo électriques utilisant des éléments, dits thermo électriques, permettant de générer un courant électrique en présence d'un gradient de température entre deux de leurs faces opposées, dites première et deuxième faces de contact, selon le phénomène connu sous le nom d'effet Seebeck. Ces modules comprennent un empilement de premiers tubes, destinés à la circulation des gaz d'échappement d'un moteur, et de seconds tubes, destinés à la circulation d'un fluide caloporteur d'un circuit de refroidissement. Les premières faces des éléments thermo électrique sont reliées thermiquement avec les tubes froids et les deuxièmes faces des éléments thermo électrique sont reliées thermiquement avec les tubes chauds. Les éléments thermo électriques sont ainsi soumis à un gradient de température provenant de la différence de température entre les gaz d'échappement, chauds, et le fluide de refroidissement, froid.
Les éléments thermo électriques disposés dans de tels modules sont de deux types :
- des éléments de type P permettant d'établir une différence de potentiel électrique dans un sens, dit positif, lorsqu'ils sont soumis à un gradient de température donné,
- des éléments type N permettant la création d'une différence de potentiel électrique dans un sens opposé, dit négatif, lorsqu'ils sont soumis au même gradient de température.
Les éléments thermo électriques de type P alternent avec les éléments thermo électriques de type N. Ils sont groupés par paire, chaque paire étant formée d'un élément thermo électrique de type P et d'un élément thermo électrique de type N. On configure ainsi le module pour permettre une circulation de courant entre les premières faces des éléments thermo électriques d'une même paire et une circulation de courant entre les deuxièmes faces de chacun des éléments thermo électriques de deux paires voisines. Autrement dit, le courant circule en série à travers les éléments thermo électriques en passant alternativement d'un élément thermo électrique de type P à un élément thermo électrique de type N. Pour cela, le module comprend une pluralité de pistes électriques, chacune d'entre elle reliant les premières faces des éléments thermo électriques d'une même paire ou les deuxièmes faces de chacun des éléments thermo électriques appartenant à deux paires voisines afin de permettre la circulation de courant décrite précédemment.
Il est connu d'assembler les éléments thermo électriques aux premières et deuxièmes pistes électriques par un traitement thermique. Pendant ce traitement thermique, les pistes électriques, en métal, et les éléments thermo électriques sont amenés à se dilater sous l'effet de la température de façon libre avant que la solidarisation ne s'effectue. Une fois que les pièces à assembler ont atteint la bonne température, la solidarisation se réalise et on commence alors à refroidir l'ensemble.
Or, les différentes pièces à assembler ne présentent pas les mêmes coefficients de dilatation. Ainsi, lors du refroidissement, les pièces solidarisées entre elles ne se rétractent pas de la même façon. Cette différence de rétractation engendre un effet de cisaillement entre les pièces assemblées qui risque de les endommager, notamment en créant des fissures et/ou des cassures.
L'invention vise à améliorer la situation.
L'invention concerne ainsi un procédé de fabrication d'un module thermo électrique comprenant une pluralité d'éléments thermo électriques, susceptibles de générer un courant électrique sous l'action d'un gradient de température exercé entre deux de leurs faces, dites première et deuxième faces de contact, procédé dans lequel :
- on effectue un brasage des éléments thermo électriques au niveau de leur première face de contact à des premiers moyens de connexion électrique, le brasage s'effectuant à une première température, dite chaude, - on brase ensuite les éléments thermo électriques au niveau de leur deuxième face de contact à des deuxièmes moyens de connexion électrique, le brasage s'effectuant à une deuxième température, dite froide, inférieure à la température chaude. Pendant la première phase de brasage, c'est-à-dire celle effectuée à la température chaude, bien que les premiers moyens de connexion électrique subissent des dilatations et des contractions importantes, les éléments thermo électriques ne sont pas mis sous contrainte puisqu'ils sont solidarisés aux premiers moyens de connexion électrique uniquement au niveau de leur première face de contact. Lorsque l'on effectue la deuxième phase de brasage, c'est-à-dire celle réalisée à la température froide, on vient assembler les deuxièmes moyens de connexion électrique du coté des deuxièmes faces actives des éléments thermo électriques, avec des dilatations et des contractions beaucoup plus faibles puisque le brasage est réalisé avec une température inférieure, ce qui limite donc les contraintes exercées sur les éléments thermo électriques.
Selon un aspect de l'invention, on brase les éléments thermo électriques au niveau de leur première face de contact par paire de sorte que chaque paire est connectée électriquement par un des premiers moyens de connexion électrique et on effectue le brasage des éléments thermo électriques au niveau de leur deuxième face de contact de sorte que chacun des deuxièmes moyens de connexion électrique relie électriquement deux paires d'éléments thermo électriques. On configure ainsi le module thermo électrique pour que le courant puisse circuler en série à travers les éléments thermo électriques en passant entre deux élément thermo électrique d'une même paire par les premiers moyens de connexion électrique et entre deux éléments thermo électriques voisins appartenant à deux paires adjacentes par leur deuxièmes moyens de connexion électrique.
Selon un exemple de réalisation de l'invention, la température chaude est supérieure à 500 °C. Avantageusement, la température froide est inférieure à 300 °C. La température froide est, par exemple, supérieure à 100°C.
Les premiers moyens de connexion électrique sont, par exemple, en Nickel. Les deuxièmes moyens de connexion électrique sont, notamment, en Cuivre. Selon un aspect de l'invention, on assemble les premiers moyens de connexion électrique à des tubes, dits tubes chauds, comprenant des parois et dans lesquels un fluide chaud est destiné à circuler, préalablement au brasage des premiers moyens de connexion électrique aux éléments thermo électriques. Les premiers moyens de connexions sont, par exemple, pulvérisés à chaud sur les tubes chauds. Alternativement, on assemble les tubes chauds sur les premiers moyens de connexion électrique par compression. Les tubes chauds sont, notamment, en acier inoxydable.
Selon un exemple de réalisation de l'invention, on choisit pour le brasage entre les éléments thermo électriques et les premiers moyens de connexion électrique un matériau de brasage, dit premier matériau de brasage, dont la température de brasage est supérieure à celle des parois chauffées par le fluide chaud. Ainsi, lors du fonctionnement du module thermo électrique, la présence du fluide chaud dans les tubes chauds n'altérera pas la qualité de la brasure. Le premier matériau de brasage permet d'effectuer le brasage à la température chaude.
Le premier matériau de brasage est, notamment, un alliage d'Aluminium et de Silicium.
Selon un aspect de l'invention, on choisit pour le brasage entre les éléments thermo électriques et les deuxièmes moyens de connexion électrique un matériau de brasage, dit deuxième matériau de brasage, dont la température de brasage est inférieure à celle du premier matériau de brasage. Ce deuxième matériau de brasage permet ainsi d'effectuer le brasage à la température froide.
Le deuxième matériau de brasage est, par exemple, un alliage d'Etain et d'Argent.
Selon un exemple de réalisation de l'invention, on assemble des moyens de conduction thermique aux deuxièmes moyens de connexion électrique par compression. Les moyens de conduction thermique sont, notamment, des ailettes métalliques. Ils sont, par exemple, reliés thermiquement à des tubes, dit tubes froids, destinés à recevoir un deuxième fluide dont la température est inférieure à celle du fluide chaud circulant dans les tubes chauds. Lesdits tubes froids et lesdites ailettes métalliques pourront être assemblés de façon mécanique. L'invention concerne aussi un module thermo électrique obtenu par le procédé de fabrication tel que décrit précédemment.
Les figures annexées feront bien comprendre comment l'invention peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables.
- la figure 1 illustre de façon schématique, en perspective éclatée, un exemple de réalisation d'une partie d'un dispositif thermo électrique comprenant un module thermo électrique selon l'invention,
- la figure 2 est une vue schématique de coté illustrant l'assemblage d'une partie du module thermo électrique de l'invention selon une première étape d'un exemple de mise en œuvre du procédé conforme à l'invention, - la figure 3 illustre une seconde étape du procédé de la figure 1 ,
- la figure 4 est une vue similaire à celle de la figure 2 dans une variante de réalisation du procédé conforme à l'invention, - la figure 5 illustre une seconde étape du procédé de la figure 4.
Comme illustré par la figure 1 , l'invention concerne un module thermo électrique 10. Le module thermo électrique 10 fait parti d'un dispositif thermo électrique 1 , comprenant un premier circuit 2, dit chaud, apte à permettre la circulation d'un fluide chaud, notamment, des gaz d'échappement d'un moteur, et un second circuit 7, dit froid, apte à permettre la circulation d'un fluide froid, notamment un fluide caloporteur d'un circuit de refroidissement, de température inférieure à celle du fluide chaud. Le circuit chaud comprend des tubes 8, dits chauds, aptes à permettre la circulation du fluide chaud. Lesdits tubes chauds 8 comprennent des parois définissant un volume interne des tubes chauds 8. Lorsque le fluide chaud circule à l'intérieur des tubes chauds il chauffe ainsi lesdites parois. Le circuit froid comprend des tubes 9, dits froids, aptes à permettre la circulation du fluide froid.
Le module thermo électrique 10 comprend des éléments 3p, 3n, dits thermo électriques, permettant de générer un courant électrique en présence d'un gradient de température.
Il s'agit, par exemple, d'éléments de forme sensiblement parallélépipédiques générant un courant électrique, selon l'effet Seebeck, lorsqu'ils sont soumis audit gradient entre deux de leurs faces opposées 4a, 4b, dites première 4a et deuxième 4b faces actives. De tels éléments permettent la création d'un courant électrique dans une charge connectée entre lesdites faces actives 4a, 4b. De façon connue de l'homme du métier, de tels éléments sont constitués, par exemple, des siliciures de manganèse (MnSi) ou des siliciures de magnésium (Mg2Si).
Les éléments thermo électriques sont, pour une première partie, des éléments 3p d'un premier type, dit P, permettant d'établir une différence de potentiel électrique dans un sens, dit positif, lorsqu'ils sont soumis à un gradient de température donné, et, pour l'autre partie, des éléments 3n d'un second type, dit N, permettant la création d'une différence de potentiel électrique dans un sens opposé, dit négatif, lorsqu'ils sont soumis au même gradient de température.
Le dispositif thermo électrique 1 comprend également des moyens de conduction thermique, ici des ailettes métalliques 5, en relation d'échange thermique avec les tubes froids 9 et les éléments thermo électriques 3p, 3n. Ainsi, les éléments thermo électriques 3n, 3p sont en contact, d'une part, avec les tubes chauds 8 et, d'autre part avec les ailettes métalliques 5, de façon à ce que lesdits éléments thermo électriques 3p, 3n génèrent le courant prévu lorsqu'ils sont soumis à un gradient de température. Ce sont donc les ailettes métalliques 5 qui remplissent la fonction d'établissement du contact thermique avec les éléments thermo électriques, pour le circuit froid. Quant aux tubes chauds 8, ils peuvent être choisis pour être compatible avec la circulation de fluides contraignants, notamment de température élevée et/ou corrosifs comme des gaz d'échappement d'un moteur.
Par ailette mécanique 5, on entend un élément présentant deux grandes surfaces opposées planes et d'épaisseur très inférieure à sa largeur et à sa longueur, permettant d'établir un contact surfacique, par exemple, avec les deuxièmes faces actives 4b des éléments thermo électriques. Les ailettes sont formées dans un matériau conducteur de la chaleur, notamment un matériau métallique tel que du cuivre ou de l'aluminium. Les ailettes métalliques 5 sont, par exemple, revêtues d'un matériau électriquement isolant. De la même manière les tubes chauds 8 sont, notamment, des tubes sensiblement plats comprenant deux grandes faces opposées parallèles sur laquelle sont disposés les éléments thermo électriques 3p, 3n, par exemple, par leur première face active 4a opposée à la deuxième face active 4b en contact avec les ailettes métalliques 5. Ils pourront être configurés pour permettre la circulation de gaz d'échappement et sont, notamment, en acier inoxydable. Ils sont formés, par exemple, par profilage, soudage et/ou brasage. Ils pourront présenter une pluralité de canaux de passage du premier fluide.
Les tubes chauds 8 sont, notamment, revêtus au niveau desdites grandes faces d'une couche de matériau électriquement isolant.
Les ailettes métalliques 5 sont disposées, notamment, de façon sensiblement parallèle aux faces planes des tubes chauds 8. Elles présentent, par exemple, des orifices pour le passage des tubes froids 9. Les tubes froids 9 sont, par exemple, en aluminium ou en cuivre et présentent une section ronde et/ou ovale de forme complémentaire aux orifices de passage ménagés dans les ailettes. Le contact entre les tubes froids 9 et les ailettes métalliques 5 est réalisé, notamment, par une expansion de la matière des tubes comme dans les échangeurs de chaleur connus sous le nom d'échangeurs mécaniques dans le domaine des échangeurs de chaleur pour les véhicules automobile.
Comme illustré à la figure 1 , les éléments thermo électriques 3n, 3p sont réparties en nappes prévues entre les tubes 1 de circulation du premier fluide et les ailettes métalliques 5. Chaque nappe comprend une pluralité d'éléments thermo électriques 3n, 3p disposés selon une répartition rectangulaire. Dans le dispositif thermo électrique, des liaisons électriques sont établies entre les nappes 6 d'éléments thermo électriques. Un connecteur électrique, non représenté, permet de relier le dispositif à un circuit électrique extérieur.
Les ailettes métalliques 5 sont disposées par paire de sorte qu'une première ailette métallique 5 d'une paire relie thermiquement une première nappe 6 en relation thermique avec un premier tube chaud 8 et qu'une deuxième ailette métallique 5 de la même paire relie thermiquement une nappe 6 en relation d'échange thermique avec un deuxième tube chaud 8, adjacent au premier tube chaud.
Le module thermo électrique 1 0 comprend des premiers 1 1 et des deuxièmes 1 2 moyens de connexions électrique, notamment des pistes électriques, reliant électriquement les éléments thermo électriques 3n, 3p appliqués sur un même tube chaud 8. Les premiers moyens de connexion électrique 1 1 sont, notamment, en Nickel, les deuxièmes moyens de connexion électrique 12 sont, par exemple, en Cuivre. En particulier, les éléments thermo électriques de type P et les éléments thermo électriques de type N, prévus entre un même tube de circulation du premier fluide et un même tube de circulation du deuxième fluide, pourront être reliés entre eux de façon à permettre la circulation du courant en série d'un élément du premier type vers un élément du second type. Il est également possible de relier entre elles par des moyens de connexion électrique les faces de contact d'éléments thermo électriques de même types pour un montage en parallèle desdits éléments. Les éléments thermo électriques 3n, 3p ainsi associés forment une cellule de conduction de base et les cellules obtenues pourront être associées en série et/ou en parallèle.
Ici, les éléments thermo électriques de type P alternent avec les éléments thermo électriques de type N. Ils sont groupés par paire, chaque paire étant formée d'un élément thermo électrique de type P et d'un élément thermo électrique de type N. On configure ici le module thermo électrique 10 pour permettre une circulation de courant entre les premières faces de contact 4a des éléments thermo électriques d'une même paire et une circulation de courant entre les deuxièmes faces de contact 3b de chacun des éléments thermo électriques de deux paires voisines. Autrement dit, le courant circule en série à travers les éléments thermo électriques en passant alternativement d'un élément thermo électrique de type P à un élément thermo électrique de type N. Pour cela, les premiers moyens de connexion électrique 1 1 relient les premières faces de contact 3a des éléments thermo électriques d'une même paire et les deuxièmes moyens de connexion électrique relient les deuxièmes faces de contact 3b de chacun des éléments thermo électriques appartenant à deux paires voisines afin de permettre la circulation de courant décrite précédemment.
Dans l'exemple illustré à la figure 1 , les paires d'éléments thermo électriques sont situés dans la largeur des tubes chauds 8 de sorte que deux paires adjacentes d'éléments thermo électriques 3n, 3p sont voisines selon la longueur des tubes chauds 8. Dans cet exemple, les premiers moyens de connexion électrique 1 1 s'étendent perpendiculairement aux deuxièmes moyens de connexion électrique 12. Dans l'exemple illustré aux figures 2 à 5, les paires d'éléments thermo électriques sont situés les unes à la suite des autres de sorte que deux paires adjacentes d'éléments thermo électriques 3n, 3p sont alignées selon une même direction, notamment, la longueur des tubes chauds 8. Dans cet exemple, les premiers moyens de connexion électrique 1 1 s'étendent parallèlement aux deuxièmes moyens de connexion électrique 12.
Selon le procédé de fabrication du module thermo électrique 10 de l'invention tel que l'exemple de module décrit plus haut :
- on effectue un brasage des éléments thermo électriques 3n, 3p au niveau de leur première face de contact 4a aux premiers moyens de connexion électrique 1 1 , le brasage s'effectuant à une première température, dite chaude, comme représenté sur la figure 2,
- on brase ensuite les éléments thermo électriques 3n, 3p au niveau de leur deuxième face de contact 4b aux deuxièmes moyens de connexion électrique 12, le brasage s'effectuant à une deuxième température, dite froide, inférieure à la température chaude, comme représenté sur la figure 3. La température chaude est, par exemple, supérieure à 500 °C et la température froide est, notamment, inférieure à 300°C.
Sur ces figures, on brase les éléments thermo électriques 3n, 3p au niveau de leur première face de contact 1 1 par paire de sorte que chaque paire est connectée électriquement par un des premiers moyens de connexion électrique 1 1 et on effectue le brasage des éléments thermo électriques 3n, 3p au niveau de leur deuxième face de contact 4b de sorte que chacun des deuxièmes moyens de connexion électrique 12 relie électriquement deux paires d'éléments thermo électriques 3n, 3p.
Afin de braser les premiers moyens de connexion électrique 1 1 aux éléments thermo électrique 3n, 3p, on utilise un premier matériau de brasage 30 haute température, par exemple un alliage d'Aluminium et de Silicium. Afin de braser les deuxièmes moyens de connexion électrique 12 aux éléments thermo électrique 3n, 3p, on utilise un deuxième matériau de brasage 31 basse température, par exemple un alliage d'Etain et d'Argent. Le premier matériau de brasage 30 est choisi présentant une température de brasage supérieure à celle des parois des tubes chauds 8 chauffées par le fluide chaud. La température de brasage du deuxième matériau de brasage 31 est inférieure à la température de brasage du premier matériau de brasage 30. Comme plus particulièrement illustré aux figures 2 et 3, à la suite du brasage des premiers et deuxièmes moyens de connexion électrique 1 1 , 12 aux éléments thermo électriques 3n, 3p, on assemble, par exemple par compression, les tubes chauds 8 aux premiers moyens de connexion électrique 1 1 . On peut assembler les ailettes métalliques 5 aux deuxièmes moyens de connexions électriques 12, également par compression, par exemple de manière simultanée à l'assemblage des tubes chauds 8 aux premiers moyens de connexion.
Selon une variante de réalisation illustrée à la figure 4, on assemble les premiers moyens de connexion électrique 1 1 aux tubes chauds 8, préalablement au brasage des premiers moyens de connexion électrique 1 1 aux éléments thermo électriques 3n, 3p. Les premiers moyens de connexions électrique 1 1 sont, par exemple, pulvérisés à chaud sur les tubes chauds 8, notamment à l'aide d'une torche plasma.
L'assemblage des ailettes métalliques 5 aux deuxièmes moyens de connexion électrique 12 se fait, par exemple, par compression.
L'invention prévoit aussi d'assembler les tubes froids 9 directement aux éléments thermo électriques 3n, 3p par l'intermédiaire des deuxièmes moyens de connexion électrique 12. Cet assemblage ne présente donc pas d'ailette métallique 5 et les tubes froids 9 sont, dans ce cas, similaires aux tubes chauds 8, disposés parallèlement à ces derniers et assemblés aux éléments thermo électriques 3n, 3p de la même manière que les tubes chauds 8.

Claims

Revendication
1 . Procédé de fabrication d'un module thermo électrique (10) comprenant une pluralité d'éléments thermo électriques (3n, 3p), susceptibles de générer un courant électrique sous l'action d'un gradient de température exercé entre deux de leurs faces, dites première et deuxième faces de contact (4a, 4b), procédé dans lequel : - on effectue un brasage des éléments thermo électriques (3n, 3p) au niveau de leur première face de contact (4a) à des premiers moyens de connexion électrique (1 1 ), le brasage s'effectuant à une première température, dite chaude,
- on brase ensuite les éléments thermo électriques (3n, 3p) au niveau de leur deuxième face de contact (4b) à des deuxièmes moyens de connexion électrique (12), le brasage s'effectuant à une deuxième température, dite froide, inférieure à la température chaude.
2. Procédé de fabrication selon la revendication 1 , dans lequel la température chaude est supérieure à 500 °C.
3. Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel la température froide est inférieure à 300 °C.
4. Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel les premiers moyens de connexion électrique (1 1 ) sont en Nickel.
5. Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel les deuxièmes moyens de connexion électrique (12) sont en Cuivre.
6. Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel on assemble les premiers moyens de connexion électrique (1 1 ) à des tubes, dits tubes chauds (8), comprenant des parois et dans lesquels un fluide chaud est destiné à circuler, préalablement au brasage des premiers moyens de connexion électrique (1 1 ) aux éléments thermo électriques (3n, 3p).
7. Procédé de fabrication selon la revendication 6, dans lequel les tubes chauds (8) sont en acier inoxydable.
8. Procédé de fabrication selon la revendication 6 ou 7, dans lequel on choisit pour le brasage entre les éléments thermo électriques (3n, 3p) et les premiers moyens de connexion électrique (1 1 ) un matériau de brasage, dit premier matériau de brasage (30), dont la température de brasage est supérieure à celle des parois chauffées par le fluide chaud.
9. Procédé de fabrication selon la revendication 8, dans lequel le premier matériau de brasage (30) est un alliage d'Aluminium et de Silicium.
10. Procédé de fabrication selon la revendication 8 ou 9, dans lequel on choisit pour le brasage entre les éléments thermo électriques (3n, 3p) et les deuxièmes moyens de connexion électrique (12) un matériau de brasage, dit deuxième matériau de brasage (31 ), dont la température de brasage est inférieure à celle du premier matériau de brasage (30).
1 1 . Procédé de fabrication selon la revendication 10, dans lequel le deuxième matériau de brasage (31 ) est un alliage d'Etain et d'Argent.
12. Procédé de fabrication selon l'une quelconque des revendications précédentes, dans lequel on assemble des moyens de conduction thermique (5) aux deuxièmes moyens de connexion électrique (12) par compression.
13. Module thermo électrique (10) obtenu par le procédé de fabrication selon l'une quelconque des revendications précédentes.
EP13740284.8A 2012-08-02 2013-07-24 Procede de fabrication d'un module thermo electrique, notamment, destine a generer un courant electrique dans un vehicule automobile et module thermo electrique obtenu par ledit procede. Withdrawn EP2880695A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1257512A FR2994336B1 (fr) 2012-08-02 2012-08-02 Procede de fabrication d'un module thermo electrique, notamment, destine a generer un courant electrique dans un vehicule automobile et module thermo electrique obtenu par ledit procede.
PCT/EP2013/065573 WO2014019900A1 (fr) 2012-08-02 2013-07-24 Procede de fabrication d'un module thermo electrique, notamment, destine a generer un courant electrique dans un vehicule automobile et module thermo electrique obtenu par ledit procede.

Publications (1)

Publication Number Publication Date
EP2880695A1 true EP2880695A1 (fr) 2015-06-10

Family

ID=47080723

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13740284.8A Withdrawn EP2880695A1 (fr) 2012-08-02 2013-07-24 Procede de fabrication d'un module thermo electrique, notamment, destine a generer un courant electrique dans un vehicule automobile et module thermo electrique obtenu par ledit procede.

Country Status (3)

Country Link
EP (1) EP2880695A1 (fr)
FR (1) FR2994336B1 (fr)
WO (1) WO2014019900A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060289052A1 (en) * 2005-06-22 2006-12-28 O'quinn Brooks Methods of forming thermoelectric devices including conductive posts and/or different solder materials and related methods and structures

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700053B2 (en) * 2000-07-03 2004-03-02 Komatsu Ltd. Thermoelectric module
WO2003105244A1 (fr) * 2002-01-01 2003-12-18 古河電気工業株式会社 Module a elements thermoelectriques et son procede de fabrication
DE102006011743A1 (de) * 2006-03-13 2007-09-20 Curamik Electronics Gmbh Verfahren zum Herstellen von Peltier-Modulen sowie Peltier-Modul

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060289052A1 (en) * 2005-06-22 2006-12-28 O'quinn Brooks Methods of forming thermoelectric devices including conductive posts and/or different solder materials and related methods and structures

Also Published As

Publication number Publication date
FR2994336A1 (fr) 2014-02-07
FR2994336B1 (fr) 2016-10-21
WO2014019900A1 (fr) 2014-02-06

Similar Documents

Publication Publication Date Title
WO2012041560A1 (fr) Procédé de fabrication d'un dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile
EP2622658A1 (fr) Dispositf thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile
EP2715816A1 (fr) Module et dispositif thermo electriques, notamment destines a generer un courant electrique dans un vehicule automobile
WO2012041559A1 (fr) Dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile
WO2014102218A1 (fr) Module et dispositif thermo-électriques, notamment destinés à générer un courant électrique dans un véhicule automobile
EP2936573B1 (fr) Ensemble comprenant un élément thermo électrique et un moyen de connexion électrique dudit élément thermo électrique, module et dispositif thermo électrique comprenant un tel ensemble
WO2012041558A1 (fr) Dispositif thermo électrique, notamment destiné à générer un courant électrique dans un véhicule automobile
EP2783401A1 (fr) Dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile, et procede de fabrication dudit dispositif
WO2014016323A1 (fr) Module thermo électrique
EP3017486B1 (fr) Dispositif thermo electrique, notamment destine a generer un courant electrique dans un vehicule automobile
EP3127171A1 (fr) Dispositif thermo electriques et module thermo electrique, notamment destines a generer un courant electrique dans un vehicule automobile
WO2017093339A1 (fr) Connecteur électrique pour relier des éléments thermoélectriques et absorber leurs contraintes
WO2014019900A1 (fr) Procede de fabrication d'un module thermo electrique, notamment, destine a generer un courant electrique dans un vehicule automobile et module thermo electrique obtenu par ledit procede.
EP2880694A1 (fr) Ensemble comprenant un element thermo electrique et un moyen de connexion electrique dudit element thermo electrique, module thermo electrique comprenant un tel ensemble.
WO2017046485A1 (fr) Module et dispositif thermo électrique, notamment destinés a générer un courant électrique dans un véhicule automobile, et procédé de fabrication d'un tel module
FR3013429A1 (fr) Module thermo electrique et dispositif thermo electrique comprenant au moins un tel module.
FR3027734A1 (fr) Module thermo electrique, notamment destines a generer un courant electrique dans un vehicule automobile
FR2965405A1 (fr) Procédé de fabrication d'un dispositif thermo électrique, notamment destine a générer un courant électrique dans un véhicule automobile.
FR3019683A1 (fr) Dispositif thermo electriques et module thermo electrique, notamment destines a generer un courant electrique dans un vehicule automobile
FR2977931A1 (fr) Echangeur de chaleur, notamment pour vehicule automobile, faisant dispositif thermo electrique
FR3027736A1 (fr) Module thermoelectrique a realisation simplifiee et procede de realisation d'un tel module thermoelectrique
FR3019680A1 (fr) Dispositif thermo electriques et module thermo electrique, notamment destines a generer un courant electrique dans un vehicule automobile
FR2989831A1 (fr) Dispositif thermo electrique, echangeur de chaleur comprenant un tel dispositif et procede de fabrication
FR3041156A1 (fr) Module et dispositif thermo electriques, notamment destines a generer un courant electrique dans un vehicule automobile
FR3041158A1 (fr) Module et dispositif thermo electriques, notamment destines a generer un courant electrique dans un vehicule automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20171109

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190108

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190521