EP2116753B1 - Produit d'isolation thermique - Google Patents

Produit d'isolation thermique Download PDF

Info

Publication number
EP2116753B1
EP2116753B1 EP09158930.9A EP09158930A EP2116753B1 EP 2116753 B1 EP2116753 B1 EP 2116753B1 EP 09158930 A EP09158930 A EP 09158930A EP 2116753 B1 EP2116753 B1 EP 2116753B1
Authority
EP
European Patent Office
Prior art keywords
layer
fibrous layer
metallized
layers
product according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09158930.9A
Other languages
German (de)
English (en)
Other versions
EP2116753A1 (fr
Inventor
Jérôme GILLES
Georges Zagdoun
Jérôme Douce
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Isover SA France
Original Assignee
Saint Gobain Isover SA France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Isover SA France filed Critical Saint Gobain Isover SA France
Publication of EP2116753A1 publication Critical patent/EP2116753A1/fr
Application granted granted Critical
Publication of EP2116753B1 publication Critical patent/EP2116753B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7654Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings
    • E04B1/7658Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres
    • E04B1/7662Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres comprising fiber blankets or batts
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7687Crumble resistant fibrous blankets or panels using adhesives or meltable fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7691Heat reflecting layers or coatings

Definitions

  • the present invention relates to a product (insulation) for thermal insulation, in particular buildings and containers (such as tanks, pipes, etc.), this product being particularly suitable and intended for use at atmospheric pressure, temperature and humidity ambient, and also relates to the process for obtaining it.
  • Insulation used for the thermal insulation of buildings is traditionally in the form of wound felts or panels made of mineral wool (glass or rock) up to 300 mm thick or more.
  • mineral wool glass or rock
  • thin insulators formed of various layers that slow down the transfer of heat, generally including at least one layer reflecting infrared radiation in the form of a metal sheet (in particular an aluminum foil) usually associated with a polymer film (in particular based on polyolefin (s) or polyester) serving as a support or allowing its assembly to the other layer (s) of the insulation.
  • a metal sheet in particular an aluminum foil
  • a polymer film in particular based on polyolefin (s) or polyester
  • Thin insulators with thermal performance equivalent to the aforementioned traditional products are however more expensive than the latter.
  • the presence of metal reflective sheets does not generally allow the breathing of the substrates coated with the insulation (in particular does not allow the passage of water vapor, etc.).
  • An insulating product having a plurality of superposed layers based on fibers, fibers of at least one layer being coated with a metal layer is also known from the document US 3357587 .
  • the present invention has sought to develop improved insulating products using reflective materials but which are both efficient and economically reasonable, in particular allowing the breathing of supports or structures coated with said products while presenting good thermal performance for a limited space requirement, these products being particularly suitable and intended for use at atmospheric pressure, at ambient temperature and humidity, in particular for the insulation of buildings.
  • the insulation according to the invention is advantageously in the form of a layered structure (or multilayer or stack of layers or sandwich structure) chosen from different types of layers, including at least one fibrous layer provided with a metal coating such as mentioned in the definition of the invention (said layer being referred to hereinafter as "metallized layer”). It may in particular comprise several of said metallized fibrous layers and it comprises one or more fibrous layers, in particular devoid of metal coating deposited directly on the surface of their fibers (this last layer (s) being designated ( s) hereinafter “non-metallized layer (s)”), the fibrous layers (metallized or not) being able to be distributed according to one or several layers (or beds) located at different levels (or with different thicknesses) of the insulation.
  • the insulation thus formed is particularly efficient and economical.
  • it comprises at least a third fibrous layer arranged so as to have an alternation of fibrous layer (s) metallized (s) and fibrous layer (s) (s) non-metallized (s) (to at least two non-metallized fibrous layers surrounding at least one metallized fibrous layer or, conversely and preferably at least two fibrous layers metallized surrounding at least one non-metallized fibrous layer), this alternation taking place on all or part of the thickness of the insulation.
  • Each fibrous layer mentioned in the definition of the invention may be in a form used where appropriate in the insulators, for example in the form of a mat or a felt, or in a form generally not valued as a material. insulation, such as a veil (the sails are optionally used in the insulators on the surface to obtain a particular appearance or a special touch quality).
  • These forms of fibrous layer have the advantage of having a large porosity open to the outside, permeable to the diffusion of water vapor.
  • this layer is in the form of a sheet of fibers (particularly son and / or filaments) entangled (forming a porous structure or "discontinuous"), these fibers can be cut or continuous (in general and advantageously there this is cut fiber).
  • nonwoven type structure such as a veil, or optionally a mat, a felt etc.
  • This nonwoven structure can nevertheless be associated with regularly arranged organized reinforcing elements, such as continuous yarns extending in one or more directions in the surface of the layer, especially in the form of parallel lines or a wire mesh, arranged perpendicularly or at a given angle between them, constituted for example by a grid which can be incorporated or associated with the nonwoven layer.
  • the fibrous layer may be formed in a known manner, for example by dry process with deposition of fibers from a spinneret or other fiberizing device on a carpet and optionally junction of the fibers between them by mechanical fastening, in particular by needling, or chemical by means of a binder applied to the fibers (in particular to obtain mats or thick webs) or wetly from a suspension of fibers in a liquid filtered on a carpet (in particular to obtain sails).
  • Each fibrous layer mentioned in the definition of the invention may be formed of different types of fibers (mineral fibers including mineral wool such as glass wool or rock, etc., and / or optionally organic fibers such as polyester fibers, polyolefin, two-component organic fibers, etc.), the fibers possibly being of a single type or possibly being a mixture of fibers (for example a mixture of mineral fibers and organic fibers, and / or composite fibers).
  • mineral fibers including mineral wool such as glass wool or rock, etc.
  • organic fibers such as polyester fibers, polyolefin, two-component organic fibers, etc.
  • the fibers possibly being of a single type or possibly being a mixture of fibers (for example a mixture of mineral fibers and organic fibers, and / or composite fibers).
  • the fibers of the layer are inorganic / mineral fibers, in particular glass fibers, for example and advantageously fibers of a glass having good reflection and / or absorption properties of infrared radiation (glass E, glass C, glass with a high alumina content, in particular greater than 18% by weight, etc.).
  • glass fibers for example and advantageously fibers of a glass having good reflection and / or absorption properties of infrared radiation (glass E, glass C, glass with a high alumina content, in particular greater than 18% by weight, etc.).
  • one or more fibrous layers mentioned in the definition of the invention also comprise at least one binder, which makes it possible, if necessary, to bind the fibers together, this binder generally being (but not necessarily) aqueous-based and generally comprising various organic compounds. (resin (s), additive (s), etc.), this binder being chosen so as to withstand, if appropriate, the temperatures of subsequent use.
  • the binder content may be of the order of a few% or tens of% by weight relative to the layer, generally less than or equal to 30% (in the case of the web for example of the order of 15 to 30% by weight). weight of dry matter in relation to the veil).
  • At least one fibrous layer (in particular metallized) mentioned in the definition of the invention has a porosity (expressed by the volume fraction of air present in the layer, namely the proportion in% of the volume of air contained in the layer relative to the overall apparent volume of the layer) greater than 10% (and possibly up to 99% or more), preferably greater than 30%, especially greater than 50% and particularly preferably greater than 80 % (in particular between 90 and 99.8%) and / or has a basis weight of between 30 and 5000 g / m 2 , in particular of the order of 30 to 1500 g / m 2 , in particular of 30 to 500 g / m 2 , m 2 , for example of the order of 30 to 150 g / m 2 , in particular of 50 to 120 g / m 2 (for a layer in the form of a glass veil in particular).
  • a porosity expressed by the volume fraction of air present in the layer, namely the proportion in% of the volume of air contained in the layer relative to the
  • At least the fibrous layer of a metallized layer as mentioned above also advantageously according to the invention a permeance to water vapor (measured according to ISO 12572) greater than 100 perm at 75% relative humidity and greater than 200 perm at 25% relative humidity.
  • the combination of such a porous / permeable fibrous layer with water vapor and its metal coating is a sufficiently reflective structure (although discontinuous) while making it possible the respiration of supports coated with said structure, which is not the case of known reflective products incorporating one or more metallized polymer sheets.
  • the fibrous layer coated with at least one metal layer as mentioned in the invention retains good permeance to water vapor (little or no difference, in particular a reduction not exceeding 20%, generally not exceeding 10 or 15%) with respect to the uncoated fibrous layer (or respectively with respect to the product incorporating the uncoated fibrous layer), said metallized fibrous layer advantageously having a higher permeance at 90 perm at 75% relative humidity and above 190 perm at 25% relative humidity.
  • the insulating product according to the invention comprises, as fiber layer mentioned in the definition of the invention, at least one fiberglass web.
  • This haze can be obtained by any technique known per se, in particular the so-called wet technique of preparing an aqueous suspension of chopped glass fibers, depositing this suspension in a film on a filter mat subjected to a suction to eliminate a part water from the deposited film, apply a binder composition (to hold the fibers together) on the wet film, dry the veil and crosslink the binder in an oven, then condition the veil in the desired manner, the product final being in the form of a fairly thin sheet (for example with a thickness of the order of 0.2 to 0.8 mm) generally packaged in rolls.
  • This web or thin film material is traditionally of essentially isotropic structure (no preferential orientation of the fibers) and is qualified where appropriate by means of the "ratio isotropy "(ratio of the tensile strength of the web in the machine direction on the tensile strength of the web in the cross direction) generally of the order of 1 to 1.5, sometimes up to 2.
  • the glass fibers used for the production of webs are preferably in the form of cut son, having for example a length of the order of ten millimeters, in particular from 6 to 30 mm, in particular from approximately 10 to 20 mm but can also be (at least partly) cut to a longer or continuous length.
  • the insulating product according to the invention comprises as fibrous layer (in particular metallized) mentioned in the definition of the invention at least one mat of glass fibers or a thick glass veil which can be obtained preferentially. by the dry route, and whose thickness can be up to a few millimeters, for example of the order of 0.8 to 5 mm, in particular of 0.8 to 3 mm.
  • the insulating product according to the invention comprises as fiber layer (in particular metallized) mentioned in the definition of the invention at least one glass wool or rock wool, which can be obtained by techniques conventional fibers for the production of mineral wool, and whose thickness can be of the order of 5 to 200 mm, in particular of 10 to 200 mm (such as one of those traditionally used in insulators), with a density which can be of the order of 7 to 50 kg / m 3 , in particular 7 to 25 kg / m 3 , the layer thus being sufficiently flexible so that the insulating product is able to be packaged in roll.
  • fiber layer in particular metallized
  • at least one glass wool or rock wool which can be obtained by techniques conventional fibers for the production of mineral wool, and whose thickness can be of the order of 5 to 200 mm, in particular of 10 to 200 mm (such as one of those traditionally used in insulators), with a density which can be of the order of 7 to 50 kg / m 3 , in particular 7 to 25 kg / m 3 , the
  • a product according to the invention comprises at least one metallized fibrous layer, of thickness that can be chosen in particular between 0.2 and 200 mm.
  • the metallized fibrous layers may have a thickness of less than 10 mm, the non-metallized fibrous layers being chosen according to the invention so as to have a thickness of less than 10 mm, and in particular greater than 2 mm, in particular from minus 3 mm (in particular of the order of 3 to 6 mm, in particular 5-6 mm, especially for layers based on mineral fibers such as glass fibers, or organic fibers).
  • the non-metallized fibrous layers are thus preferably chosen from the felt-like or fibrous mat materials which have intrinsic thermal insulation properties.
  • the limited thickness of the insulating non-metallized fibrous layers selected in this case makes it possible to benefit from a skin effect or radiative boundary layer lowering the local thermal conductivity (the thermal conductivity of the material over this thickness is lower than the thermal conductivity Apparently of a material of identical fibrous structure but of greater thickness) reducing further, in combination with the presence of the metallized fibrous layers which reduces the intensity of the incident radiation, the radiative heat flux transmitted in the insulator.
  • this skin effect is advantageously manifested on an optimum thickness of about 3 mm for an insolating glass fiber mat of about 10 kg / m 3 of density. This thickness will be even lower than the mattress is dense.
  • the non-metallized fibrous layer or layers also optionally present may be chosen from the same types of fibrous layers as those described for the fibrous layers mentioned in the definition of the invention; in particular they may be based on any insulating material based on mineral fibers, or organic of natural origin (plant or animal) or synthetic (polymer), such as mineral wool, for example glass wool or rockwool , or hemp wool, sheep, feathers, or fibers based on polymer (s) recycled (s) or not (for example polyester), etc., each layer being preferably in a flexible or semi-rigid form rollable, with a density of less than 50 kg / m 3 , the thickness of these layers being limited as explained above.
  • any insulating material based on mineral fibers, or organic of natural origin (plant or animal) or synthetic (polymer), such as mineral wool, for example glass wool or rockwool , or hemp wool, sheep, feathers, or fibers based on polymer (s) recycled (s) or not (for example polyester), etc., each
  • This or these layers are preferably in the form of felt (s) and are preferably located in layers (s) intermediate (s) in the insulation, but it can also be sail (s) and / or at least one (Of these) layer (s) may constitute at least one outer face of the product.
  • the insulation comprises at least two webs of metallized fibers and at least one non-metallized fiber felt between the webs.
  • the total number of fibrous layers (metallized or not) in the insulation according to the invention does not exceed 20 layers (or layers).
  • the metal coating deposited directly on the (or on) the surface of at least a portion of the fibers of the metallized fibrous layer mentioned in the definition of the invention is advantageously a thin surface layer (or film) (in particular of thickness nanometer), this layer being directly deposited on the surface of the fibrous layer, in particular by a vacuum evaporation deposition technique as explained later.
  • This metal layer continuously covers the surface of the exposed fibers on the outside of the layer. In this respect, it may appear continuous at a certain distance from the fibrous layer (respectively of the product), but the close or microscopic examination reveals a discontinuous surface conforming to the surface of the fiber network, the porosity of the coated fibrous layer. the metal layer being approximately preserved.
  • the metal coating is generally provided on at least one face of the fibrous layer (at least one of the faces of larger dimensions), or even at least two faces (in particular can cover the two opposite faces of larger dimensions, which allows in particular to arrange the layer in the product without taking care of a particular orientation).
  • the metal coating may be for example based on aluminum, copper, zinc, silver, titanium, chromium, nickel, and / or other metals or metal compounds (for example conductive metal oxides such as tin-doped indium oxide, aluminum-doped zinc oxide, antimony-doped tin oxide, etc.), especially good conductors of electricity, and / or alloys between these metals (for example a nickel / chromium or silver / copper alloy, etc.), etc., pure (metal used) or almost pure or possibly doped or alloyed (for example to protect the layer of the effects of corrosion or for reasons of ease of deposition or adhesion, etc.).
  • metals or metal compounds for example conductive metal oxides such as tin-doped indium oxide, aluminum-doped zinc oxide, antimony-doped tin oxide, etc.
  • conductive metal oxides such as tin-doped indium oxide, aluminum-doped zinc oxide, antimony-doped tin oxide
  • the fibrous layer mentioned in the definition of the invention may also optionally be coated with several layers, these layers may be of the same material (metal) or different materials (metal or not, at least one of the layers being metallic according to the invention).
  • the additional layer or layers are preferably of similar structure to the metal layer previously described, namely, continuously coating the surface of the fibers exposed on the outside of the layer. They may nevertheless be of generally discontinuous structure, that is to say that they are deposited in islets on the surface of the fibrous layer.
  • a first metal layer may be surmounted by another layer, for example protection against corrosion (for example a layer of silica), or biocide (for example a layer of copper or silver) etc.
  • the insulating product according to the invention generally comprises one or more (for example up to 10 or more) fibrous layers provided with at least one metal coating as mentioned in the definition of the invention, said fibrous layers possibly being internal (For example in the middle of the product) and / or in at least one of the faces of the product (or on each of its two opposite faces of larger dimensions), the performance generally increasing with the number of fibrous layers coated according to the incorporated / present invention.
  • one or more layers of the insulator may be additive, especially when one or more properties and / or functions are sought (presence for example of an infra-red opacifier), and / or comprise one or more binders and and / or oils and / or silicones, etc.
  • one or more layers in particular a fibrous layer in the form of a web
  • the product according to the invention comprises only breathable layers, that is to say layers which are permeable to the diffusion of water vapor, in particular porous or perforated (for example based on fibers, and / or open-cell foam, and / or in the form of a perforated film, etc.) or having a permeability to the diffusion of water vapor in at least appropriate ambient conditions (for example an adaptive hygroregulating membrane, typically based on polyamide or another polymer, such as the product sold under the name VARIO by the company SAINT-GOBAIN ISOVER).
  • layers which are permeable to the diffusion of water vapor in particular porous or perforated (for example based on fibers, and / or open-cell foam, and / or in the form of a perforated film, etc.) or having a permeability to the diffusion of water vapor in at least appropriate ambient conditions (for example an adaptive hygroregulating membrane, typically based on polyamide or another polymer, such as the product sold under the name VARIO by
  • the product according to the invention mainly comprises, or even only, essentially mineral-based layers (with the possible exception of binder (s) and / or additive (s) and / or layers or films layer coating) which achieves high levels of fire resistance.
  • Organic layers can however be tolerated if they contain fire retardant additives or are otherwise fire resistant, the total amount of organic material being preferably limited depending on the desired level of fire resistance.
  • the layers forming the product are laid one on top of the other and can be joined together in different ways, in particular the different sheets, films or other (initially) independent layers can be assembled by gluing, stitching, sewing, needling, possibly by welding (thermal, ultrasound) in the presence of suitable materials (eg polymers) in one or more layers or by the provision of a fusible interlayer (such as a hot-melt layer or a polyethylene or polyethylene terephthalate layer) ).
  • suitable materials eg polymers
  • a fusible interlayer such as a hot-melt layer or a polyethylene or polyethylene terephthalate layer
  • the superposed layers may optionally be held together inside an envelope (so-called encapsulation technique) with or without joining the layers together.
  • the envelope is made of a packaging material, such as a plastic or other film, preferably permeable to air, which may be in tubular form closed or not at the ends.
  • a packaging material such as a plastic or other film, preferably permeable to air, which may be in tubular form closed or not at the ends.
  • the independent layers are made integral by localized or pointwise bonds (by sewing, needling, etc.), for example by lines or points, in various specific locations of the product (for example at the edges or at regular intervals along the length product) especially to maintain a certain flexibility of the product (allowing for example its winding) and avoid thermal bridges.
  • the insulating product according to the invention is preferably of small thickness, its thickness not exceeding in this case 100 mm, and being advantageously less than 50 mm, although advantages are always observed for thicknesses up to 200 mm. .
  • the thickness of each fibrous layer provided with at least one metal coating as defined according to the invention is generally less than about 40 mm and preferably less than 8 mm, in particular less than 5 mm (especially for a layer in the form of a veil), the thickness of each metal layer deposited on a fibrous layer is generally less than 2 ⁇ m and in particular less than 1 ⁇ m, for example of the order of 500 nm or more.
  • the insulating product according to the invention may be in the form of a sheet (generally multilayer) or a sheet or panel (generally multilayer), preferably flexible, and may optionally be packaged wound.
  • the particular structure of the insulating (reflective) product according to the invention due in particular to the presence of fibrous layers coated with a metal layer as previously mentioned, makes it possible to obtain good thermal insulation properties at the same time as a breathable structure (permeable to the diffusion of water vapor) if appropriate (if it is devoid of other non-breathable layers), having a good mechanical resistance at the same time as thermal and if necessary incombustible (especially when the fibrous structure is formed of mineral fibers), the insulation also remaining economically advantageous.
  • the improved thermal performance of the insulation according to the invention results in values of thermal conductivity ⁇ advantageously less than about 35 mW / mK, and preferably less than about 32 mW / mK (for comparison, the wool mattresses conventional minerals have a thermal conductivity ⁇ commonly greater than 35, in particular of the order of 40 mW / mK).
  • the thermal conductivity ⁇ (in W / mK) represents the amount of heat passing through the insulation (one meter thick, per m 2 and when the temperature difference between the two faces is 1 ° K) .
  • the thermal conductivity values ⁇ (compared with identical pressure and temperature, in particular at atmospheric pressure (1 bar) and ambient temperature (between 10 and 25 ° C.) are measured on the model of the ISO 8301 standard).
  • the performance gain in terms of thermal conductivity related to the presence of at least one fibrous layer coated with at least one metal layer according to the invention can range in particular up to 20% (less in thermal conductivity) compared to same product does not have such a fibrous layer, this gain is generally at least 1% (case of the addition of the fibrous layer to a product already high performance), the insertion into an existing insulation product of a layer fibrous coated with at least one metal layer as mentioned according to the invention to reduce the thermal conductivity of said product being also referred to in the present invention.
  • the insulating product according to the invention generally reflects on the order of at least 30%, or even at least 40%, of the incident infrared radiation (wavelengths between 5 and 22 ⁇ m, the measurements being made according to the technical regulation ACERMI RT A).
  • the invention also relates to a method for improving the thermal performance (including reduction of thermal conductivity) of an insulating product in layer (s), without reducing the ability of the product to breathe, this method of inserting (or comprising at least one step of incorporating, in and / or on the surface of said product, at least one fibrous layer provided with at least one metal coating deposited directly on the surface of at least a portion of the fibers of said fibrous layer .
  • this method of inserting or comprising at least one step of incorporating, in and / or on the surface of said product, at least one fibrous layer provided with at least one metal coating deposited directly on the surface of at least a portion of the fibers of said fibrous layer .
  • the gain obtained can be significant, for example several% and up to at least 20%.
  • the subject of the invention is also a process for obtaining an insulating product according to the invention, said process comprising at least one step of depositing a metal layer on a fibrous layer (intended to form part of the insulating product, said layer is then assembled where appropriate to one or other layers to form the insulation).
  • the metal layer is preferably deposited on the fibrous layer by a vacuum evaporation technique (of PVD, CVD, optionally assisted by plasma, etc.), activated (for example by cathodic arc, sputtering, beam sputtering).
  • a vacuum evaporation technique of PVD, CVD, optionally assisted by plasma, etc.
  • activated for example by cathodic arc, sputtering, beam sputtering.
  • the metallized fibrous layer mentioned in the present invention in particular despite the porosity of the support (fibrous layer) and the pre-existing fear that the binder or other residues related to the support disturb the deposition of the layer metal (for example by desorption of water) and adversely affect its quality (the binder in particular does not disturb the final deposition of the metal layer).
  • each metal layer may optionally be carried out online during manufacture or after manufacture of the fibrous layer, for example by unrolling the fibrous layer, coating it by vacuum evaporation and then rewinding it on a support, these three operations taking place continuously in the same vacuum chamber, rewinding the fibrous layer coated, unexpectedly, not altering it.
  • the method may comprise a step of assembling the different layers of the insulation by means of various operations such as gluing, seaming, seaming, needling, seaming ), located (s) or continuous (s), wrapping (in an envelope permeable to air in particular), etc.
  • the method may finally comprise a finishing and conditioning step, for example comprising a cutting step when the layers are assembled in line in the form of an endless band.
  • the insulation is flexible enough to be packaged as a roll which can be contained in a suitable packaging material.
  • an insulating product is considered formed of 6 layers of glass wool with a density of 14 kg / m 3 and a thermal conductivity of 33.4 mW / mK each of 8 mm thick.
  • the insulating product is only formed of the 6 aforementioned layers.
  • each intermediate layer is intercalated between each previous layer an intermediate layer (5 interlayers in all, the insulation then being formed of two types of layers arranged alternately), each intermediate layer being formed of a metallized glass fiber fleece 0.8 mm thick.
  • This veil is manufactured according to the invention from a veil marketed under the reference APH75 by Saint-Gobain Technical Fabrics (and having a porosity of approximately 95%, a basis weight of 75 g / m 2 and a permeance of 150 perm at 75% relative humidity and 210 perm at 25% relative humidity, this veil having intrinsically no significant property infra-red reflection, the latter being barely 5%), that 2 ⁇ m thick aluminum metal layer is deposited on one of its faces by the technique of evaporation under vacuum.
  • the glass veil is scrolled with one side exposed to the aluminum atmosphere at a speed adapted to obtain a deposition rate (growth rate of the aluminum layer on the fibers) of the order of 2 nm / s, the temperature of the web being less than 50 ° C.
  • the coated veil is characterized by an ability to reflect infra-red radiation at 40% of the incident infrared radiation (metallized side, for wavelengths between 5 and 22 microns, the measurements being made according to the technical regulation ACERMI RT A), the permeability of the coated web being approximately conserved, said coated web having a permeance of 100 perm at 75% relative humidity and 205 perm at 25% relative humidity.
  • the insulating product of the present example illustrating the invention is manufactured by superposition of a layer of mineral wool, then of an aluminized veil with its face coated on the top, then this stacking sequence is repeated 4 times, and the we finish with a layer of mineral wool.
  • the product obtained has a final thickness of 52 mm.
  • the thermal conductivity measured according to the ISO 8301 standard, on 300mmX300mm test pieces of these products, is 33.4 mW / mK for the reference example, and 31.7 mW / mK for the example according to the invention is a gain in thermal performance of 5%.
  • the reflection and transmission properties of the infra-red radiation of the metallized veil used are preserved over time.
  • the transmission and the infrared reflection measured on the metallized film remain unchanged (in particular the metallic side infrared reflection remains high, from order of 40% for wavelengths in particular between 5 and 22 microns, the measurements being made according to technical regulation ACERMI RT A).
  • the insulation according to the invention is particularly suitable for use inside the building envelopes, especially in the attic, on the walls or roofs inside the houses, for the insulation of containers (heater water, tank, pipe, etc.), etc., this insulation being particularly suitable and intended for use at atmospheric pressure, at ambient temperature and humidity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Thermal Insulation (AREA)
  • Nonwoven Fabrics (AREA)

Description

  • La présente invention concerne un produit (isolant) pour l'isolation thermique, en particulier de bâtiments et contenants (tels que réservoirs, tuyaux, etc), ce produit étant particulièrement adapté et destiné à un usage à pression atmosphérique, à température et à humidité ambiantes, et concerne également son procédé d'obtention.
  • Les isolants utilisés pour l'isolation thermique de bâtiments (en particulier de murs ou toits de bâtiments) se présentent traditionnellement sous forme de feutres enroulés ou de panneaux formés de laine minérale (de verre ou de roche) d'épaisseur pouvant atteindre 300 mm ou plus. Pour des raisons, notamment, d'encombrement et de souplesse d'utilisation, il est plus récemment apparu souhaitable de mettre au point des produits isolants de plus faible épaisseur sans pour autant nuire aux propriétés recherchées, en matière d'isolation thermique notamment.
  • Ainsi sont apparus ces dernières années des isolants dits « minces » formés de diverses couches freinant le transfert de chaleur, dont généralement au moins une couche réfléchissant les rayonnements infrarouges sous forme notamment d'une feuille métallique (en particulier une feuille d'aluminium) usuellement associée à un film polymère (en particulier à base de polyoléfine(s) ou de polyester) lui servant de support ou permettant son assemblage à la ou aux autres couches de l'isolant. Les isolants minces présentant des performances thermiques équivalentes aux produits traditionnels précités sont cependant plus coûteux que ces derniers. En outre, la présence de feuilles réfléchissantes métalliques ne permet généralement pas la respiration des supports revêtus de l'isolant (en particulier ne permet pas le cas échéant de laisser passer la vapeur d'eau, etc.).
  • Un produit isolant présentant une pluralité de couches superposées à base de fibres, des fibres d'au moins une couche étant revêtues d'une couche métallique, est également connu du document US 3357587 .
  • La présente invention a cherché à mettre au point des produits isolants, améliorés, faisant appel à des matériaux réfléchissants mais qui soient à la fois performants et restant économiquement raisonnables, en particulier permettant la respiration des supports ou structures revêtus desdits produits tout en présentant de bonnes performances thermiques pour un encombrement préférentiellement limité, ces produits étant particulièrement adaptés et destinés à un usage à pression atmosphérique, à température et à humidité ambiantes, notamment pour l'isolation de bâtiments.
  • Ce but est atteint grâce au produit isolant selon l'invention tel que défini par la revendication 1.
  • L'isolant selon l'invention se présente avantageusement sous forme d'une structure en couches (ou multicouches ou empilement de couches ou structure sandwich) choisies parmi différents types de couches, dont au moins une couche fibreuse dotée d'un revêtement métallique telle que mentionnée dans la définition de l'invention (ladite couche étant désignée ci-après par « couche métallisée »). Il peut notamment comprendre plusieurs desdites couches fibreuses métallisées et il comprend une ou d'autres couches fibreuses, en particulier dénuées de revêtement métallique déposé directement sur la surface de leurs fibres (ce(s) dernière(s) couche(s) étant désignée(s) ci-après par « couche(s) non métallisée(s) »), les couches fibreuses (métallisées ou non) pouvant être réparties suivant une ou plusieurs nappes (ou lits) situées à différents niveaux (ou à différentes épaisseurs) de l'isolant.
  • L'isolant ainsi formé est particulièrement performant et économique. De façon particulièrement préférée, il comprend au moins une troisième couche fibreuse disposée de façon à avoir une alternance de couche(s) fibreuse(s) métallisée(s) et de couche(s) fibreuse(s) non métallisée(s) (au moins deux couches fibreuses non métallisées entourant au moins une couche fibreuse métallisée ou, inversement et de préférence, au moins deux couches fibreuses métallisées entourant au moins une couche fibreuse non métallisée), cette alternance s'opérant sur tout ou partie de l'épaisseur de l'isolant.
  • Dans la description qui va suivre, on présentera des éléments caractéristiques qui valent de façon générale tant pour une couche fibreuse métallisée que non métallisée.
  • Chaque couche fibreuse mentionnée dans la définition de l'invention peut se présenter sous une forme utilisée le cas échéant dans les isolants, par exemple sous forme d'un mat ou d'un feutre, ou sous une forme généralement non valorisée en tant que matériau isolant, telle qu'un voile (les voiles n'étant le cas échéant utilisés dans les isolants qu'en surface pour obtenir un aspect particulier ou une qualité de toucher particulière). Ces formes de couche fibreuse ont l'avantage de présenter une grande porosité ouverte vers l'extérieur, perméable à la diffusion de vapeur d'eau. En particulier, cette couche se présente sous forme d'une nappe formée de fibres (en particulier fils et/ou filaments) enchevêtrées (formant une structure poreuse ou « discontinue »), ces fibres pouvant être coupées ou continues (en général et avantageusement il s'agit de fibres coupées). Bien qu'une structure ordonnée telle qu'un tissu puisse le cas échéant être envisageable, il s'agit préférentiellement et généralement d'une structure de type non-tissé telle qu'un voile, ou encore le cas échéant un mat, un feutre, etc. Cette structure non-tissée peut néanmoins être associée à des éléments de renfort agencés de manière régulièrement organisée, tels que des fils continus s'étendant dans une ou plusieurs directions dans la surface de la couche, notamment sous forme de lignes parallèles ou d'un maillage de fils, disposés perpendiculairement ou sous un angle donné entre eux, constitué par exemple par une grille qui peut être incorporée ou associée à la couche non-tissée. La couche fibreuse peut être formée de façon connue, par exemple par voie sèche avec dépôt de fibres issues d'une filière ou un autre dispositif de fibrage sur un tapis et éventuellement jonction des fibres entre elles par accrochage mécanique, notamment par aiguilletage, ou chimique au moyen d'un liant appliqué sur les fibres (voie permettant en particulier d'obtenir des mats ou des voiles épais) ou bien par voie humide à partir d'une suspension de fibres dans un liquide filtrée sur un tapis (voie permettant en particulier d'obtenir des voiles).
  • Chaque couche fibreuse mentionnée dans la définition de l'invention peut être formée de différents types de fibres (fibres minérales notamment de laine minérale telle que laine de verre ou de roche, etc, et/ou éventuellement fibres organiques telles que fibres polyester, polyoléfine, fibres organiques bi-composants etc), les fibres pouvant être d'un seul type ou pouvant être un mélange de fibres (par exemple mélange de fibres minérales et de fibres organiques, et/ou fibres composites). De préférence, au moins une partie des fibres de la couche, ou, avantageusement, toutes les fibres de la couche, sont des fibres inorganiques/minérales, en particulier des fibres de verre, par exemple et avantageusement des fibres d'un verre présentant de bonnes propriétés de réflexion et/ou d'absorption des rayonnements infrarouges (verre E, verre C, verre a taux d'alumine élevé, en particulier supérieur à 18% en poids, etc.).
  • Généralement une ou des couches fibreuses mentionnées dans la définition de l'invention comprennent également au moins un liant, permettant le cas échéant de lier les fibres entre elles, ce liant étant généralement (mais non nécessairement) à base aqueuse et comprenant généralement différents composés organiques (résine(s), additif(s), etc.), ce liant étant choisi de façon à résister le cas échéant aux températures de mises en oeuvre ultérieures. Le taux de liant peut être de l'ordre de quelques % ou dizaines de % en poids par rapport à la couche, généralement inférieur ou égal à 30% (dans le cas du voile par exemple de l'ordre de 15 à 30% en poids de matière sèche par rapport au voile).
  • Avantageusement, au moins une couche fibreuse (en particulier métallisée) mentionnée dans la définition de l'invention présente une porosité (exprimée par la fraction volumique d'air présent dans la couche, à savoir la proportion en % du volume d'air contenu dans la couche par rapport au volume global apparent de la couche) supérieure à 10% (et pouvant le cas échéant atteindre 99% ou plus), de préférence supérieure à 30%, notamment supérieure à 50% et de façon particulièrement préférée, supérieure à 80% (en particulier comprise entre 90 et 99,8%) et/ou présente un grammage compris entre 30 et 5000 g/m2, notamment de l'ordre de 30 à 1500 g/m2, en particulier de 30 à 500g/m2, par exemple de l'ordre de 30 à 150 g/m2, en particulier de 50 à 120 g/m2 (pour une couche sous forme d'un voile de verre notamment).
  • Au moins la couche fibreuse d'une couche métallisée telle que précitée présente également avantageusement selon l'invention une perméance à la vapeur d'eau (mesurée selon la norme ISO 12572) supérieure à 100 perm à 75% d'humidité relative et supérieure à 200 perm à 25% d'humidité relative.
  • De façon surprenante, comme il apparaît dans la suite de la description, la combinaison d'une telle couche fibreuse poreuse/perméable à la vapeur d'eau et de son revêtement métallique constitue une structure suffisamment réfléchissante (bien que discontinue) tout en rendant possible la respiration des supports revêtus de ladite structure, ce qui n'est pas le cas des produits réfléchissants connus incorporant une ou plusieurs feuilles de polymères métallisées. De façon avantageuse, la couche fibreuse revêtue d'au moins une couche métallique telle que mentionnée dans l'invention (ou le produit incorporant ladite couche fibreuse) conserve une bonne perméance à la vapeur d'eau (pas ou peu de différence, en particulier diminution n'excédant pas 20%, généralement n'excédant pas 10 ou 15%) par rapport à la couche fibreuse non revêtue (ou respectivement par rapport au produit incorporant la couche fibreuse non revêtue), ladite couche fibreuse métallisée présentant avantageusement une perméance supérieure à 90 perm à 75% d'humidité relative et supérieure à 190 perm à 25% d'humidité relative.
  • Selon un mode de réalisation avantageux, le produit isolant selon l'invention comprend comme couche fibreuse mentionnée dans la définition de l'invention au moins un voile de fibres de verre. Ce voile peut être obtenu par toute technique connue en soi, en particulier la technique dite par voie humide consistant à préparer une suspension aqueuse de fibres de verre coupées, déposer cette suspension en une pellicule sur un tapis filtrant soumis à une succion pour éliminer une partie de l'eau de la pellicule déposée, appliquer une composition de liant (permettant de maintenir les fibres entre elles) sur la pellicule humide, sécher le voile et réticuler le liant dans une étuve, puis conditionner le voile de la manière désirée, le produit final se présentant sous forme d'une feuille assez fine (par exemple d'épaisseur de l'ordre de 0,2 à 0,8 mm) généralement conditionnée en rouleaux. Ce voile ou matériau en feuille mince est traditionnellement de structure essentiellement isotrope (pas d'orientation préférentielle des fibres) et est le cas échéant qualifié au moyen du « rapport d'isotropie » (rapport de la résistance à la traction du voile dans le sens machine sur la résistance à la traction du voile dans le sens travers) généralement de l'ordre de 1 à 1,5, allant parfois jusqu'à 2. Les fibres de verre utilisées pour la réalisation de voiles sont de préférence sous forme de fils coupés, présentant par exemple une longueur de l'ordre de la dizaine de millimètres, notamment de 6 à 30 mm, en particulier d'environ 10 à 20 mm, mais peuvent également être (au moins en partie) coupées à une longueur supérieure ou continues.
  • Selon un autre mode de réalisation, le produit isolant selon l'invention comprend comme couche fibreuse (en particulier métallisée) mentionnée dans la définition de l'invention au moins un mat de fibres de verre ou un voile de verre épais qui peuvent être obtenus préférentiellement par la voie sèche, et dont l'épaisseur peut aller jusqu'à quelques millimètres, par exemple de l'ordre de 0,8 à 5 mm, en particulier de 0,8 à 3 mm.
  • Suivant un autre mode de réalisation, le produit isolant selon l'invention comprend comme couche fibreuse (en particulier métallisée) mentionnée dans la définition de l'invention au moins un feutre de laine de verre ou de roche, qui peut être obtenu par des techniques de fibrage conventionnelles pour la réalisation de laine minérale, et dont l'épaisseur peut être de l'ordre de 5 à 200 mm, en particulier de 10 à 200 mm (tel qu'un de ceux utilisé traditionnellement dans les isolants), avec une densité qui peut être de l'ordre de 7 à 50 kg/m3, notamment de 7 à 25 kg/m3, la couche étant ainsi suffisamment flexible pour que le produit isolant soit apte à être conditionné en rouleau.
  • Ainsi de façon générale, un produit selon l'invention comprend au moins une couche fibreuse métallisée, d'épaisseur pouvant être choisie notamment entre 0,2 et 200 mm.
  • De préférence, les couches fibreuses métallisées peuvent présenter une épaisseur inférieure à 10 mm, les couches fibreuses non métallisées étant choisies selon l'invention de façon à présenter une épaisseur inférieure à 10 mm, et en particulier supérieure à 2 mm, notamment d'au moins 3 mm (en particulier de l'ordre de 3 à 6 mm, notamment 5-6 mm, tout spécialement pour des couches à base de fibres minérales telles que fibres de verre, ou de fibres organiques). Les couches fibreuses non métallisées sont ainsi choisies de préférence parmi les matériaux de type feutre ou matelas fibreux qui présentent des propriétés intrinsèques d'isolation thermique. Mais l'épaisseur limitée des couches fibreuses non métallisées isolantes sélectionnée dans ce cas permet de bénéficier d'un effet de peau ou de couche limite radiative abaissant la conductivité thermique locale (la conductivité thermique du matériau sur cette épaisseur est plus faible que la conductivité thermique apparente d'un matériau de structure fibreuse identique mais d'épaisseur supérieure) réduisant plus encore, en combinaison avec la présence des couches fibreuses métallisées qui réduit l'intensité du rayonnement incident, le flux de chaleur radiatif transmis dans l'isolant. A titre d'illustration, cet effet de peau se manifeste avantageusement sur une épaisseur optimale de 3 mm environ pour un matelas insolant de fibres de verre d'environ 10 kg/m3 de densité. Cette épaisseur sera d'autant plus faible que le matelas est dense.
  • La ou les couches fibreuses non métallisées également présentes le cas échéant peuvent être choisies parmi les mêmes types de couches fibreuses que celles décrites pour les couches fibreuses mentionnées dans la définition de l'invention ; en particulier elles peuvent être à base de tout matériau isolant à base de fibres minérales, ou organiques d'origine naturelle (végétale ou animale) ou synthétique (polymère), tel que de la laine minérale, par exemple laine de verre ou laine de roche, ou de la laine de chanvre, de mouton, des plumes, ou fibres à base de polymère(s) recyclé(s) ou non (par exemple polyester), etc, chaque couche étant de préférence sous une forme souple ou semi-rigide roulable, avec une densité inférieure à 50 kg/m3, l'épaisseur de ces couches étant limitée comme explicité précédemment. Cette ou ces couches sont de préférence sous forme de feutre(s) et sont préférentiellement situées en couches(s) intermédiaire(s) dans l'isolant, mais il peut également s'agir de voile(s) et/ou au moins une (de ces) couche(s) peut constituer au moins une face externe du produit.
  • Dans un mode préféré de réalisation de l'invention, l'isolant comprend au moins deux voiles de fibres métallisées et au moins un feutre de fibres non métallisées entre les voiles.
  • De préférence également, le nombre total de couches fibreuses (métallisées ou non) dans l'isolant selon l'invention n'excède pas 20 couches (ou feuillets).
  • Le revêtement métallique déposé directement sur la (ou à la) surface d'au moins une partie des fibres de la couche fibreuse métallisée mentionnée dans la définition de l'invention est avantageusement une couche (ou pellicule) superficielle mince (en particulier d'épaisseur nanométrique), cette couche étant directement déposée à la surface de la couche fibreuse, en particulier par une technique de dépôt par évaporation sous vide comme explicité ultérieurement. Cette couche métallique revêt continûment la surface des fibres exposée du côté extérieur à la couche. A cet égard, elle peut apparaître continue au regard à une certaine distance de la couche fibreuse (respectivement du produit), mais l'examen rapproché ou microscopique révèle une surface discontinue épousant la surface du réseau de fibres, la porosité de la couche fibreuse revêtue de la couche métallique étant approximativement conservée. Le revêtement métallique est prévu généralement sur au moins une face de la couche fibreuse (au moins une des faces de plus grandes dimensions), voire au moins deux faces (en particulier peut recouvrir les deux faces opposées de plus grandes dimensions, ce qui permet notamment de disposer la couche dans le produit sans veiller à une orientation particulière).
  • Le revêtement métallique peut être par exemple à base d'aluminium, de cuivre, de zinc, d'argent, de titane, de chrome, de nickel, et/ou d'autres métaux ou composés métalliques (par exemple des oxydes métalliques conducteurs tels que de l'oxyde d'indium dopé à l'étain, de l'oxyde de zinc dopé à l'aluminium, de l'oxyde d'étain dopé à l'antimoine, etc.), en particulier bons conducteurs de l'électricité, et/ou d'alliages entre ces métaux (par exemple un alliage nickel/chrome ou argent/cuivre, etc.), etc., pur (métal utilisé) ou quasiment pur ou éventuellement dopé ou allié (par exemple pour protéger la couche des effets de la corrosion ou pour des raisons de facilité de dépôt ou d'adhésion, etc.). Bien que le revêtement de la couche fibreuse par une seule couche métallique soit généralement suffisant, la couche fibreuse mentionnée dans la définition de l'invention peut également le cas échéant être revêtue de plusieurs couches, ces couches pouvant être du même matériau (métallique) ou de matériaux différents (métalliques ou non, au moins une des couches étant métallique selon l'invention). La ou les couches supplémentaires sont préférentiellement de structure analogue à la couche métallique précédemment décrite à savoir, revêtant continûment la surface des fibres exposées du côté extérieur à la couche. Elles peuvent néanmoins être de structure globalement discontinue, c'est-à-dire qu'elles sont déposées en îlots à la surface de la couche fibreuse. Par exemple, le cas échéant, une première couche métallique peut être surmontée d'une autre couche, par exemple de protection contre la corrosion (par exemple une couche de silice), ou biocide (par exemple une couche de cuivre ou d'argent), etc.
  • Le produit isolant selon l'invention comprend généralement une ou plusieurs (par exemple jusqu'à 10, voire plus) couches fibreuses dotées d'au moins un revêtement métallique telles que mentionnées dans la définition de l'invention, lesdites couches fibreuses pouvant être internes (par exemple au milieu du produit) et/ou en au moins l'une des faces du produit (voire sur chacune de ses deux faces opposées de plus grandes dimensions), les performances augmentant généralement avec le nombre de couches fibreuses revêtues selon l'invention incorporées/présentes.
  • Le produit isolant selon l'invention peut éventuellement comprendre d'autres couches de nature à apporter notamment une fonction d'isolation thermique, et/ou à conférer au produit de la tenue mécanique, et/ou à permettre la liaison entre les couches du produit, et/ou à améliorer la qualité au toucher ou à faciliter la manipulation du produit. A titre d'exemples non limitatifs, on pourra choisir au moins une couche parmi :
    • de la mousse, ou autre matière cellulaire, organique ou minérale, atténuant les échanges thermiques, par exemple une structure à cellules, de type par exemple « film à bulles » ou « blister » (les cellules renfermant notamment de l'air et/ou au moins un matériau permettant d'augmenter le pouvoir isolant du produit, tel qu'un gaz rare, un aérogel, de la silice pyrogénée, etc), etc ,
    • une autre couche réfléchissante non déposée sur une couche fibreuse (par exemple sous forme d'une feuille ou film ou couche le cas échéant initialement indépendante ou autoportante ou libre, c'est-à-dire n'ayant pas besoin d'une autre couche en support, ou éventuellement sous forme d'une couche déposée sur une autre couche support telle qu'un ou des feuillets plastiques, etc.),
    • éventuellement un film à base de matière(s) organique(s) synthétique(s) (notamment polymères),
    • de la colle,
    • une grille d'accrochage pour faciliter la pose ou la tenue du produit.
  • En outre, une ou plusieurs couches de l'isolant peuvent être additivées, notamment lorsqu'une ou plusieurs propriétés et/ou fonctions sont recherchées (présence par exemple d'un opacifiant infra-rouge), et/ou comprendre un ou des liants et/ou huiles et/ou silicones, etc. Le cas échéant (en particulier sur l'une et/ou l'autre face de l'isolant), une ou plusieurs couches (notamment une couche fibreuse sous forme de voile) peuvent être surfacées ou renforcées et/ou armées (notamment pour ne pas se déchirer) par exemple par l'ajout d'une grille de fibres organiques ou inorganiques (fibres de verre).
  • De préférence également, le produit selon l'invention ne comprend que des couches respirantes, c'est-à-dire perméables à la diffusion de vapeur d'eau, notamment poreuses ou perforées (par exemple à base de fibres, et/ou de mousse à cellules ouvertes, et/ou sous forme de film perforé, etc.) ou présentant une perméabilité à la diffusion de vapeur d'eau dans au moins des conditions d'ambiance appropriées (par exemple une membrane hygrorégulante adaptative typiquement à base de polyamide ou autre polymère, telle que le produit commercialisé sous la dénomination VARIO par la société SAINT-GOBAIN ISOVER).
  • Dans une réalisation particulière, le produit selon l'invention comprend principalement, voire uniquement, des couches à base essentiellement minérale (à l'exception le cas échéant de liant(s) et/ou additif(s) et/ou de couches ou pellicules de revêtement des couches) ce qui permet d'atteindre des niveaux élevés de résistance au feu. Des couches organiques peuvent toutefois être tolérées si elles renferment des additifs anti-feu ou sont autrement résistantes au feu, la quantité totale de matière organique étant préférablement limitée en fonction du niveau de résistance au feu souhaité.
  • Les couches formant le produit sont posées les unes sur les autres et peuvent être solidarisées entre elles de différentes façons, en particulier les différents feuilles, films ou autres couches (initialement) indépendantes peuvent être assemblées par collage, agrafage, couture, aiguilletage, éventuellement par soudure (thermique, ultrasons) en cas de présence de matériaux appropriés (par exemple polymères) dans une ou des couches ou par l'apport d'une couche intermédiaire fusible (telle qu'une couche hot-melt ou une couche polyéthylène ou polyéthylène téréphtalate). Les couches superposées peuvent le cas échéant être maintenues ensemble à l'intérieur d'une enveloppe (technique dite d'encapsulation) avec ou sans solidarisation des couches entre elles. L'enveloppe est constituée d'un matériau d'emballage, tel qu'un film plastique ou autre, de préférence perméable à l'air, qui peut se présenter sous forme tubulaire fermé ou non aux extrémités. De préférence, les couches indépendantes sont rendues solidaires par des liaisons localisées ou ponctuelles (par couture, aiguilletage, etc.) par exemple par lignes ou points, en divers endroits déterminés du produit (par exemple sur les bords ou à intervalles réguliers sur la longueur du produit) notamment pour conserver une certaine souplesse du produit (permettant par exemple son enroulement) et éviter les ponts thermiques.
  • Le produit isolant selon l'invention est de préférence de faible épaisseur, son épaisseur n'excédant pas dans ce cas 100 mm, et étant avantageusement inférieure à 50 mm, bien que des avantages soient toujours constatés pour des épaisseurs allant jusqu'à 200 mm. L'épaisseur de chaque couche fibreuse dotée d'au moins un revêtement métallique comme défini selon l'invention est généralement inférieure à 40 mm environ et de préférence inférieure à 8 mm, en particulier inférieure à 5 mm (notamment pour une couche sous forme d'un voile), l'épaisseur de chaque couche métallique déposée sur une couche fibreuse est généralement inférieure à 2 µm et notamment inférieure à 1 µm, par exemple de l'ordre de 500 nm ou plus.
  • Le produit isolant selon l'invention peut se présenter sous forme d'une nappe (généralement multicouches) ou d'une feuille ou panneau (généralement multicouches), de préférence flexible, et peut être le cas échéant conditionné enroulé.
  • La structure particulière du produit isolant (réfléchissant) selon l'invention, due en particulier à la présence de couches fibreuses revêtues d'une couche métallique telles que précédemment mentionnées, permet d'obtenir de bonnes propriétés d'isolation thermique en même temps qu'une structure respirante (perméable à la diffusion de vapeur d'eau) le cas échéant (si elle est dénuée d'autres couches non respirantes), présentant une bonne tenue mécanique en même temps que thermique et le cas échéant incombustible (en particulier quand la structure fibreuse est formée de fibres minérales), l'isolant restant en outre économiquement avantageux.
  • Les performances thermiques améliorées de l'isolant selon l'invention se traduisent par des valeurs de conductivité thermique λ avantageusement inférieure à 35 mW/m.K environ, et de préférence inférieure a 32 mW/m.K environ (à titre de comparaison, les matelas de laine minérale traditionnels présentent une conductivité thermique λ couramment supérieure à 35, en particulier de l'ordre de 40 mW/m.K). La conductivité thermique λ (en W/m.K.) représente la quantité de chaleur passant au travers de l'isolant (d'un mètre d'épaisseur, par m2 et lorsque la différence de température entre les deux faces est de 1°K). Les valeurs de conductivité thermique λ (comparées à pression et température identiques, en particulier à pression atmosphérique (1 bar) et température ambiante (entre 10 et 25°C) sont mesurées sur le modèle de la norme ISO 8301). Le gain de performance en matière de conductivité thermique lié à la présence d'au moins une couche fibreuse revêtue d'au moins une couche métallique selon l'invention peut aller notamment jusqu'à 20% (de moins en conductivité thermique) par rapport au même produit ne présentant pas une telle couche fibreuse, ce gain étant généralement d'au moins 1% (cas de l'adjonction de la couche fibreuse à un produit déjà très performant), l'insertion dans un produit isolant existant d'une couche fibreuse revêtue d'au moins une couche métallique comme mentionnée selon l'invention pour réduire la conductivité thermique dudit produit étant également visée dans la présente invention.
  • Parallèlement, le produit isolant selon l'invention réfléchit généralement de l'ordre d'au moins 30%, voire d'au moins 40%, du rayonnement infrarouge incident (longueurs d'onde comprises entre 5 et 22 µm, les mesures étant faites selon la réglementation technique ACERMI RT A).
  • L'invention a également pour objet un procédé pour améliorer les performances thermiques (réduction de conductivité thermique notamment) d'un produit isolant en couche(s), sans pour autant réduire la capacité du produit à respirer, ce procédé consistant à insérer (ou comprenant au moins une étape d'incorporation de), dans et/ou en surface dudit produit, au moins une couche fibreuse dotée d'au moins un revêtement métallique déposé directement sur la surface d'au moins une partie des fibres de ladite couche fibreuse. Comme indiqué précédemment, le gain obtenu peut être important, par exemple de plusieurs % et jusqu'à au moins 20%.
  • L'invention a encore pour objet un procédé d'obtention d'un produit isolant selon l'invention, ledit procédé comprenant au moins une étape de dépôt d'une couche métallique sur une couche fibreuse (destinée à faire partie du produit isolant, ladite couche étant ensuite assemblée la cas échéant à une ou d'autres couches pour former l'isolant).
  • La couche métallique est préférentiellement déposée sur la couche fibreuse par une technique d'évaporation sous vide (de type PVD, CVD, éventuellement assisté par plasma, etc.), activée (par exemple par arc cathodique, pulvérisation cathodique, pulvérisation par faisceau d'ions ou d'électrons, par laser) ou non, cette technique consistant à évaporer la matériau à déposer, provenant de 'cibles' disposées autour de la charge, par un effet thermique (températures supérieures à la température de fusion du métal et inférieure à sa température d'ébullition, assistance le cas échéant d'un arc électrique, d'un faisceau d'électrons, etc.), les particules évaporées (ou le cas échéant, notamment lorsque l'évaporation est activée, la vapeur métallique ionisée) se condensant en couche homogène mince continue (suivant le support à revêtir) fortement adhésive sur les substrats (ici la couche fibreuse) à revêtir placés dans une enceinte sous vide. Le dépôt métallique résultant, de type nanométrique ou micrométrique, par exemple à base d'aluminium, de cuivre, etc (comme détaillé plus amplement précédemment), produit une métallisation en surface de la couche fibreuse servant de support (dans le cas d'une couche fibreuse sous forme de voile, l'ensemble formé par la couche support et le dépôt réfléchissant se présente ainsi sous forme d'un voile métallisé, par exemple aluminisé).
  • De façon surprenante on peut ainsi obtenir la couche fibreuse métallisée mentionnée dans la présente invention, malgré notamment la porosité du support (couche fibreuse) et la crainte pré-existante que le liant ou d'autres résidus liés au support perturbent le dépôt de la couche métallique (par exemple par désorption d'eau) et nuisent à sa qualité (le liant notamment ne venant pas perturber au final le dépôt de la couche métallique).
  • Le dépôt de chaque couche métallique peut le cas échéant être réalisé en ligne lors de la fabrication ou après fabrication de la couche fibreuse, par exemple en déroulant la couche fibreuse, la revêtant par évaporation sous vide puis la rembobinant sur un support, ces trois opérations se déroulant en continu dans une même enceinte sous vide, le fait de rembobiner la couche fibreuse revêtue, de façon inattendue, n'altérant pas celle-ci.
  • Comme indiqué précédemment, le procédé peut comporter une étape d'assemblage des différents couches de l'isolant au moyen de différentes opérations telles que collage(s), agrafage(s), couture(s), aiguilletage(s), soudure(s), localisé(s) ou continu(s), enveloppement (dans une enveloppe perméable à l'air notamment), etc. Le procédé peut enfin comprendre une étape de finition et conditionnement, comportant par exemple une étape de découpe lorsque les couches sont assemblées en ligne sous forme de bande sans fin. De préférence, l'isolant est assez flexible pour être conditionné sous forme de rouleau qui peut être contenu dans un matériau d'emballage approprié.
  • Les exemples comparatifs suivants illustrent la présente invention sans pour autant la limiter. Dans chacun de ces exemples, on considère un produit isolant formé de 6 couches de laine de verre de masse volumique 14 kg/m3 et de conductivité thermique 33,4 mW/m.K de 8 mm d'épaisseur chacune.
  • Dans le premier exemple utilisé comme référence (produit non-conforme à l'invention), le produit isolant est uniquement formé des 6 couches précitées.
  • Dans le second exemple, illustrant la présente invention, on intercale entre chaque couche précédente une couche intercalaire (5 couches intercalaires en tout, l'isolant étant alors formé des deux types de couches disposées en alternance), chaque couche intercalaire étant formée d'un voile de fibres de verre métallisé de 0,8 mm d'épaisseur. Ce voile est fabriqué selon l'invention à partir d'un voile commercialisé sous la référence APH75 par la société Saint-Gobain Technical Fabrics (et présentant une porosité d'environ 95%, un grammage de 75 g/m2 et une perméance de 150 perm à 75 % d'humidité relative et de 210 perm à 25% d'humidité relative ; ce voile ne présentant intrinsèquement pas de propriété notable de réflexion des infra-rouge, cette dernière étant d'à peine 5%), que l'on soumet à un dépôt d'une couche métallique d'aluminium de 2 µm d'épaisseur sur une seule de ses faces par la technique de l'évaporation sous vide. Dans un évaporateur Balzers où est produite une atmosphère d'aluminium à une pression de 2.10-5 mbar et une température inférieure à 30°C, on fait défiler le voile de verre avec une face exposée à l'atmosphère d'aluminium à une vitesse adaptée pour obtenir une vitesse de dépôt (vitesse de croissance de la couche d'aluminium sur les fibres) de l'ordre de 2 nm/s, la température du voile étant inférieure à 50°C.
  • Le voile revêtu est caractérisé par une capacité à réfléchir le rayonnement infra-rouge à hauteur de 40% du rayonnement infrarouge incident (côté métallisé, pour des longueurs d'onde comprises entre 5 et 22 µm, les mesures étant faites selon la règlementation technique ACERMI RT A), la perméance du voile revêtu étant approximativement conservée, ledit voile revêtu présentant une perméance de 100 perm à 75 % d'humidité relative et de 205 perm à 25% d'humidité relative.
  • On fabrique le produit isolant du présent exemple illustrant l'invention par superposition d'une couche de laine minérale, puis d'un voile aluminisé avec sa face revêtue sur le dessus, puis on répète 4 fois cette séquence d'empilement, et l'on termine par une couche de laine minérale.
  • Le produit obtenu a une épaisseur finale de 52 mm.
  • La conductivité thermique, mesurée selon la norme ISO 8301, sur des éprouvettes de 300mmX300mm de ces produits, est de 33,4 mW/m.K pour l'exemple de référence, et de 31,7 mW/m.K pour l'exemple selon l'invention soit un gain de performances thermiques de 5%.
  • On observe par ailleurs que les propriétés de réflexion et de transmission du rayonnement infra-rouge du voile métallisé utilisé se conservent dans le temps. En particulier, après vieillissement en étuve climatique à 54 °C, et 95% d'humidité pendant 15 jours, la transmission et la réflexion infrarouge mesurées sur le voile métallisé restent inchangées (en particulier la réflexion infrarouge côté métallisé reste élevée, de l'ordre de 40% pour des longueurs d'onde notamment comprises entre 5 et 22 µm, les mesures étant faites selon la réglementation technique ACERMI RT A).
  • L'isolant selon l'invention est notamment adapté à être utilisé à l'intérieur des enveloppes de bâtiments, en particulier dans les combles, sur les murs ou les toits à l'intérieur des habitations, pour l'isolation des containers (chauffe-eau, cuve, tuyau, etc), etc., cet isolant étant particulièrement adapté et destiné à un usage à pression atmosphérique, à température et à humidité ambiantes.

Claims (13)

  1. Produit d'isolation thermique, formé d'une structure en couche(s) renfermant au moins une couche fibreuse dotée d'au moins un revêtement métallique déposé directement sur la surface d'au moins une partie des fibres de ladite couche fibreuse, et renfermant au moins une couche fibreuse non métallisée caractérisé en ce que la couche fibreuse non métallisée possède une épaisseur supérieure à 2 mm et inférieure à 10 mm et une densité inférieure à 50 kg/m3, et en ce que la couche fibreuse de la couche fibreuse métallisée présente en outre une perméance à la vapeur d'eau supérieure à 100 perm à 75% d'humidité relative et supérieure à 200 perm à 25% d'humidité relative.
  2. Produit isolant selon la revendication 1, caractérisé en ce que ladite couche fibreuse métallisée est un non tissé, en particulier est un voile ou un mat ou feutre.
  3. Produit isolant selon l'une des revendications 1 à 2, caractérisée en ce qu'au moins une partie des fibres de ladite couche fibreuse métallisée sont des fibres minérales, en particulier des fibres de verre, toutes les couches du produit étant de préférence à base minérale.
  4. Produit isolant selon l'une des revendications 1 à 3, caractérisé en ce que ladite couche fibreuse métallisée présente une porosité supérieure à 10%, de préférence supérieure à 30%, et de façon particulièrement préférée, supérieure à 80% et/ou présente un grammage compris entre 30 et 5000 g/m2, par exemple de l'ordre de 30 à 500 g/m2 pour un voile de verre.
  5. Produit isolant selon l'une des revendications 1 à 4, caractérisé en ce que le revêtement métallique de ladite couche fibreuse métallisée est constitué d'une seule couche métallique sur une face de la couche, ou bien d'au moins deux revêtements métalliques déposés chacun directement sur une surface de la couche fibreuse.
  6. Produit isolant selon l'une des revendications 1 à 5, caractérisé en ce que le revêtement métallique est à base d'aluminium, de cuivre, de zinc, d'argent, de titane, de chrome, de nickel, ou d'alliages de ces métaux entre eux avec et/ou d'autres métaux ou composés métalliques.
  7. Produit isolant selon l'une des revendications 1 à 6, caractérisé en ce qu'il comprend une alternance de couches fibreuses métallisées et de couches fibreuses non métallisées.
  8. Produit isolant selon l'une des revendications 1 à 7, caractérisé en ce que son épaisseur n'excède pas 100 mm, le nombre de couches fibreuses n'excédant pas de préférence 20 couches.
  9. Produit isolant selon l'une des revendications 1 à 8, caractérisé en ce qu'il, est assez flexible pour être conditionné sous forme de rouleau.
  10. Procédé d'obtention d'un produit isolant selon l'une des revendications 1 à 9, ledit procédé comprenant au moins une étape de dépôt d'une couche métallique sur une couche fibreuse.
  11. Procédé selon la revendication 10, caractérisé en ce que le dépôt de chaque couche métallique est réalisé en ligne lors de la fabrication ou après fabrication de la couche fibreuse, par exemple en déroulant la couche fibreuse, la revêtant par évaporation sous vide puis la rembobinant sur un support, ces trois opérations se déroulant en continu dans une même enceinte sous vide.
  12. Procédé selon l'une des revendications 10 ou 11, caractérisé en ce qu'il comprend au moins une étape de superposition d'une couche fibreuse non métallisée avec la couche fibreuse métallisée, et d'assemblage des couches superposées.
  13. Utilisation d'un produit selon l'une des revendications 1 à 9, en tant qu'isolant thermique à pression atmosphérique, à température et à humidité ambiantes, notamment en tant qu'isolant de parois de bâtiment.
EP09158930.9A 2008-04-29 2009-04-28 Produit d'isolation thermique Active EP2116753B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0852877A FR2930623B1 (fr) 2008-04-29 2008-04-29 Produit pour isolation thermique

Publications (2)

Publication Number Publication Date
EP2116753A1 EP2116753A1 (fr) 2009-11-11
EP2116753B1 true EP2116753B1 (fr) 2015-12-16

Family

ID=39924974

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09158930.9A Active EP2116753B1 (fr) 2008-04-29 2009-04-28 Produit d'isolation thermique

Country Status (3)

Country Link
EP (1) EP2116753B1 (fr)
ES (1) ES2565079T3 (fr)
FR (1) FR2930623B1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2351891A1 (fr) 2010-01-11 2011-08-03 Armacell Enterprise GmbH Matériau d'isolation ayant une résistance mécanique et éléments de construction et composites fabriqués à partir de ceux-ci
LT2345535T (lt) 2010-01-18 2016-12-27 Armacell Enterprise Gmbh & Co. Kg Išpūstų polimerų priešgaisrinės apsaugos sistema
PL2455221T3 (pl) 2010-11-16 2016-07-29 Armacell Entpr Gmbh & Co Kg Ogniochronna elastomerowa izolacja
EP2457723B1 (fr) 2010-11-29 2014-02-12 Armacell Enterprise GmbH & Co. KG Isolation polymère cellulaire ignifuge
EP2522502B1 (fr) * 2011-05-11 2014-08-20 Armacell Enterprise GmbH & Co. KG Stratification de protection contre les flammes et de renfort pour polymères cellulaires
ES2938233T3 (es) 2015-06-30 2023-04-05 Vsl Int Ag Protector
FR3060722B1 (fr) * 2016-12-21 2019-10-18 Saint-Gobain Isover Fours et produits d'isolation pour fours
WO2018156691A1 (fr) * 2017-02-23 2018-08-30 Zephyros, Inc. Structure de fibres non-tissées destinée à être utilisée comme isolant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2814162A (en) * 1954-06-25 1957-11-26 Ohio Commw Eng Co Apparatus for production of metallized and bonded blown glass fibers
DE1218331B (de) * 1962-01-04 1966-06-02 Linde Ag Waermedaemmstoff fuer Vakuumisolation und Verfahren zu seiner Herstellung
FR1399700A (fr) * 1964-04-09 1965-05-21 Quartz & Silice Perfectionnements aux matelas ou feutres de fibres synthétiques ou naturelles en vue d'améliorer leurs propriétés d'isolation thermique
FR1399699A (fr) * 1964-04-09 1965-05-21 Quartz & Silice Matelas ou feutres de fibres synthétiques ou naturelles présentant des propriétés d'isolation thermique améliorées

Also Published As

Publication number Publication date
ES2565079T3 (es) 2016-03-31
EP2116753A1 (fr) 2009-11-11
FR2930623A1 (fr) 2009-10-30
FR2930623B1 (fr) 2012-12-28

Similar Documents

Publication Publication Date Title
EP2116753B1 (fr) Produit d'isolation thermique
EP1744875B1 (fr) Materiau d'isolation thermique
EP2736711B1 (fr) Revêtement mural absorbant acoustique
EP2748385B1 (fr) Revêtement mural pour confort thermique et acoustique
EP0327428B1 (fr) Panneau d'isolation thermique et acoustique
FR2978373A1 (fr) Revetement mural absorbant acoustique
EP1756379B1 (fr) Isolant mince reflechissant pour sous-toiture
WO2004051020A1 (fr) Materiau d'isolation thermique souple comprenant au moins une nappe ajouree
WO2008047027A1 (fr) Isolant mince pour isolation thermique
FR2884589A1 (fr) Isolant mince reflechissant pour sous-toiture, et procede de fabrication de cet isolant
FR2884843A1 (fr) Membrane pare-vapeur utilisable pour l'isolation des batiments
FR2951477A1 (fr) Ecran souple de sous-toiture et revetement de sous-toiture forme a partir de cet ecran
WO2001003916A1 (fr) Materiau isolant anti-feu, adapte a l'isolation aeronautique
EP2450494B1 (fr) Isolant multicouche
FR2988640A1 (fr) Materiau composite isolant acoustiquement et thermiquement
WO2003043811A1 (fr) Produit d'isolation encapsule et procede pour sa fabrication
EP2203610B1 (fr) Materiau thermoisolant a base de fibres organiques et d'une poudre rupteur de rayonnement infrarouge, et son utilisation en isolation thermique
WO2023237841A1 (fr) Procédé d'amélioration de l'étanchéité à l'air de bâtiments utilisant une membrane à base de biopolymères
FR2934350A1 (fr) Isolant thermique reflechissant
FR2796444A1 (fr) Materiau isolant anti-feu, adapte a l'isolation aeronautique, procede et dispositif de fabrication correspondants
EP1382777A1 (fr) Sous tente composite isotherme pour environnements extremes et matériaux correspondants
WO2000001891A1 (fr) Complexe anti-humidite de grille de fibres et de film plastique
EP4355569A1 (fr) Armature de renfort en fibres minérales pour dalles souples de revêtement de sol
FR3118636A1 (fr) Procédé d’amélioration de l’étanchéité à l’air de bâtiments utilisant une membrane à base de biopolymères
FR3125832A1 (fr) Dispositif de toiture avec une protection thermique améliorée et son procédé de réalisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20100511

17Q First examination report despatched

Effective date: 20100609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602009035202

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F16L0059020000

Ipc: D04H0001421800

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: D04H 13/00 20060101ALI20150130BHEP

Ipc: E04B 1/76 20060101ALI20150130BHEP

Ipc: D04H 1/4218 20120101AFI20150130BHEP

INTG Intention to grant announced

Effective date: 20150219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150622

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 765615

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009035202

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: STOLMAR AND PARTNER INTELLECTUAL PROPERTY S.A., CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2565079

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160331

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20160310

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

Ref country code: NL

Ref legal event code: MP

Effective date: 20151216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20151216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160317

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160416

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009035202

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

26N No opposition filed

Effective date: 20160919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160428

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160428

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: RUE DU CENDRIER 15 CP 1489, 1201 GENEVE (CH)

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 765615

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151216

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090428

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230419

Year of fee payment: 15

Ref country code: NO

Payment date: 20230412

Year of fee payment: 15

Ref country code: FR

Payment date: 20230421

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20230411

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240307

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240312

Year of fee payment: 16

Ref country code: IT

Payment date: 20240313

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240306

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240501

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240509

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240326

Year of fee payment: 16