EP1977228A1 - Instrument de mesure mesurant la teneur en oxygène dans l'air respirable - Google Patents

Instrument de mesure mesurant la teneur en oxygène dans l'air respirable

Info

Publication number
EP1977228A1
EP1977228A1 EP06829509A EP06829509A EP1977228A1 EP 1977228 A1 EP1977228 A1 EP 1977228A1 EP 06829509 A EP06829509 A EP 06829509A EP 06829509 A EP06829509 A EP 06829509A EP 1977228 A1 EP1977228 A1 EP 1977228A1
Authority
EP
European Patent Office
Prior art keywords
signal
digital
fundamental frequency
output
adder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06829509A
Other languages
German (de)
English (en)
Inventor
Norbert Wittschief
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Elektronik GmbH filed Critical Atlas Elektronik GmbH
Publication of EP1977228A1 publication Critical patent/EP1977228A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath

Definitions

  • the invention relates to a measuring device for measuring the proportion of oxygen in the respiratory air, in particular for the breathing air supply in aircraft, according to the preamble of claim 1.
  • the breathing air is added to the aircraft occupants oxygen, the added amount of oxygen is measured depending on the altitude.
  • the oxygen content or oxygen content in the breathing air is detected by means of a measuring device and output as a measured value, which is displayed on the one hand and used on the other hand as a control variable for the mixture of the breathing air.
  • An essential component of such a measuring device is an oxygen sensor, which is traversed by the breathing air and having a magnetic coil.
  • the magnet coil will be a sinusoidal AC constant frequency, e.g. 15Hz, supplied as input to the oxygen sensor.
  • an output signal is removable, due to a rectifying effect of the oxygen sensor, a useful signal component with twice the fundamental frequency, in the example, 30Hz, and
  • Interference signal components of which the amplitude strongest noise component has the fundamental frequency, in the example 15Hz.
  • the output signal of the oxygen sensor is supplied to an evaluation circuit, which consists of in the Information contained in the useful signal component information about the oxygen content of a measured value, which is displayed and / or used to correct the oxygen content.
  • the invention has for its object to improve in a measuring device of the type mentioned in the measurement accuracy while reducing the measured value fluctuations.
  • the measuring device has the advantage that the addition of the reference signal to the output signal of the oxygen sensor suppresses the signal component of the fundamental frequency which is significant in the output signal, thereby substantially improving the S / N ratio available at the evaluation circuit for obtaining the oxygen measurement value.
  • a functional test of the measuring device can be achieved without additional hardware by connecting a test signal with twice the fundamental frequency to the adder instead of the reference signal and blocking the feeding of the output signal of the oxygen sensor to the adder according to a preferred embodiment of the invention becomes.
  • both the reference signal and the test signal is generated by means of a digital sine-wave generator, wherein the reference signal fundamental frequency and the test signal by doubling the frequency has twice the fundamental frequency. Both signals are set in phase and amplitude when fed to the adder.
  • the digital signal generator is used, which also provides the analog input signal for the oxygen sensor, which in turn results from a digital-to-analog conversion of the output signal of the digital sine wave generator.
  • the invention is described in more detail below with reference to an embodiment shown in the drawing.
  • the drawing shows a circuit structure of the meter as a block diagram.
  • the illustrated as a block diagram measuring device for measuring the oxygen content in the breathing air has a
  • Oxygen sensor 10 which is traversed by the breathing air and contains in its output signal information about the oxygen content of the breathing air.
  • Such an oxygen sensor is known, for example, under the type name "PATO" from Dräger Medical
  • the oxygen sensor 10 the known structure of which is not described here in detail, has a magnetic coil to which a sinusoidal alternating current of constant frequency is supplied electrical, analog, sinusoidal input signal for the oxygen sensor 10 is that of a Digital / analog converter 11 is removed, which is connected on the input side to the output of a digital sine-wave generator 12.
  • the sine-wave generator 12 generates a digital sine signal with the fundamental frequency If, which is 15 Hz, for example.
  • an interference signal component with the fundamental frequency If is particularly significant, ie has a large amplitude, which allows only an extremely poor S / N ratio for the evaluation of the output signal.
  • the amplified in a preamplifier output of the oxygen sensor 10 is supplied to an adder 14.
  • the adder 14 is further supplied with an analog, digital, sinusoidal reference signal with the fundamental frequency If, which is adjusted in amplitude and phase so that the noise component at the output of the adder 14 is largely compensated.
  • the reference signal must be applied to the adder 14 in antiphase to the interfering signal and with approximately the same amplitude.
  • the output signal of the adder 14 is fed via an amplifier 15 and an analog-to-digital converter 16 to an evaluation circuit 26.
  • the evaluation circuit 26 has a correlator 17, which in turn is assigned to the output signal of the analog-to-digital converter 16 and on the other hand with the doubled by means of a frequency doubler 22 in digital frequency sinusoidal signal.
  • the digital output signal of the correlator 17 passes through a filter and correction element 18 in which the pressure and temperature dependence of the oxygen sensor 10 compensates becomes.
  • the amplitude of the output signal of the filter and correction member 18 is a measure of the oxygen content of the oxygen sensor 10 flowing through breathing air.
  • the oxygen measured value is determined in block 19 and displayed and / or used as a control signal for correction and / or adjustment of the oxygen content in the breathing air.
  • the analog, sinusoidal reference signal with the fundamental frequency If fed to the adder 14 is generated in such a way that the digital sine signal of the sine-wave generator 12 is set in terms of its amplitude and phase in the module 20 and applied to a digital-to-analog converter 21.
  • the analog reference signal with fundamental frequency If is removable.
  • the correct adjustment of amplitude and phase of the digital sine signal is made once in an adjustment or calibration process and is fixed in the meter immutable.
  • a self-test function can be integrated into the measuring device.
  • an analog, sinusoidal test signal having the double fundamental frequency 2f is applied to the adder 14.
  • the switching off of the output signal of the oxygen sensor 10 from the adder 14 is shown symbolically by the switch 24, which sets the one input of the adder 14 to zero potential when switching.
  • the test signal is derived from the digital sine signal of the double fundamental frequency sine generator 12f, which is at the output of the Frequenzverdopplers 22 removed and adjusted in phase and amplitude in the block 23.
  • This digital sine signal is supplied to the digital-to-analog converter 21.
  • a switch 25 with a switch output and two switch inputs upstream of the digital-to-analog converter 21 is shown in the block diagram of the measuring device shown.
  • the switch output is connected to the input of the digital-to-analog converter 21, while at the one switch input is set in amplitude and phase digital sinusoidal signal with fundamental frequency If and at the other switch input is set in amplitude and phase digital sine signal with twice the fundamental frequency 2f ,
  • the functions of the evaluation circuit 26 with the components correlator 17, filter and correction element 18 and block 19, the digital sine wave generator 12, the frequency doubler 22, the blocks 20 and 23 for amplitude and phase adjustment and the switch 25 are by means of a processor 27 or more Processors realized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

L'invention concerne un instrument de mesure servant à mesurer la teneur en oxygène dans l'air respirable, notamment pour l'alimentation en air respirable dans les avions. L'instrument de mesure selon l'invention comprend un capteur d'oxygène (10) auquel est transmis un signal d'entrée analogique électrique sinusoïdal à fréquence de base fixe (1f) et qui émet un signal de sortie analogique électrique qui contient une composante de signal utile à la fréquence de base double (2f) et au moins une composante de signal parasite à la fréquence de base (1f). L'instrument de mesure selon l'invention comprend également un circuit d'évaluation (26) qui sert à déterminer une valeur mesurée en tant qu'indication de la teneur en oxygène et à laquelle le signal de sortie est transmis. L'invention vise à améliorer la précision de cet instrument de mesure tout en réduisant les fluctuations des valeurs mesurées. A cet effet, on place, entre le capteur d'oxygène (10) et le circuit d'évaluation (26), un sommateur (14) auquel sont transmis, d'une part, le signal de sortie et, d'autre part, un signal de référence sinusoïdal à la fréquence de base (1f). La phase et l'amplitude du signal de référence sont réglées de manière à compenser en grande partie la composante de signal parasite dans le signal de sortie du sommateur (14).
EP06829509A 2006-01-28 2006-12-12 Instrument de mesure mesurant la teneur en oxygène dans l'air respirable Withdrawn EP1977228A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006004051A DE102006004051A1 (de) 2006-01-28 2006-01-28 Messgerät zum Messen des Sauerstoffanteils in der Atemluft
PCT/EP2006/011922 WO2007085288A1 (fr) 2006-01-28 2006-12-12 Instrument de mesure mesurant la teneur en oxygène dans l'air respirable

Publications (1)

Publication Number Publication Date
EP1977228A1 true EP1977228A1 (fr) 2008-10-08

Family

ID=37883856

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06829509A Withdrawn EP1977228A1 (fr) 2006-01-28 2006-12-12 Instrument de mesure mesurant la teneur en oxygène dans l'air respirable

Country Status (4)

Country Link
US (1) US20090007633A1 (fr)
EP (1) EP1977228A1 (fr)
DE (1) DE102006004051A1 (fr)
WO (1) WO2007085288A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650542B2 (ja) * 2008-09-09 2011-03-16 ソニー株式会社 光量検出装置および撮像装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173975A (en) * 1978-02-06 1979-11-13 Westinghouse Electric Corp. Magnetic means for determining partial pressure of oxygen particularly in underwater breathing apparatus
US4420815A (en) * 1981-05-18 1983-12-13 International Business Machines Corporation Apparatus and method for removal of sinusoidal noise from a sampled signal
DD239876A1 (de) * 1985-07-30 1986-10-08 Medizin Labortechnik Veb K Sauerstoffsensor
AT399236B (de) * 1986-02-03 1995-04-25 Siemens Ag Oesterreich Digitaler sinusgenerator
DE4110095C2 (de) * 1991-03-27 1998-02-12 Draegerwerk Ag Verfahren zur gasspektroskopischen Messung der Konzentration eines Gasbestandteiles
DE19632230C2 (de) * 1996-08-09 1999-12-16 Mueller Bbm Gmbh Adaptive Steuerung zur aktiven Geräuschminderung, Verwendung und Verfahren
WO1999004226A1 (fr) * 1997-07-14 1999-01-28 Matsushita Electric Industrial Co., Ltd. Capteur dote d'une fonction de reglage
DE19803990A1 (de) * 1998-02-02 1999-06-02 Siemens Ag Verfahren und Vorrichtung zur Konzentrationsmessung paramagnetischer Gasanteile in einem Gasgemisch
DE10037380B4 (de) * 1999-10-30 2005-03-31 Dräger Medical AG & Co. KGaA Vorrichtung und Verfahren zum Messen der Konzentration eines paramagnetischen Gases
US6687635B2 (en) * 2002-06-13 2004-02-03 Mks Instruments, Inc. Apparatus and method for compensated sensor output
DE10241244C1 (de) * 2002-09-06 2003-08-21 Draeger Medical Ag Messkopf für eine Vorrichtung zur Messung der Konzentration eines paramagnetischen Gases
EP1544596B1 (fr) * 2003-12-17 2016-11-23 Boehringer Ingelheim microParts GmbH Méthode et appareil de détermination de la viscosité

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007085288A1 *

Also Published As

Publication number Publication date
WO2007085288A1 (fr) 2007-08-02
US20090007633A1 (en) 2009-01-08
DE102006004051A1 (de) 2007-08-09

Similar Documents

Publication Publication Date Title
DE69425160T2 (de) Vorrichtung zur messung von materialeigenschaft
DE60300407T2 (de) Vorrichtung zur Impedanzmessung lebender Körper
CH652215A5 (de) Verfahren und schaltungsanordnung zur messung der impedanz eines sensors.
DE3642771A1 (de) Verfahren und vorrichtung zur messung der messgroesse eines messobjekts
DE2530723C2 (de) Einrichtung zur Messung der Phasenverschiebung in einer Anordnung gekoppelter Spulen
DE4142680A1 (de) Auswerteschaltung fuer einen indudktivsensor
DE19517135A1 (de) Tankfüllstandsmeßsystem
DE69405998T2 (de) Elektrisches testgerät
EP1977228A1 (fr) Instrument de mesure mesurant la teneur en oxygène dans l'air respirable
DE19757296A1 (de) Verfahren zum Bestimmen und Kompensieren der Übertragungsfunktion eines Meßgerätes, insbesondere eines Spektrum-Analysators
EP0927351B1 (fr) Dispositif pour mesurer la qualite de l'air
DE102016122241A1 (de) Verfahren zum Betreiben eines Coriolis-Massedurchflussmessgeräts und Coriolis-Massedurchflussmessgerät
DE3105766A1 (de) Ionenmessvorrichtung und -verfahren
CH635942A5 (en) Device used for testing instrument transformers for the automatic determination of the absolute-value error and the phase displacement angle of a current or voltage transformer
DE2809154B2 (de) Verfahren zur ungefähren Messung von Dämpfungsverläufen an Vierpolen
DE3143669C2 (de) Schaltung zum Messen des Effektivwertes einer Wechselspannung
DE3326204A1 (de) Verfahren und messschaltungsanordnung zur driftkorrektur bei der digitalisierung von messspannungen
DE4428673B4 (de) Vorrichtung zur Bildung einer Steuergröße, welche ein Maß für die Amplitude zweier frequenz- und amplitudengleicher, phasenstarrer sinus- und cosinusförmiger Meßwechselgrößen ist
DE102007043388B4 (de) Verfahren zur Auflösungserhöhung eines A/D-Wandlers sowie elektronische Schaltung zur Umsetzung dieses Verfahrens
DE2646511C3 (de) Verfahren und Einrichtung zum Messen der Ganggenauigkeit einer elektronischen Uhr
DE102016111963A1 (de) Verfahren zum Auswerten eines digitalen Messsignals einer Wirbelstromprüfanordnung
DE10311840B4 (de) Verfahren und Vorrichtung zur elektrischen Impedanzmessung eines Körpers
DE2924131A1 (de) Signalauswerterschaltung fuer ein messgeraet zur messung der extinktion
DE3310492A1 (de) Verfahren zur dichtmessung von gasen
DE102022107844A1 (de) Verfahren zum Ermitteln einer manuellen Betätigung einer kapazitiven Sensorvorrichtung, Computerprogrammprodukt und Ermittlungsvorrichtung zum Ermitteln einer manuellen Betätigung einer kapazitiven Sensorvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17P Request for examination filed

Effective date: 20080425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

18W Application withdrawn

Effective date: 20080924