EP1950280A1 - Klare wässrige Wasch- und Reinigungsmittel - Google Patents

Klare wässrige Wasch- und Reinigungsmittel Download PDF

Info

Publication number
EP1950280A1
EP1950280A1 EP07001783A EP07001783A EP1950280A1 EP 1950280 A1 EP1950280 A1 EP 1950280A1 EP 07001783 A EP07001783 A EP 07001783A EP 07001783 A EP07001783 A EP 07001783A EP 1950280 A1 EP1950280 A1 EP 1950280A1
Authority
EP
European Patent Office
Prior art keywords
amounts
weight
alcohol
composition according
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07001783A
Other languages
English (en)
French (fr)
Inventor
Ditmar Kischkel
Manfred Dr. Weuthen
Thomas Krohnen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis IP Management GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis IP Management GmbH filed Critical Cognis IP Management GmbH
Priority to EP07001783A priority Critical patent/EP1950280A1/de
Priority to EP07856489A priority patent/EP2118251A1/de
Priority to PCT/EP2007/010713 priority patent/WO2008089819A1/de
Priority to US12/524,707 priority patent/US20100120655A1/en
Publication of EP1950280A1 publication Critical patent/EP1950280A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/86Mixtures of anionic, cationic, and non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D10/00Compositions of detergents, not provided for by one single preceding group
    • C11D10/04Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/227Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin with nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3773(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/143Sulfonic acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • C11D1/721End blocked ethers

Definitions

  • the present invention relates to clear, liquid compositions containing anionic surfactants and water as well as cationic polymers.
  • Such agents are suitable, for example, as detergents or cleaners.
  • Cationic polymers are used in numerous applications such as detergents and cleaners, but also cosmetic preparations, for example, to achieve effects such as color protection, sensors and optics on a variety of substrates such as tissues, hair and hard surfaces.
  • these polymers can not be formulated in combination with anionic surfactants or can only be formulated to a limited extent. This has the consequence that the use of such polymers in a desired recipe is not possible, or formulation compromises must be made in terms of their properties.
  • the literature describes a large number of cationic polymers with respect to use in anionic surfactant-free formulations.
  • aqueous agents can be formulated containing cationic polymers in addition to surfactants and optionally soap, although high levels of anionic surfactants may also be present when selected amounts of certain salts are included.
  • the first embodiment of the invention therefore relates to a clear, liquid at 21 ° C or gelled agent comprising (a) water in amounts of 20 to 80 wt .-%, (b) nonionic, cationic and / or amphoteric surfactants in amounts of total 5 to 70% by weight, (c) cationic polymers in amounts of from 0.01 to 10% by weight, (d) soaps in amounts of from 0 to 15% by weight, where these agents comprise (e) anionic surfactants in quantities from 1 to 25 wt .-%, (f) 0.1 to 5 wt .-% of water-soluble salts, and (g) optionally further ingredients, with the proviso that the amounts of components (a) to (g ) to 100% by weight.
  • Turbidity refers to the property of an aqueous preparation to scatter incident light caused by undissolved, finely dispersed substances.
  • the agents may be colored by means of, provided that they are only clear.
  • the agents contain the components (a) to (c), (e) and (f) as compulsory ingredients, whereas the other components are optional ingredients.
  • Quantities in% by weight are generally always based on the mass of the entire composition as a 100% value.
  • the agents are liquid, but can also be present as a gel. In the following, their meaning and composition are described in detail:
  • Water as component (a) is mandatory in amounts of at least 20 wt .-%, based on the total agent included.
  • the compositions according to the present technical teaching can also be more or less highly diluted and then contain up to 80% by weight of water.
  • they Preferably, however, they contain less water, for example from 20 to 80 Wt .-%, preferably from 50 to 75 wt .-% and in particular from 50 to 65 wt .-% water.
  • Particularly advantageous is the range of 50 to 55 wt .-% water.
  • Suitable components (b) are cationic, amphoteric and / or nonionic surfactants but preferably nonionic surfactants.
  • the agents according to the invention contain exclusively nonionic surfactants as component (b), ie they are free of cationic and / or amphoteric surfactants.
  • the surfactants according to component (b) are present in amounts of from 5 to 70% by weight in the compositions. However, preference is given to those agents which contain nonionic surfactants in amounts of from 10 to 45% by weight, preferably from 10 to 25% by weight and in particular in amounts of from 10 to 22% by weight.
  • nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol ethers, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers, optionally partially oxidized alk (en) yloligoglycosides or glucuronic acid derivatives, fatty acid N-alkylglucamides, protein hydrolysates (especially wheat-based vegetable products). , Polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, these may have a conventional, but preferably a narrow homolog distribution.
  • fatty alcohol alkoxylates, fatty acid alkoxylates or alkyl (oligo) glycosides are suitable as component (b) in the sense of the present invention.
  • Alcohol ethoxylates are known as fatty alcohol or oxo alcohol ethoxylates and preferably follow the formula (I), R 2 O (CH 2 CH 2 O) n H (I) in which R 2 is a linear or branched alkyl and / or alkenyl radical having 6 to 22 carbon atoms and n is a number from 1 to 50, the range from 3 to 30 and in particular from 3 to 12 being particularly preferred.
  • Typical examples are the adducts of on average 1 to 50, preferably 5 to 40 and in particular 10 to 25 mol of, for example, caproic alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, Isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and technical mixtures thereof, for example, in the high pressure hydrogenation of technical methyl esters based on fats and oils or aldehydes from Roelen's oxo synthesis and as a monomer fraction in the dimerization of unsaturated fatty alcohols incurred.
  • Alkyl and alkenyl oligoglycosides are known nonionic surfactants which follow formula (II), R 1 O- [G] p (II) in which R 1 is an alkyl and / or alkenyl radical having 4 to 22 carbon atoms, G is a sugar radical having 5 or 6 carbon atoms and p is a number from 1 to 10. They can be obtained by the relevant methods of preparative organic chemistry.
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • alkyl and / or alkenyl oligoglycosides having an average degree of oligomerization p of from 1.1 to 3.0. From an application point of view, those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4 are preferred.
  • the alkyl or alkenyl radical R 1 can be derived from primary alcohols having 4 to 11, preferably 8 to 10 carbon atoms.
  • Typical examples are butanol, caproic alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, as used, for example, in the hydrogenation of technical fatty acid methyl esters or in the hydrogenation of aldehydes from the Roelen's oxo synthesis can be obtained.
  • the alkyl or alkenyl radical R 1 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14 carbon atoms. Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol, and technical mixtures thereof which can be obtained as described above. Preference is given to alkyl oligoglucosides based on hydrogenated C 12/14 coconut alcohol having a DP of 1 to 3.
  • R 1 O [CH 2 CH 2 O] x CH 2 CH (OM)
  • R 2 (III)
  • R 1 is a linear or branched alkyl and / or alkenyl radical having 4 to 22 carbon atoms, or it is a radical R 2 -CH (OH) CH 2 where R 2 is a linear or branched alkyl and / or alkenyl radical having 8 to 16 carbon atoms, x represents a number from 40 to 80, and M represents a hydrogen atom or a saturated alkyl radical having 1 to 18 carbon atoms.
  • Such surfactants also referred to as hydroxy mixed ethers, are known from the literature and are described, for example, in US Pat German application DE 19738866 described. They are prepared, for example, by reaction of 1,2-epoxyalkanes (R "CHOCH 2 ), where R" is an alkyl and / or alkenyl radical having 2 to 22, in particular 6 to 16, carbon atoms, with alkoxylated alcohols.
  • R "CHOCH 2 ) 1,2-epoxyalkanes
  • R is an alkyl and / or alkenyl radical having 2 to 22, in particular 6 to 16, carbon atoms
  • Preferred in the context of the invention are those hydroxy mixed ethers which are derived from alkoxylates of monohydric alcohols of the formula R'-OH having 4 to 18 carbon atoms, where R is an aliphatic, saturated, straight-chain or branched alkyl radical, in particular having 6 to 16 carbon atoms ,
  • R is an aliphatic, saturated, straight-chain or branched alkyl radical, in particular having 6 to 16 carbon atoms
  • suitable straight-chain alcohols are butanol-1, capron-, oenanth-, Caprylic, pelargonic, capric, undecanol-1, lauryl alcohol, tridecanol-1, myristyl alcohol, pentadecanol-1, palmityl alcohol, heptadecanol-1, stearyl alcohol, nonadecanol-1, arachidyl alcohol, heneicosanol-1, behenyl alcohol, and their technical mixtures as described incurred in the high
  • branched alcohols are so-called oxo alcohols, which usually carry 2 to 4 methyl groups as branches and are prepared by the oxo process and so-called Guerbet alcohols which are branched in the 2-position with an alkyl group.
  • Suitable Guerbet alcohols are 2-ethylhexanol, 2-butyloctanol, 2-hexyldecanol and / or 2-octyldodecanol.
  • the alcohols are used in the form of their alkoxylates, which are prepared by reaction of the alcohols with ethylene oxide in a known manner.
  • other hydroxy mixed ethers are known, namely those which have more than one free hydroxyl group in the molecule.
  • Such compounds can be prepared, for example, by reacting diols, preferably alkylene glycols and their derivatives, preferably polyethylene glycols, each with two moles of an alkyl epoxide (R-CHOCH 2 ) per mole of the diol.
  • compositions of the invention necessarily contain a cationic polymer, which should preferably be water-soluble.
  • Suitable cationic polymers are for example cationic cellulose derivatives, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers, condensation products of polyglycols and amines, copolymers of acrylic acid with dimethyldiallylammonium chloride (Merquat ® 550), polyaminopolyamides, is preferably used as component (c) Polydiallyldialkylammoniumchlorid and in particular the polydimethyldiallyammonium chloride selected.
  • polymers whose molecular weight is in the range from 1000 to 1,000,000, in particular 1,000 to 100,000, with the range from 2,000 to 20,000 being particularly preferred.
  • Polydiallyldialkylammonium compounds in the context of the present invention are known and commercially available.
  • the alkyl radicals in these polymers may preferably have 1 to 18 C atoms, preferably 1 to 4 C atoms.
  • Such products preferably have Brookfield viscosities of from 200 to 400 mPas.
  • the active substance content (AS) is typically up to 30 to 50%.
  • the copolymers of polydiallyldimethylammonium can also be used, in particular co-polymers with acrylic acid, methacrylic acid, acrylamides or vinylpyrrolidones.
  • compositions of the invention may contain soaps, preferably sodium and potassium soaps.
  • the ethanolamine salts are also suitable. In this case, amounts between 1 to 12 wt .-%, preferably 2 to 10 wt .-% and in particular in amounts of 4 to 8 wt .-% are preferred.
  • the potassium or more preferably the sodium soaps of C 12 -C 18 fatty acids are used.
  • soap-free formulations are also preferred.
  • compositions of the invention contain anionic surfactants in amounts of 1 to 25 wt .-%. Particularly preferred are those containing anionic surfactants in amounts of 5 to 20 wt .-%, preferably 7 to 20 wt .-% and particularly preferably in amounts of 7 to 15 wt .-%. Furthermore, preference is generally given to agents which contain more than 6% by weight of anionic surfactants. As a tendency, agents with higher contents of anionic surfactants are preferred within the meaning of the present technical teaching.
  • anionic surfactants are alkylbenzenesulfonates, alkanesulfonates, olefinsulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, glycerol ether sulfates, fatty acid ether sulfates, hydroxy mixed ether sulfates, monoglyceride (ether) sulfates, fatty acid amide (ether) sulfates, mono- and dialkyl sulfosuccinates, mono- and dialkylsulfosuccinamates, sulfotriglycerides, ether carboxylic acids and their salts, fatty acid isethionates,
  • anionic surfactants Polyglycoletherketten may contain a conventional, but preferably a narrow homolog distribution.
  • soaps are not understood as anionic surfactants (e).
  • alkyl ether sulfates, alkyl sulfates, and benzenesulfonates are preferred.
  • Alkyl and / or alkenyl ether sulfates which are suitable as component (e), are known and industrially available sulfation products of linear fatty alcohols or partially branched oxo alcohols. They are preferably of the formula (IV), RO (CH 2 CH 2 O) n SO 3 X (IV) in which R is a linear or branched alkyl and / or alkenyl radical having 6 to 22 carbon atoms, n is a number from 1 to 10 and X is alkali and / or alkaline earth, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • Ether sulfates of the type mentioned are industrially produced by sulfation and subsequent neutralization of the corresponding alcohol polyglycol ether. Typical examples are the sulfates based on addition products of 1 to 10 and in particular 2 to 5 moles of ethylene oxide to caproic alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol , Linolyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures in the form of sodium, potassium or magnesium salts. Alkyl ether sulfates are particularly preferred nonionic sur
  • Alkyl and / or alkenyl sulfates which are also frequently referred to as fatty alcohol sulfates, are the sulfation products of primary alcohols which follow formula (V), R 1 O-SO 3 X (V) in which R 1 is a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and X is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • V formula (V)
  • R 1 is a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms
  • X is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • alkyl sulfates which can be used according to the invention are the sulfation products of caproic alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, Behenyl alcohol and erucyl alcohol and their technical mixtures obtained by high-pressure hydrogenation of technical methyl ester fractions or aldehydes from the Roelen oxo synthesis.
  • the sulfation products can preferably be used in the form of their alkali metal salts and in particular their sodium salts. Particular preference is given to alkyl sulfates based on C 16/18 tallow fatty alcohols or vegetable fatty alcohols of comparable C chain distribution in the form of their sodium salts.
  • alkylbenzenesulfonates are the alkylbenzenesulfonates (ABS). These preferably follow the formula R'-Ph-SO 3 X in the R 'for a branched, but preferably linear, alkyl radical of 10 to 18 carbon atoms, Ph for one Phenyl radical and X is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium. Preference is given to using dodecylbenzenesulfonates, tetradecylbenzenesulfonates, hexadecylbenzenesulfonates and technical mixtures thereof in the form of the sodium salts.
  • ABS alkylbenzenesulfonates
  • compositions according to the invention receive water-soluble salts in amounts of 0.1 to 5 wt .-%.
  • Water-soluble are those salts which have a solubility of at least 25 g of salt in 100 ml of water and preferably of at least 30 g of salt per 100 ml of water at 21 ° C.
  • the water-soluble salts (f) are in particular selected from the group of sodium chloride, potassium chloride, sodium sulfate or potassium sulfate and mixtures thereof.
  • Ammonium compounds can also be used, for example ammonium chloride.
  • the sodium chloride is selected.
  • the salts lead in the amounts claimed to the desired stabilization of the aqueous agents.
  • the salts are added in amounts of at least 0.1% by weight, based on the total amount of the agent.
  • the Upper limit is 5 to a maximum of 10 wt .-%.
  • the agents contain the salts in amounts of from 0.5 to 3% by weight and in particular from 1 to 2.5% by weight.
  • the amount of salts may vary depending on the nonionic surfactants, anionic surfactants and possibly also the soap contained in the formulation. As a rule, with a higher content of anionic surfactants, a larger amount of salts is necessary to be able to formulate clear means.
  • the means according to the present invention can be stabilized only by the addition of at least 1 wt .-% of salts.
  • compositions according to the invention may also contain other typical ingredients, such as inorganic or organic bases or acids, other pH regulants, defoamers, viscosity regulators, biocides, preservatives, enzymes, enzyme stabilizers, perfumes or doffers, dyes aqueous solvents, hydroxycarboxylic acids and / or phosphonates.
  • Other ingredients in this category may include bleaches, bleach boosters, optical brighteners, preservatives, and builders. Auxiliaries and additives are in principle optional - the agents according to the invention can therefore also be completely free of these substances.
  • Suitable organic solvents are, for example, monofunctional and / or polyfunctional alcohols having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms.
  • compositions preferably contain from 2 to 20% by weight and in particular from 5 to 15% by weight of ethanol or any mixture of ethanol and 1,2-propanediol or, in particular, of ethanol and glycerol. It is also possible that the preparations contain either in addition to the mono- and / or polyfunctional alcohols having 1 to 6 carbon atoms or polyethylene glycol alone with a molecular weight of between 200 and 2000, preferably to 600 in amounts of 2 to 17 wt .-% , As hydrotrope, for example, toluene sulfonate, xylene sulfonate, cumene sulfonate or mixtures thereof can be used.
  • viscosity regulators for example, hardened castor oil, salts of long-chain fatty acids, preferably in amounts of 0 to 5 wt .-% and in particular in amounts of 0.5 to 2 wt .-%, for example, sodium, potassium, aluminum, magnesium - And titanium stearates or the sodium and / or potassium salts of behenic acid, and other polymeric compounds are used.
  • Other suitable thickeners are polymeric thickeners z.
  • Suitable enzymes are those from the class of proteases, lipases, amylases, cellulases or mixtures thereof.
  • subtilisin-type proteases and in particular proteases derived from Bacillus lentus are used. Their proportion can be about 0.2 to about 2 wt .-%.
  • the enzymes may be adsorbed to carriers and / or embedded in encapsulants to protect against premature degradation.
  • the agents may contain other enzyme stabilizers. For example, 0.5 to 1 wt .-% sodium formate can be used.
  • proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • boron compounds for example of boric acid, boron oxide, borax and other alkali metal borates, such as the salts of orthoboric acid (H 3 BO 3 ), of metaboric acid (HBO 2 ) and of pyroboric acid (tetraboric acid H 2 B 4 O 7 ), is particularly advantageous.
  • Suitable non-surfactant-type foam inhibitors are, for example, organopolysiloxanes and mixtures thereof with microfine, optionally silanized silica and paraffins, waxes, microcrystalline waxes and mixtures thereof with silanated silica or bistearylethylenediamide. It is also advantageous to use mixtures of different foam inhibitors, for example those of silicones, paraffins or waxes.
  • the agents may contain hydroxycarboxylic acids, in particular tartrates and / or citrates, for example as builders or for regulating the pH, in amounts of up to 10% by weight.
  • the agents of the invention contain hydroxycarboxylic acids in amounts of between 1 and 5% by weight, preferably between 1.5 and 3% by weight. Citrates are particularly preferred here. Also derivatized hydroxycarboxylic acid, eg alkoxylated hydroxycarboxylic acids can be used.
  • the pH of the compositions according to the invention is generally from 7 to 10.5, preferably from 7 to 9.5 and in particular from 7 to 8.5.
  • the setting of higher pH values, for example above 9, can be achieved by using small amounts of caustic soda or alkaline salts such as sodium carbonate or sodium silicate.
  • it is also possible to formulate weakly acidic agents whose pH values are in the range from 6 to 7, preferably in the range from 6.5 to 7.5.
  • the agents according to the invention are liquid or gel at 21 ° C. Liquid agents may be preferred.
  • the agents of the invention preferably have viscosities (according to Hoppler, measured at 20 ° C) of preferably 5,000 but especially from 10,000 to a maximum of 50,000 mPas and in particular from 15,000 to a maximum of 50,000 mPas, wherein also the low-viscosity range of 50 to 5000 and here the Range of 1000 to 5000 mPas may be preferred.
  • Gels are here dimensionally stable, easily deformable disperse systems of at least two components, usually from a solid, colloidally divided substance with long or highly branched particles (eg gelatin, silica, montmorillonite, bentonites, polysaccharides, pectins and other thickeners) and a liquid (usually water) as a dispersant.
  • a solid, colloidally divided substance with long or highly branched particles eg gelatin, silica, montmorillonite, bentonites, polysaccharides, pectins and other thickeners
  • a liquid usually water
  • the solid substance is coherent, ie it forms a spatial network in the dispersion medium, whereby the particles adhere to one another by secondary valences or main valences at different points (adhesion points).
  • the preparation of the agents is carried out in a manner known to those skilled in the art. For example, initially the water is presented, along with pH regulants and solvents. Subsequently, the surfactants and then the remaining ingredients are added. To ensure the formation of soap, the mixture can be mixed with fatty acids, then set alkaline and heated (to about 60 to 80 ° C) and then the soaps are formed in situ by adding the surfactants.
  • a further embodiment of the invention relates to the use of water-soluble salts for the stabilization of aqueous liquid detergents containing anionic surfactants, nonionic surfactants, cationic polymers and possibly soap side by side.
  • the stabilization here leads to the avoidance of turbidity, so that the salt additive also the Turbidity of the described means prevented.
  • Preferably used are: sodium chloride, potassium chloride, sodium sulfate, ammonium chloride and ammonium sulfate, or any mixtures thereof.
  • the quantities of salt correspond to the above-mentioned values for the liquid funds.
  • the teaching of the present application also leads to agents which have good storage stability at high and low storage temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Abstract

Durch Zusatz von wasserlöslichen anorganischen Salzen können klare Flüssigwaschmittel hergestellt werden, die nichtionische Tenside, kationische Polymere, Seifen und anionische Tenside nebeneinander enthalten können.

Description

  • Die vorliegende Erfindung betrifft klare, flüssige Mittel, die anionische Tenside und Wasser sowie kationische Polymere enthalten. Solche Mittel eignen sich beispielsweise als Wasch- oder Reinigungsmittel.
  • Kationische Polymere finden in zahlreichen Anwendungen wie Wasch- und Reinigungsmitteln, aber auch kosmetischen Zubereitungen Verwendung, um z.B. Effekte wie Farbschutz, Sensorik und Optik an verschiedensten Substraten wie Geweben, Haaren und harten Oberflächen zu erzielen. Diese Polymere sind aber in Kombination mit Aniontensiden nicht oder nur im begrenzten Umfang formulierbar. Dieses hat zur Folge, dass der Einsatz solcher Polymere in einer gewünschten Rezeptur nicht möglich ist, oder Rezepturkompromisse in Bezug auf deren Eigenschaften gemacht werden müssen.
    In der Literatur wird eine Vielzahl von kationische Polymeren in Bezug auf den Einsatz in Aniontensid-freien Rezepturen beschrieben. Die Anzahl von Veröffentlichungen, die eine Kombination von kationischen Polymeren mit Aniontensiden offenbaren ist deutlich geringer und beschreibet dann auch nur Rezepturen in engen Mengenbereichen, wobei neben der Limitierung der absoluten Menge an Aniontensiden in der Rezeptur eine Limit in Bezug auf eine minimale Gesamtmenge an tensidischen Komponenten der Rezeptur besteht. Siehe dazu die Anmeldung EP 1 645 619 A1 der Anmelderin, oder die internationale Anmeldung WO 03/038029 . In der WO 03/038029 wird im Übrigen davon ausgegangen, das Citrate einen destabilisierenden Einfluss auf Formulierungen aus Aniontensid und kationischen Polymeren haben. Insbesondere für flüssige Waschmittel besteht aber gerade ein Bedürfnis Kationenpolymer-haltige Formulierungen mit abgestufter Konzentration der tensidischen Komponenten im Bereich von 50-10 Gew.-% formulieren zu können deren Gehalt an Aniontensid größer als 20 % in Bezug auf die tensidische Komponenten sind, die also zwischen 2 und 10 Gew.-% anionischer Tenside enthalten sollen. Der Zusatz von Anionentensiden ist vor allem gewünscht, um die Waschkraft zu verbessern. Außerdem sind anionische Tenside von den Kosten her anderen Tensidklassen überlegen.
  • Es wurde nun gefunden, dass stabile, klare wässerige Mittel formuliert werden können, die kationische Polymere neben Tensiden und ggf. Seife enthalten, wobei auch hohe Anteile an anionischen Tensiden zugegen sein können, wenn ausgewählte Mengen an bestimmten Salzen enthalten sind.
  • Die erste Ausführungsform der Erfindung betrifft daher ein klares, bei 21 °C flüssiges oder gelförmiges Mittel, enthaltend (a) Wasser in Mengen von 20 bis 80 Gew.-%, (b) nichtionische, kationische und/oder amphotere Tenside in Mengen von insgesamt 5 bis 70 Gew.-%, (c) kationische Polymere in Mengen von 0,01 bis 10 Gew.-%, (d) Seifen in Mengen von 0 bis 15 Gew.-% wobei diese Mittel (e) anionische Tenside in Mengen von 1 bis 25 Gew.-% enthalten, (f) 0,1 bis 5 Gew.-% an wasserlöslichen Salzen, sowie (g) optional weitere Inhaltsstoffe, mit der Maßgabe, dass sich die Mengen der Komponenten (a) bis (g) auf 100 Gew.-% summieren.
  • Trübung bezeichnet die Eigenschaft einer wässerigen Zubereitung, eingestrahltes Licht zu streuen, verursacht durch ungelöste, feindisperse Stoffe. Klare Mittel im Sinne der vorliegenden technischen Lehre sind daher solche Mittel, welche keine mit den menschlichen Augen wahrnehmbare Trübung aufweisen. Dies lässt sich auch über die Transmission, also die Durchlässigkeit für Licht messen, die die Mittel im Vergleich mit einem Standard (in der Regel entmineralisiertes Wasser) aufweisen. Klare Mittel weisen daher, gemessen bei 500 bis 560 nm gegen entmineralisiertes Wasser als. Standard (= 100 % Transmission) einen Transmissionswert von mindestens 90 %, vorzugsweise 90 bis 99 % und insbesondere 95 bis 99 % auf.
  • Dabei können die Mittel im Sinne der vorliegenden Erfindung aber durch aus gefärbt sein, sofern sie nur klar sind. Die Mittel enthalten die Komponenten (a) bis (c), (e) und (f) als zwingende Bestandteile, wohingegen die anderen Komponenten optionale Inhaltsstoffe sind. Mengenangaben in Gew.-% beziehen sich in der Regel immer auf die Masse des gesamten Mittels als 100 %-Wert. Die Mittel sind flüssig, können aber auch als Gel vorliegen. Im Weiteren wird deren Bedeutung und Zusammensetzung im Detail beschrieben:
  • (a) Wasser
  • Wasser als Komponente (a) ist zwingend in Mengen von mindestens 20 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Die Mittel gemäß der vorliegenden technischen Lehre können aber auch mehr oder weniger stark verdünnt vorliegen und dann bis zu 80 Gew.-% Wasser enthalten. Vorzugsweise enthalten sie aber weniger Wasser, beispielsweise von 20 bis 80 Gew.-%, vorzugsweise von 50 bis 75 Gew.-% und insbesondere von 50 bis 65 Gew.-% Wasser. Besonders vorteilhaft ist der Bereich von 50 bis 55 Gew.-% Wasser.
  • (b) Kationische-, amphotere und/oder nichtionische Tenside
  • Als Komponente (b) kommen kationische-, amphotere und/oder nichtionische Tenside aber vorzugsweise nichtionische Tenside in Frage. In einer bevorzugten Ausführungsform enthalten die Mittel gemäß der Erfindung ausschließlich nichtionische Tenside als Komponente (b), d.h. sie sind frei von kationischen und/oder amphoteren Tensiden. Die Tenside gemäß Komponente (b) sind in Mengen von 5 bis 70 Gew.-% in den Mitteln enthalten. Bevorzugt sind aber solche Mittel die nichtionischen Tenside in Mengen von 10 bis 45 Gew.-%, vorzugsweise 10 bis 25 Gew.-% und insbesondere in Mengen von 10 bis 22 Gew.-% enthalten.
    Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen.
    Im sinne der vorliegenden Erfindug kommen insbesondere Fettaloholalkoxylate, Fettsäurealkoxylate oder Alkyl(oligo)glycoside als Komponente (b) in Frage.
  • Alkoholethoxylate werden herstellungsbedingt als Fettalkohol- oder Oxoalkoholethoxylate bezeichnet und folgen vorzugsweise der Formel (I),

             R2O(CH2CH2O)nH     (I)

    in der R2 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen und n für Zahlen von 1 bis 50 steht, wobei der Bereich von 3 bis 30 und insbesondere von 3 bis 12 besonders bevorzugt seien kann. Typische Beispiele sind die Addukte von durchschnittlich 1 bis 50, vorzugsweise 5 bis 40 und insbesondere 10 bis 25 Mol an z.B. Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Bevorzugt sind auch Addukte von 10 bis 40 Mol Ethylenoxid an technische Fettalkohole mit 12 bis 18 Kohlenstoffatomen, wie beispielsweise Kokos-, Palm-, Palmkern- oder Talgfettalkohol.
  • Alkyl- und Alkenyloligoglykoside stellen bekannte nichtionische Tenside dar, die der Formel (II) folgen,

             R1O-[G]p     (II)

    in der R1 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlen-toffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (II) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muss und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R1 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyl(oligo)glucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R1 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidyl-alkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
  • Weiterhin können vorzugsweise Tenside aus der Klasse der Hydroxyalkylether, die der allgemeinen Formel (III) folgen, Verwendung finden.

             R1O[CH2CH2O]xCH2CH(OM)R2     (III)

    In der Formel (III) steht R1 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, oder es steht für einen Rest R2-CH(OH)CH2 wobei R2 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 8 bis 16 Kohlenstoffatomen, x für eine Zahl von 40 bis 80 steht, und M für ein Wasserstoffatom oder einen gesättigten Alkylrest mit 1 bis 18 Kohlenstoffatomen steht.
    Solche auch als Hydroxymischether bezeichneten Tenside sind literaturbekannt und werden beispielsweise in der deutschen Anmeldung DE 19738866 beschrieben. Sie werden beispielsweise hergestellt durch Umsetzung von 1,2-Epoxyalkanen (R"CHOCH2), wobei R" für einen Alkyl- und/oder Alkenylrest mit 2 bis 22, insbesondere 6 bis 16 Kohlenstoffatomen steht, mit alkoxylierten Alkoholen. Bevorzugt im Sinne der Erfindung werden solche Hydroxymischether, die sich von Alkoxylaten von einwertigen Alkoholen der Formel R'-OH mit 4 bis 18 Kohlenstoffatomen ableiten, wobei R für einen aliphatischen, gesättigten, geradkettigen oder verzweigten Alkylrest, insbesondere mit 6 bis 16 Kohlenstoffatomen, steht. Beispiele für geeignete geradkettige Alkohole sind Butanol-1, Capron-, Önanth-, Capryl-, Pelargon-, Caprinalkohol, Undecanol-1, Laurylalkohol, Tridecanol-1, Myristylalkohol, Pentadecanol-1, Palmitylakohol, Heptadecanol-1, Stearylalkohol, Nonadecanol-1, Arachidylalkohol, Heneicosanol-1, Behenylalkohol sowie deren technische Mischungen, wie sie bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen anfallen. Beispiele für verzweigte Alkohole sind so genannte Oxoalkohole, die meist 2 bis 4 Methylgruppen als Verzweigungen tragen und nach dem Oxoprozeß hergestellt werden und so genannte Guerbetalkohole, die in 2-Stellung mit einer Alkylgruppe verzweigt sind. Geeignete Guerbetalkohole sind 2-Ethylhexanol, 2-Butyloctanol, 2-Hexyldecanol und/oder 2-Octyldodecanol. Die Alkohole werden in Form ihrer Alkoxylate eingesetzt, die durch Umsetzung der Alkohole mit Ethylenoxid auf bekannte Weise hergestellt werden. Daneben sind auch andere Hydroxymischether bekannt, nämlich solche die mehr als eine freie Hydroxylgruppe im Molekül aufweisen. Solche Verbindungen können beispielsweise hergestellt werden, indem man Diole, vorzugsweise Alkylenglykole und deren Derivate, vorzugsweise Polyethylenglykole, jeweils mit zwei Mol eines Alkylepoxids (R-CHOCH2) pro Mol des Diols zur Reaktion bringt.
  • (c) Kationische Polymere
  • Die erfindungsgemäßen Mittel enthalten zwingend ein kationische Polymer, die vorzugsweise wasserlöslich sein sollten., Unter Polymeren werden dabei sowohl Homopolymere, als auch Co- bzw. Terpolymere verstanden. Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, Kondensationsprodukte von Polyglycolen und Aminen, Copolymere der Acrylsäure mit Dimethyldiallylammoniumchlorid (Merquat® 550), Polyaminopolyamide, Vorzugsweise wird als Komponente (c) Polydiallyldialkylammoniumchlorid und hierbei insbesondere das Polydimethyldiallyammoniumchlorid ausgewählt. Dabei sind insbesondere solche Polymere ausgewählt, deren Molekulargewicht im Bereich von 1000 bis 1.0000.000 liegt, insbesondere 1000 bis 100.000, wobei der Bereich von 2000 bis 20.000 besonders bevorzugt seine kann. Polydiallyldialkylammonium-Verbindungen im Sinne der vorliegenden Erfindung sind bekannt und kommerziell erhältlich. Die Alkylreste in diesen Polymeren können vorzugsweise 1 bis 18 C-Atomen aufweisen, vorzugsweise 1 bis 4 C-Atome. Solche Produkte weisen vorzugsweise Brookfield-Viskositäten von 200 bis 400 mPas auf. Der Aktivsubstanzgehalt (AS) liegt typischerweise bis 30 bis 50 %. Neben den Salzen sind im Sinne der vorliegenden technischen Lehre prinzipiell auch die Copolymere des Polydiallyldimethylammoniums einsetzbar, insbesondere Co-Polymere mit Acrylsäure, Methacrylsäure, Acrylamiden oder Vinylpyrrolidonen.
  • (d) Seife
  • Die erfindungsgemäßen Mittel können Seifen, vorzugsweise Natrium- und Kaliumseifen enthalten. Es sind aber im Prinzip auch die Ethanolaminsalze geeignet. Dabei sind Mengen zwischen 1 bis 12 Gew.-%, vorzugsweise 2 bis 10 Gew.-% und insbesondere in Mengen von 4 bis 8 Gew.-% bevorzugt. Vorzugsweise werden die Kalium- bzw. besonders bevorzugt die Natriumseifen von C12-C18-Fettsäuren verwendet. Bevorzugt sind aber auch seifenfreie Formulierungen.
  • (e) Anionische Tenside
  • Die erfindungsgemäßen Mittel enthalten anionische Tenside in Mengen von 1 bis 25 Gew.-%. Besonders bevorzugt sind solche Mittel, die anionische Tenside in Mengen von 5 bis 20 Gew.-%, vorzugsweise 7 bis 20 Gew.-% und besonders bevorzugt in Mengen von 7 bis 15 Gew.-% enthalten. Weiterhin sind generell solche Mittel bevorzugt, die mehr als 6 Gew.-% anionische Tenside enthalten. Tendenziell sind Mittel mit höheren Anteilen an anionischen Tensiden im Sinne der vorliegenden technischen Lehre bevorzugt.
  • Als anionische Tenside können im Prinzip alle, dem Fachmann bekannten Vertreter dieser Tensidklasse Verwendung finden. Typische Beispiele für anionische Tenside sind Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Glycerinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)-sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen.
    Seifen werden aber im Rahmen der vorliegenden Offenbarung nicht als Anionentenside (e) verstanden.
    Bevorzugt sind Alkyethersulfate, Alkylsulfate, und Benzolsulfonate.
  • Alkyl- und/oder Alkenylethersulfate, die als Komponente (e) in Betracht kommen, stellen bekannte und großtechnisch erhältliche Sulfatierungsprodukte von linearen Fettalkoholen oder teilweise verzweigten Oxoalkoholen dar. Sie folgen dabei vorzugsweise der Formel (IV),

             RO(CH2CH2O)nSO3X     (IV)

    in der R für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen, n für Zahlen von 1 bis 10 und X für Alkali und/oder Erdalkali, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Ethersulfate der genannten Art werden großtechnisch durch Sulfatierung und anschließende Neutralisation der entsprechenden Alkoholpolyglykolether hergestellt. Typische Beispiele sind die Sulfate auf Basis von Anlagerungsprodukten von 1 bis 10 und insbesondere 2 bis 5 Mol Ethylenoxid an Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen in Form der Natrium-, Kalium- oder Magnesiumsalze.
    Alkylethersulfate sind besonders bevorzugte nichtionische Tenside im Sinne der vorliegenden Lehre.
  • Geeignet sind auch die Alkylsufate. Unter Alkyl- und/oder Alkenylsulfaten, die auch häufig als Fettalkoholsulfate bezeichnet werden, sind die Sulfatierungsprodukte primärer Alkohole zu verstehen, die der Formel (V) folgen,

             R1O-SO3X     (V)

    in der R1 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele für Alkylsulfate, die im Sinne der Erfindung Anwendung finden können, sind die Sulfatierungsprodukte von Capronalkohol, Caprylalkohol, Caprinalkohol, 2-Ethylhexylalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol und Erucylalkohol sowie deren technischen Gemischen, die durch Hochdruckhydrierung technischer Methylesterfraktionen oder Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Die Sulfatierungsprodukte können vorzugsweise in Form ihrer Alkalisalze und insbesondere ihrer Natriumsalze eingesetzt werden. Besonders bevorzugt sind Alkylsulfate auf Basis von C16/18-Talgfettalkoholen bzw. pflanzliche Fettalkohole vergleichbarer C-Kettenverteilung in Form ihrer Natriumsalze.
  • Eine weitere Klasse bevorzugt ausgewählter anionischer Tenside' stellen die Alkylbenzolsulfonate (ABS) dar. Diese folgen vorzugsweise der Formel R'-Ph-SO3X in der R' für einen verzweigten, vorzugsweise jedoch linearen Alkylrest mit 10 bis 18 Kohlenstoffatomen, Ph für einen Phenylrest und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Vorzugsweise werden Dodecylbenzolsulfonate, Tetradecylbenzolsulfonate, Hexadecylbenzolsulfonate sowie deren technische Gemische in Form der Natriumsalze eingesetzt.
  • (f) Wasserlösliche Salze
  • Die Mittel erhalten erfindungsgemäß wasserlösliche Salze in mengen von 0,1 bis 5 Gew.-%. Wasserlöslich sind solche Salze, die bei 21 °C eine Löslichkeit von mindestens 25g Salz in 100 ml Wasser und vorzugsweise von mindestens 30 g Salz pro 100 ml Wasser aufweisen.
    Die wasserlöslichen Salze (f) sind insbesondere ausgewählt aus der Gruppe Natriumchlorid, Kaliumchlorid, Natriumsulfat oder Kaliumsulfat und Mischungen daraus. Auch Ammoniumverbindungen können eingesetzt werden, z.B. Ammoniumchlorid. Vorzugsweise wird das Natriumchlorid ausgewählt. Die Salze führen in den beanspruchten Mengen zu der gewünschten Stabilisierung der wässerigen Mittel. Die Salze werden in Mengen von mindestens 0,1 Gew.-%, bezogen auf die Gesamtmenge des Mittels zugesetzte. Die Obergrenze liegt bei 5 bis maximal 10 Gew.-%. Vorteilhafterweise enthalten die Mittel die Salze in Mengen von 0,5 bis 3 Gew.-% und insbesondere von 1 bis 2,5 Gew.-%. Die Menge der Salze kann variieren in Abhängigkeit der in der Rezeptur enthaltenen nichtionischen Tenside, Anionentensiden und ggf. auch der Seife. Tendenziell gilt, dass mit einem höheren Gehalt an Anionentensiden auch eine größere Menge an Salzen notwendig wird, um klare Mittel formulieren zu können. Insbesondere bei Anionentensidgehalten von größer als 6 Gew.-% lassen sich die Mittel im Sinne der vorliegenden Erfindung nur durch Zusatz von mindestens 1 Gew.-% an Salzen stabilisieren.
  • (g) Sonstige Inhaltsstoffe
  • Die erfindungsgemäßen Mittel können neben den oben genannten Tensiden und Inhaltsstoften noch weitere typische Inhaltsstoffe, wie beispielsweise anorganischen oder organischen Basen oder Säuren, sonstige pH-Regulantien, Entschäumer, Viskositätsregulatoren, Biozide, Konservierungsmittel, Enzyme, Enzymstabilisatoren, Parfüme bzw. Duffstoffe, Farbstoffe, nicht-wässerigen Lösungsmitteln, Hydroxycarbonsäuren und/oder Phosphonate aufweisen. Weitere Inhaltsstoffe dieser Kategorie können Bleichmittel, Bleichbooster, optischen Aufhellern, Konservierungsstoffe und Builder sein.
    Hilfs- und Zusatzstoffe sind im Prinzip optional - die erfindungsgemäßen Mittel können daher auch vollkommen frei von diesen Stoffen sein. Vorzugsweise sind sie aber-in Mengen von 0,1 bis 30 Gew.-%, besonders bevorzugt in Mengen von 1 bis 20 Gew.-% und ganz besonders bevorzugt in Mengen von 5 bis 15 Gew.-% enthalten - bezogen auf die Gesamtmenge des Mittels.
    Als organische Lösungsmittel kommen beispielsweise mono- und/oder polyfunktionelle Alkohole mit 1 bis 6 Kohlenstoffatomen, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in Frage. Bevorzugte Alkohole sind Ethanol, 1,2-Propandiol, Glycerin sowie deren Gemische, aber auch Glykol und bei Raumtemperatur (= 21 °C) flüssige Oligo- bzw. Polyglykole. Die Mittel enthalten vorzugsweise 2 bis 20 Gew.-% und insbesondere 5 bis 15 Gew.-% Ethanol oder ein beliebiges Gemisch aus Ethanol und 1,2-Propandiol oder insbesondere aus Ethanol und Glycerin. Ebenso ist es möglich, dass die Zubereitungen entweder zusätzlich zu den mono- und/oder polyfunktionellen Alkoholen mit 1 bis 6 Kohlenstoffatomen oder allein Polyethylenglykol mit einer relativen Molekülmasse zwischen 200 und 2000, vorzugsweise bis 600 in Mengen von 2 bis 17 Gew.-% enthalten. Als Hydrotrope können beispielsweise Toluolsulfonat, Xylolsulfonat, Cumolsulfonat oder deren Mischungen eingesetzt werden.
  • Als Viskositätsregulatoren können beispielsweise gehärtetes Rizinusöl, Salze von langkettigen Fettsäuren, die vorzugsweise in Mengen von 0 bis 5 Gew.-% und insbesondere in Mengen von 0,5 bis 2 Gew.-%, beispielsweise Natrium-, Kalium-, Aluminium-, Magnesium- und Titanstearate oder die Natrium- und/oder Kaliumsalze der Behensäure, sowie weitere polymere Verbindungen eingesetzt werden. Andere geeignete Verdicker sind polymeren Verdickern z. B. auf Basis von Xantan oder Polyacrylaten oder Cellulosederivaten wie CMC.
    Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Ihr Anteil kann etwa 0,2 bis etwa 2 Gew.-% betragen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Zusätzlich zu den mono- und polyfunktionellen Alkoholen und den Phosphonaten können die Mittel weitere Enzymstabilisatoren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vorzugsweise etwa 1,2-Gew.-%, bezogen auf das Enzym, stabilisiert sind. Besonders vorteilhaft..;ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
    Geeignete nicht-tensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Silikonen, Paraffinen oder Wachsen.
    Weiterhin können die Mittel Hydroxycarbonsäuren, insbesondere Tartrate und/oder Citrate enthalten, z.B. als Builder oder zur Regulation des pH-Wertes, und zwar in Mengen bis zu 10 Gew.-%. Vorzugsweise enthalten die Mittel der Erfindung Hydroxycarbonsäuren in Mengen zwischen 1 und 5 Gew.-%, vorzugsweise zwischen 1,5 und 3 Gew.-%. Citrate sind hier besonders bevorzugt. Auch derivatisierte Hydroxycarbonsäure, z.B. alkoxylierte Hydroxycarbonsäuren können Verwendung finden.
  • Der pH-Wert der erfindungsgemäßen Mittel beträgt im allgemeinen 7 bis 10,5, vorzugsweise 7 bis 9,5 und insbesondere 7 bis 8,5. Die Einstellung höherer pH-Werte, beispielsweise oberhalb von 9, kann durch den Einsatz geringer Mengen an Natronlauge oder an alkalischen Salzen wie Natriumcarbonat oder Natriumsilicat erfolgen. Es können aber auch schwach saure Mittel formulier werden, deren pH-Werte im Bereich von 6 bis 7 liegen, vorzugsweise im Bereich von 6,5 bis 7,5.
  • Die Mittel im Sinne der Erfindung sind bei 21 °C flüssig oder gelförmig. Flüssige Mittel können bevorzugt sein.
    Die Mittel der Erfindung weisen vorzugsweise Viskositäten (nach Höppler, bei 20 °C gemessen) von vorzugsweise 5.000 insbesondere aber von 10.000 bis maximal 50.000 mPas und insbesondere von 15.000 bis maximal 50.000 mPas auf, wobei auch der niedrigviskose Bereich von 50 bis 5000 und hier der Bereich von 1000 bis 5000 mPas bevorzugt sein kann.
    Unter Gelen werden hierbei formbeständige, leicht deformierbare disperse Systeme aus mindestens zwei Komponenten, die zumeist aus einem festen, kolloidzerteilten Stoff mit langen oder stark verzweigten Teilchen (z.B. Gelatine, Kieselsäure, Montmorillonit, Bentonite, Polysaccharide, Pektine und andere Verdickungsmittel) und einer Flüssigkeit (meist Wasser) als Dispersionsmittel bestehen. Dabei ist die feste Substanz kohärent, d.h. sie bildet im Dispersionsmittel ein räumliches Netzwerk, wobei die Teilchen durch Nebenvalenzen oder Hauptvalenzen an verschiedenen Punkten (Haftpunkte) aneinanderhaften.
  • Die Herstellung der Mittel erfolgt in dem Fachmann bekannter Weise. Beispielweise wird zunächst das Wasser vorgelegt, zusammen mit pH-Regulantien und Lösungsmitteln. Anschließend werden die Tenside und dann die restlichen Inhaltsstoffe zugegeben. Um die Seifenbildung zu gewährleisten kann die Mischung mit Fettsäuren versetzt, dann alkalisch eingestellt und erwärmt werden (auf ca. 60 bis 80 °C) und dann werden durch Zugabe der Tenside die Seifen in situ gebildet.
  • Eine weitere Ausführungsform der Erfindung betrifft die Verwendung von wasserlöslichen Salzen zur Stabilisierung von wässerigen Flüssigwaschmitteln, die anionische Tenside, nichtionische Tenside, kationische Polymere und ggf. Seife nebeneinander enthalten. Die Stabilisierung führt hier zur Vermeidung von Trübungen, so dass der Salzzusatz auch die Eintrübung der geschilderten Mittel verhindert. Vorzugsweise werden verwendet: Natriumchlorid, Kaliumchlorid, Natriumsulfat, Ammoniumchlorid und Ammoniumsulfat, bzw. beliebige Mischungen davon. Die Mengen an Salz entsprechen den weiter oben genannten Werten für die flüssigen Mittel.
    Die Lehre der vorliegenden Anmeldung führt auch zu Mittel, die eine gute Lagerstabilität bei hohen wie niedrigen Lagertemperaturen.
  • Beispiele
  • Es wurden mehrer wässerige, flüssige Reinigungsmittel durch Vermischen der Inhaltsstoffe hergestellt. Dabei wurden die erfindungsgemäßen Mittel A1 bis A6 verglichen mit solchen Formulierungen, die frei von Elektrolytsalzen waren. Die Mittel wurden wie folgt hergestellt: Vorlegt wurden Wasser, NaOH, Fettsäure und Propylenglycol und dann unter Rühren auf 70 °C erwärmt. Danach erfolgte die Zugabe der Tenside und des kationischen Polymers unter Rühren nach Ausschalten der Heizung. Nachdem der Ansatz auf 40 °C abgekühlt war, wurden Borax, Dequest 2066, Zitronensäure und Ethanol zugegeben. Anschließend erfolgte die Einstellung des pH-Wertes auf 9 mit NaOH / Zitronensäure, dann die Zugabe von NaCl zur Klärung der Rezeptur und Zusatz von Enzymen und Konservierungsmitteln. Die Mittel wurden dann visuell auf Transparenz geprüft. Es zeigte sich, dass durch Zusatz der Elektrolytsalze klare, flüssige Mittel mit deutlich höherem Anteil an Anionischen Tensiden formuliert werden konnten, als ohne diesen Zusatz. Die Zusammensetzung der Mittel findet sich in der Tabelle 1. Alle Angaben beziehen sich dabei auf den Gehalt an Aktivsubstanz). Dabei wurden die folgenden durch ihre Marken bezeichneten Inhaltsstoffe verwendet:
  • Maranil A 55
    Natrium-n-Alkylbenzolsufonat (Fa. Cognis)
    Dehydol LT 7
    Fettalkoholgemisch (C12/C18) mit durchschnittlich 7 Teile Ethylenoxid pro Teil Fettalkohol (Fa. Cognis)
    PoiyquartFD!
    Polydimethylallylammoniumchlorid Fa. Cognis
    Dequest 2066
    Konservierungsmittel Phosphonat Fa. Solutia
    Microcare IT
    Konservierungsmittel
    Figure imgb0001
  • Die Beurteilung des Aussehens der Mittel erfolgte visuell. Die Werte der Trasnmission wurden mit eine UV-VIS-Spektrometer Varian Cary 4 mit 1 cm QS-Küvetten gegen entmineralisiertes Wasser (=100 % Transmission) im Wellenlängebereich 500-650 nm bei 22 °C gemessen (Scangeschwindigkeit: 120 nm/min; Split 0,2 nm).

Claims (15)

  1. Klares, bei 21 °C flüssiges oder gelförmiges Mittel, enthaltend,
    (a) Wasser in Mengen von 20 bis 80 Gew.-%
    (b) nichtionische, kationische und/oder amphotere Tenside in Mengen von insgesamt 5 bis 70 Gew.-%
    (c) kationische Polymere in Mengen von 0,01 bis 10 Gew.-%
    (d) Seifen in Mengen von 0 bis 15 Gew.-%
    dadurch gekennzeichnet, dass die Mittel
    (e) anionische Tenside in Mengen von 1 bis 25 Gew.-% enthalten,
    (f) 0,1 bis 10 Gew.-% an wasserlöslichen Salzen, sowie
    (g) optional weitere Inhaltsstoffe, mit der Maßgabe, dass sich die Mengen der Komponenten (a) bis (g) auf 100 Gew.-% summieren.
  2. Mittel nach Anspruch 1, dadurch gekennzeichnet, dass es Wasser in Mengen von 50 bis 75 Gew.-%, vorzugsweise 50 bis 65 und insbesondere in Mengen von 50 bis 55 Gew.-% enthält.
  3. Mittel nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass es als Komponente (b) ausschließlich nichtionische Tenside enthält.
  4. Mittel nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass als nichtionische Tenside Fettalkoholalkoxylate, Hydroxyalkylether und/oder Alkyl(oligo)glycoside enthalten sind.
  5. Mittel nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die nichtionischen Tenside in Mengen von 10 bis 45 Gew.-%, vorzugsweise 10 bis 25 Gew.-% und insbesondere in Mengen von 10 bis 22 Gew.-% enthalten sind.
  6. Mittel nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass als Komponente (c) Polydimethyldiallylammoniumchlorid ausgewählt ist.
  7. Mittel nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass es Seife (d) in Mengen von 1 bis 12 Gew.-%, vorzugsweise in Mengen von 2 bis 10 Gew.-% und insbesondere in Mengen von 4 bis 8 Gew.-% enthält.
  8. Mittel nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass es anionische Tenside (e) ausgewählt aus der Gruppe der Alkylsulfate, Alkylethersulfate, Alkylsulfonate und/oder Benzolsulfonate enthält.
  9. Mittel nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass die Anionentenside (e) in Mengen von 5 bis 20 Gew.-%, insbesondere in Mengen von 7 bis 20 Gew.-% und insbesondere in Mengen von 7 bis 15 Gew.-% enthalten sind.
  10. Mittel nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die wasserlöslichen Salze (t) ausgewählt sind aus der Gruppe Natriumchlorid, Kaliumchlorid, Natriumsulfat oder Kaliumsulfat und Mischungen daraus und vorzugsweise das Natriumchlorid ausgewählt ist.
  11. Mittel nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass die wasserlöslichen Salze in Mengen von 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis 3 Gew.-% und insbesondere von 1 bis 2,5 Gew.-% enthalten sind.
  12. Mittel nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass die weiteren Komponenten (g) vorzugsweise in Mengen von 0,1 bis 30 Gew.-%, vorzugsweise 1 bis 20 Gew.-% und insbesondere in Mengen von 5 bis 15 Gew.-% enthalten sind.
  13. Mittel nach den Ansprüchen 1 bis 12, dadurch gekennzeichnet, dass als Komponente (g) vorzugsweise allein oder in Kombination Verbindungen aus den Klassen der anorganischen oder organischen Basen oder Säuren, Entschäumer, Viskositätsregulatoren, Biozide, Konservierungsmittel, Enzyme, Enzymstabilisatoren, Parfüme bzw. Duffstoffe, nicht-wässerigen Lösungsmitteln, Hydroxycarbonsäuren und/oder Phosphonate enthalten sein können.
  14. Verwendung von wasserlöslichen Salzen zur Stabilisierung von wässerigen Flüssigwaschmitteln, die anionische Tenside, nichtionische Tenside, kationische Polymere und ggf. Seife nebeneinander enthalten.
  15. Verwendung nach Anspruch 14, dadurch gekennzeichnet, dass die Salze ausgewählt sind aus der Gruppe Natriumchlorid, Kaliumchlorid, Natriumsulfat, Ammoniumchlorid und Ammoniumsulfat.
EP07001783A 2007-01-26 2007-01-26 Klare wässrige Wasch- und Reinigungsmittel Withdrawn EP1950280A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07001783A EP1950280A1 (de) 2007-01-26 2007-01-26 Klare wässrige Wasch- und Reinigungsmittel
EP07856489A EP2118251A1 (de) 2007-01-26 2007-12-08 Klare wässerige wasch- und reinigungsmittel
PCT/EP2007/010713 WO2008089819A1 (de) 2007-01-26 2007-12-08 Klare wässerige wasch- und reinigungsmittel
US12/524,707 US20100120655A1 (en) 2007-01-26 2007-12-08 Clear Aqueous Detergents and Cleaning Agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07001783A EP1950280A1 (de) 2007-01-26 2007-01-26 Klare wässrige Wasch- und Reinigungsmittel

Publications (1)

Publication Number Publication Date
EP1950280A1 true EP1950280A1 (de) 2008-07-30

Family

ID=38068434

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07001783A Withdrawn EP1950280A1 (de) 2007-01-26 2007-01-26 Klare wässrige Wasch- und Reinigungsmittel
EP07856489A Withdrawn EP2118251A1 (de) 2007-01-26 2007-12-08 Klare wässerige wasch- und reinigungsmittel

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07856489A Withdrawn EP2118251A1 (de) 2007-01-26 2007-12-08 Klare wässerige wasch- und reinigungsmittel

Country Status (3)

Country Link
US (1) US20100120655A1 (de)
EP (2) EP1950280A1 (de)
WO (1) WO2008089819A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013070560A1 (en) * 2011-11-11 2013-05-16 The Procter & Gamble Company Surface treatment compositions including shielding salts
WO2015078743A1 (de) * 2013-11-28 2015-06-04 Henkel Ag & Co. Kgaa Handgeschirrspülmittel mit verbesserter reichweite

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2931862B1 (de) 2012-12-17 2020-04-29 Henkel AG & Co. KGaA Verfahren zur verhinderung der verfärbung von gefärbten flüssigkeiten
US11851634B2 (en) 2020-12-15 2023-12-26 Henkel IP & Holding GmbH Detergent composition having reduced turbidity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811386A (en) * 1993-01-28 1998-09-22 Henkel Kommanditgesellschaft Auf Aktien Clear surface-active mixtures containing anionic surfactant, APG, and temporarily cationic copolymer
WO2001079404A2 (en) * 2000-04-17 2001-10-25 Colgate-Palmolive Company Light duty liquid composition containing an acid
WO2003038029A1 (en) * 2001-11-01 2003-05-08 Unilever N.V. Liquid detergent compositions
DE10218302A1 (de) * 2001-04-24 2003-05-08 Ajinomoto Kk Reinigungsmittelzusammensetzung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3919669A1 (de) * 1989-06-16 1990-12-20 Wella Ag Klares haar- und koerperreinigungsmittel
US6194364B1 (en) * 1996-09-23 2001-02-27 The Procter & Gamble Company Liquid personal cleansing compositions which contain soluble oils and soluble synthetic surfactants
MXPA04003821A (es) * 2001-11-02 2004-07-30 Procter & Gamble Composicion que contiene un polimero cationico y material solido insoluble en agua.
ZA200605700B (en) * 2004-01-16 2007-11-28 Unilever Plc Improved detergent composition
US7446081B2 (en) * 2004-03-31 2008-11-04 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Rinse-off facial wash compositions delivering enhanced whitening using submicron titanium oxide, optional modifier and deposition system
US20060079415A1 (en) * 2004-10-13 2006-04-13 Cheryl Kozubal Conditioning shampoos with detergent soluble silicones

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811386A (en) * 1993-01-28 1998-09-22 Henkel Kommanditgesellschaft Auf Aktien Clear surface-active mixtures containing anionic surfactant, APG, and temporarily cationic copolymer
WO2001079404A2 (en) * 2000-04-17 2001-10-25 Colgate-Palmolive Company Light duty liquid composition containing an acid
DE10218302A1 (de) * 2001-04-24 2003-05-08 Ajinomoto Kk Reinigungsmittelzusammensetzung
WO2003038029A1 (en) * 2001-11-01 2003-05-08 Unilever N.V. Liquid detergent compositions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013070560A1 (en) * 2011-11-11 2013-05-16 The Procter & Gamble Company Surface treatment compositions including shielding salts
WO2013070559A1 (en) * 2011-11-11 2013-05-16 The Procter & Gamble Company Surface treatment compositions including shielding salts
WO2015078743A1 (de) * 2013-11-28 2015-06-04 Henkel Ag & Co. Kgaa Handgeschirrspülmittel mit verbesserter reichweite

Also Published As

Publication number Publication date
EP2118251A1 (de) 2009-11-18
US20100120655A1 (en) 2010-05-13
WO2008089819A1 (de) 2008-07-31

Similar Documents

Publication Publication Date Title
EP2368972B1 (de) Hautfreundliche Handgeschirrspülmittel
DE2616404C2 (de) Verfahren zum Reinigen von Gegenständen mit glasartigen Oberflächen sowie hierfür geeignete flüssige Reinigungsmittel
EP1645619B1 (de) Flüssige Tensidmischungen
EP1972683B1 (de) Amphotere Polymere als Soil Release Additive in Waschmitteln
DE19904513A1 (de) Detergensgemische
EP1126019A1 (de) Wässriges mehrphasiges Reinigungsmittel
EP1131394A1 (de) Gelförmiges reinigungsmittel für spültoiletten
EP0608285B1 (de) Viskose wässrige tensidzubereitungen
DE60211300T2 (de) Verbesserungen bei flüssigen waschmitteln
DE19732708C1 (de) Verwendung von Fettethern
EP1950280A1 (de) Klare wässrige Wasch- und Reinigungsmittel
DE19853720A1 (de) Allzweckreiniger mit diquaternärem-Polysiloxan
WO2000053718A1 (de) Gelförmiges reinigungsmittel für spültoiletten
WO2000071665A1 (de) Saures wässriges mehrphasiges reinigungsmittel
WO2007019985A1 (de) Feste mittel, enthaltend kationische polymere
DE60316906T2 (de) Verwendung von Lösevermittlern für wässrige Waschmittelzusammensetzungen enthaltend Duftstoffe
DE10162696A1 (de) Spül- und Reinigungsmittel
EP1117758B1 (de) Syndetstückseifen
DE19719121C1 (de) Haarbehandlungsmittel
DE19622214A1 (de) Hydroxycarbonsäureester
DE102006034902A1 (de) Wasch- oder Reinigungsmittel mit verbessertem Dispergievermögen
CH635614A5 (en) Liquid detergent and process for its preparation
DE19527596A1 (de) Wäßrige Tensidmischung
EP0670877B1 (de) Viskose wässrige tensidzubereitungen
DE19933404A1 (de) Reinigungsmittel für harte Oberflächen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090130

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566