EP1919626A1 - Dispositif d' extraction air/eau par collection electrostatique semi-humide et procede utilisant ce dispositif - Google Patents

Dispositif d' extraction air/eau par collection electrostatique semi-humide et procede utilisant ce dispositif

Info

Publication number
EP1919626A1
EP1919626A1 EP06762783A EP06762783A EP1919626A1 EP 1919626 A1 EP1919626 A1 EP 1919626A1 EP 06762783 A EP06762783 A EP 06762783A EP 06762783 A EP06762783 A EP 06762783A EP 1919626 A1 EP1919626 A1 EP 1919626A1
Authority
EP
European Patent Office
Prior art keywords
electrode
air
discharge electrode
counter
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06762783A
Other languages
German (de)
English (en)
Other versions
EP1919626B1 (fr
Inventor
Ernest Galbrun
Jean-Luc Achard
Yves Fouillet
Raymond Charles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1919626A1 publication Critical patent/EP1919626A1/fr
Application granted granted Critical
Publication of EP1919626B1 publication Critical patent/EP1919626B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/16Plant or installations having external electricity supply wet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/32Transportable units, e.g. for cleaning room air

Definitions

  • the invention relates to an air / water extraction device by wet electrostatic collection, in particular semi-wet, comprising a chamber containing a discharge electrode for creating an ion flow from a pocket of ionized gas surrounding the discharge electrode and a counter electrode, an inlet for the air and aerosol mixture to be treated which contains liquid or solid particles, a vapor inlet tube and an outlet for the treated air, and a method using these measures.
  • ESP wet electrostatic collection
  • a very important method of separation is the electrostatic separation of impurities in an electrostatic precipitator.
  • electrostatic separation In the case of air cleaning, however, large structures are needed to obtain collection electrodes having the largest possible area, in order to increase the efficiency of cleaning. Large structures are then necessary and electrofilters of this size require for this purpose large amounts of electrical energy for the creation and maintenance of electrostatic fields. Such electrostatic filters can therefore only be used on fixed supports.
  • electrostatic precipitators dry electrostatic precipitators
  • wet electrostatic precipitators wet electrostatic precipitators
  • An electrostatic precipitator is a device that cleans the gas using the electrostatic forces produced by an electric field through which the particles pass.
  • This electric field which is high (several tens of kV per cm) and non-uniform, is induced by two electrodes. More precisely, it has two effects: it creates an ion flux from an ionized gas pocket surrounding one of the electrodes, typically in the form of a tip or wire, brought to a high potential: this phenomenon is called a corona effect.
  • the particles that are passed through this flow of ions are then coated with these ions and charged. They become sensitive to the Coulomb forces that drag them onto the cylindrical or planar against electrode, brought to the ground.
  • the efficiency of an electrostatic precipitator is remarkable for all sizes with a minimum generally below the micron. Devices operating on this principle can be found commercially
  • the second family of electrofilters consists of wet electrostatic precipitators.
  • the air to be treated containing the particles is premixed with water vapor introduced in the form of droplets in a unit upstream of the collection unit.
  • the objective here is to increase the size of the droplets by condensation and to make the smallest particles more sensitive to electric fields.
  • There are also such systems commercially for example at Wheelabrator Air Pollution Control Inc.). These systems, although allowing the collection of very small particles with excellent efficiency, are intended for industrial use and require very large quantities of water (several tens of liters per hour). They are therefore not suitable for portable applications.
  • WO-2004/041440 discloses a portable electrofilter comprising:
  • an air inlet system consisting of an air passage having an inlet and an outlet at its ends and an air pump, for sucking air through said inlet through said passage air then out of said outlet, thereby creating a flow of air through said air passage; an ionization section located in said air inlet system near said inlet, which is capable of ionizing the analytes in the air stream; and
  • a collection electrode located in said air inlet system between the ionization section and the outlet of said air inlet system, wherein said collection electrode comprises a vertical tubular electrode and is exposed to said flow of air. air.
  • the electrostatic filter of WO-2004/041440 further comprises a reservoir containing a liquid which is hydraulically connected to the collection electrode; a liquid pump for pumping said liquid from said reservoir into the collection electrode, such that said liquid flows on the outside of said collection electrode and is returned to the reservoir.
  • the liquid serves to clean the collection electrode continuously or periodically, which avoids stopping the electrostatic filter to clean or replace the electrodes.
  • the liquid is typically transported to a waste management system, where it will be filtered or at least cleaned.
  • the electrofilter of WO-2004/041440 is therefore not a wet electrostatic precipitator, the water intervenes only during the recovery of residues at the counter electrode and not during the collection.
  • the defect of this device is that of all dry precipitators: it has a low efficiency for small particles.
  • U.S. Patent No. Re. 35990 discloses a method and a device for treating residues. These residues are incinerated in an oxygen-rich atmosphere to produce ash and residual gases and these gases are burned in an oxygen deficient atmosphere to produce burned residual gases. An electrostatic filtration module is used to purify the flue gas entering it, making it more environmentally acceptable.
  • GB 2403 672 discloses an electrostatic precipitator in which the droplets produced by an ultrasonic droplet generator can be used to prevent the formation of solid particles in the porous collection electrode. As a result, drops of water can usually be added to the aerosol before being introduced into the electrostatic precipitator.
  • FR 201249 A discloses an electrostatic precipitator of droplets for removing dust and other pollutants from the gas stream.
  • the electrostatic force at the electrostatic field sucks the fluid out of the nozzle and causes the fluid to break into small droplets.
  • the droplets having a very high load-to-mass ratio undergo a very high acceleration due to the field prevailing between the nozzles and the collecting plate.
  • the moving droplets can meet the particles in the gas stream and strike them in the gas stream by pulling them toward the header plate.
  • the residence time of the droplets in the gas stream is very low, but thanks to the high speed the probability of collision with particles is very important. A small amount of vapor present in the reduced gas is therefore sufficient to obtain improved collection efficiency compared to a dry electrostatic precipitator.
  • FR 201249 A In order to avoid a vapor gain between the discharge electrode along its entire length, the water droplets according to FR 201249 A are accelerated out of the nozzles forming the discharge electrodes and are then distributed in all the gas streams. . Steam is reduced by a steam inlet tube in the space between the discharge electrode and the counter electrode.
  • a characteristic of FR 201249 A is that the discharge electrode is formed by the nozzles themselves, which at the same time serve as the steam inlet tube.
  • US 4,544,382 A discloses an electro-filter which may especially be used at elevated temperatures.
  • the particles present in a stream of gas to be cleaned are charged to a specific region of the filter.
  • the principle of the device according to US 4,544,382 A is that the compressed air and wet enters the device quickly and in the wet gas a corona discharge is between a needle and the nozzle. In the narrowed portion of the injector, the compressed and wet air expands creating ice microparticles that exit the injector and trap the charged particles in the discharge crown.
  • the object of the present invention is therefore to provide a system for the collection of particles suspended in a gas by a system of electrostatic precipitators with high efficiency, in particular the collection of liquid or solid particles of size between 10 nm and 100 ⁇ m, and consumption of energy and products (eg water) compatible with portable use.
  • this invention aims to allow the efficient collection of submicron particles suspended in the air for their analysis.
  • This device also allows portable applications and has a consumption of energy and products (mainly water) low enough to have a suitable autonomy.
  • the present invention thus relates to a wet electrostatic collection air / water extraction device, comprising a chamber containing a discharge electrode for creating an ion flow from an ionized gas pocket surrounding the discharge electrode and a counter-electrode, an inlet for the air and aerosol mixture to be extracted which contains liquid or solid particles, a steam inlet tube and an outlet for the cleaned air, characterized in that the device makes it possible to introduce the steam by said vapor inlet tube in the space between the discharge electrode and the counter-electrode so as to form a steam sheath surrounding the discharge electrode over its entire length, so that the treated air is not saturated with steam.
  • the present invention also relates to a process for the collection by wet electrostatic method of liquid or solid particles of size between 10 nm and 100 ⁇ m suspended in a gas using the device described above, characterized in that
  • Figure 1 illustrates the principle of the dry electrofilter according to the state of the art.
  • FIG. 2 illustrates the principle of the wet electrofilter according to the state of the art.
  • FIG. 3 illustrates the operating principle of the semi-wet electrostatic collector of a device according to the present invention.
  • Figure 4 shows an exploded view of a possible embodiment of the device according to the present invention.
  • Figure 5 shows that a rotating flow in the chamber containing a discharge electrode and a counter-electrode stabilizes the jet of steam.
  • Figure 5 illustrates the use of tangential air intakes to the walls of the main channel ("mainline”) to create a helical airflow.
  • Figure ⁇ shows a device according to the present invention with a particle collection system having impacted the counter-electrode using microfluidic channels.
  • Figure 7 shows a device according to the present invention with a particle collection system having impacted the counter-electrode using a systematic electrowetting of the counter-electrode.
  • FIG. 8 illustrates an exemplary embodiment of the present invention in which a helical channel can be machined on the inside of the chamber of the device according to the present invention containing electrodes (main channel) for collecting the particles, and forming an interlacing with the against electrode, it also consists of a helical wire.
  • FIG. 9 describes an exemplary embodiment of the present invention with the use of a plane counter-electrode that can be envisaged to facilitate the collection of particles.
  • FIG. 10 shows another exemplary embodiment according to the present invention (second example of possible planar configuration) for guiding the vapor / aerosol mixture.
  • Figure 1 illustrates the principle of the dry electrofilter according to the state of the art.
  • 1 refers to the discharge electrode, 2 to the counter-electrode, 3 to the inlet for the air and aerosol mixture, 4 to the outlet for the cleaned air and 5 to the direction of the ionic wind resp. charged particles of the discharge electrode 1 on the counter electrode 2. Due to the physical effects involved, the particles that are subjected to the ionic wind created at the electrode 1 (corona discharge) are charged. Then the charged particles are transported to the counterelectrode 2 (electrostatic collector). It is possible to charge the particles upstream at the inputs, in which case the only collection - which requires a much lower voltage - is through the device opposite. This method makes it possible to optimize the two physical phenomena independently, while losing in compactness. The use of such a method further requires that the path of the air treated between the charging unit and the collection unit is very short so as not to allow the particles time to discharge.
  • FIG. 2 illustrates the principle of the wet electrofilter according to the state of the art.
  • 6 refers to a container for a liquid, usually water, which will be used for droplet formation. Thanks to the physical mechanisms involved, we obtain a nucleation of drops around the particles that we want to collect. A fog is forming. Particles encapsulated in the droplets are collected by electrostatic force.
  • FIG. 3 illustrates the operating principle of the air / water extraction device by semi-wet electrostatic collection of the present invention.
  • the wet electrostatic collection air / water extraction device of the present invention comprises a chamber 7 containing a discharge electrode 1 for creating an ion flow from a pocket of ionized gas surrounding the discharge electrode 1 and a counter-electrode 2, an inlet 3 for the air and aerosol mixture to be cleaned which contains liquid or solid particles, a steam inlet tube 8 and an outlet 4 for the cleaned air, characterized in that the device allows introducing the steam through said steam inlet tube 8 into the space 9 between the discharge electrode 1 and the counter-electrode 2 so as to form a steam sheath 10 surrounding the discharge electrode 1 over any its length, so that the treated air is not saturated with steam.
  • numbers 6 and 12 refer to the steam generator (water). 6 indicates the solvent tank and 12, heating to produce steam from the solvent. 11 indicates a pump which drives the air and aerosol mixture through the device.
  • the solvent vapor (preferably water) is produced from a reserve located upstream 6. It is conducted within the chamber 7.
  • the discharge electrode 1 is preferably located in the axis of the tube. steam inlet 8 and brought to high voltage by a mobile power supply (which is not shown here). The voltage is generally 5 to 10 kV.
  • the discharge electrode 1 may be either a tip or a wire. It can be held and guided from the steam inlet tube or from the pipe.
  • the main air flow containing the particles penetrates to 3 at the periphery of the electrode of discharge 2.
  • a steam sheath 10 surrounds the discharge electrode 1 over its entire length.
  • the discharge is in the vapor, and the ions created are in the case of the water of the ions H 3 O + . If another solvent is used, other ions may be formed. These ions will charge the particles present in the flow as in a conventional electrofilter.
  • the flow rate is such that the flow of air and aerosol in the pipeline remains preferably laminar.
  • the speed of the gas stream will be determined by the action of the pump 11.
  • droplets form and encapsulate the particles, as in a wet electrostatic precipitator. Then, when these droplets are brought to the counter-electrode, they drag with them all the particles they encounter.
  • the vapor droplets are formed very late.
  • the steam is introduced through the nozzle at the end of the steam inlet tube 8 into the space between the electrodes and is worked in an unsaturated atmosphere. It is only at the end of the vapor sheath that the droplets form.
  • the end of the discharge electrode is at a distance from the nozzle which is smaller than the diameter of the nozzle.
  • the flow of water vapor leaving the nozzle is between a few thousandths and five hundredths of the air flow rate.
  • the outlet of the nozzle must be located between the discharge electrode 1 and the counter-electrode 2 so that the collected droplets pass through the entire space containing the air and aerosol mixture.
  • the steam leaving the nozzle has the following properties: Pressure slightly greater than or equal to atmospheric pressure, temperature equal to the boiling point (100 ° C. at atmospheric pressure) or greater, flow rate less than five hundredths air flow. Thus, the air to which the steam mixes will not be saturated.
  • the advantage of the present invention is to benefit from the gain in collection efficiency similar to that of wet electrofilters, while using a quantity of the solvent (preferably water) much less important, since This is not a question of saturating all treated air with water vapor.
  • solvents can be used in the present invention, as long as they can be vaporized in the device and the particles present in the vapor can be at least partially ionized.
  • suitable solvents ethanol, acetone, water. These can be used alone or - if possible - in a mixture. Since water is preferably used, the vapor is therefore water vapor in the device and in the process according to the present invention.
  • the solvent preferably water which has impacted the counterelectrode 2 only has to be recovered for analysis.
  • the volume of the solvent thus recovered is also as small as possible to avoid too much dilution and to promote detection.
  • FIG 4 shows an exploded view of a possible embodiment of the device according to the present invention.
  • the discharge electrode 1 can be fixed indifferently to the frame in which the main flow takes place or be integrated with the steam ejection nozzle 13.
  • the discharge electrode 1 can be short and relatively thick, in which case the discharge will be solely at the tip of the discharge electrode 1; or it can be fine and pass through the entire chamber 7 (the pipe), in which case the discharge takes place over the entire length of the discharge electrode 1 (it is called wire discharge).
  • 14 indicates a low voltage electrical control box and indicates a detection device (the analysis unit !?).
  • the discharge electrode 1 is generally in the middle of the chamber 7. Preferably, the discharge electrode is located in the axis of the vapor inlet tube.
  • the discharge electrode 1 may have different shapes, for example a comb shape or a square section. It is necessary to generate a localized discharge that it has one or more zones whose radius of curvature is small enough to initiate the discharge. It is preferable that the discharge electrode is a tip or a wire.
  • the electrodes 1 or 2 may be constituted by different conductive materials, for example stainless steel or conductive plastics.
  • the counterelectrode 2 may consist of a compact or porous conductive material, generally metal. If a porous conductive material is used, it can be in various forms: perforated metal, porous sintered metal, one or more layers of wire mesh preferably rolled into a cylinder shape, a cushion of fibers or metal wires in the form of cylinder, etc. As the gas flows into the porous medium, the particles are transported near the surface of the conductive elements, thus allowing the charged particles to actually deposit on the surface of the conductive elements of the porous medium. If solid collection electrodes are used, such as a solid tube surrounding the central discharge electrode, the charged particles must be precipitated by the electrical force through the fluid boundary layer adjacent to the inner surface of the tube which surrounded.
  • the counter-electrode 2 is provided with a cooling system.
  • the counter-electrode 2 is rendered hydrophilic or hydrophobic by a surface treatment.
  • This treatment may consist of a grooving (which makes the surface very wetting by capillarity) or chemical deposition.
  • the present device is very effective and achievable in small format.
  • the cylindrical shape with circular cross section is the most suitable form in many applications. However, it is not necessary to have a cross section of circular shape to take advantage of the many benefits of the invention.
  • Cross sections Rectangular, elliptical or other shapes may be used in the device according to the present invention.
  • the device of the present invention may be in different sizes.
  • the diameter of the cylinder (against electrode) is 50 mm and the outer diameter of the nozzle is 5 mm and the inner diameter of 4 mm. But this diameter does not have an essential influence on the formation of the droplets.
  • the main air flow containing the particles penetrates tangentially to the walls of the channel (chamber 7) so as to obtain a helical flow.
  • This flow makes it possible, on the one hand, to bring the larger particles towards the counter-electrode 2 by the centrifugal force, and on the other hand, to stabilize the flow of vapor generated around the discharge electrode to ensure a cylindrical steam sheath surrounds the discharge electrode 1 over its entire length.
  • FIG. 5 shows that a rotary flow makes it possible to stabilize the jet of steam leaving the steam inlet tube 8.
  • FIG. 5 illustrates the use of tangential inlets to the main channel in order to create a helical air flow in the chamber 7.
  • 3 indicates an inlet for the air and aerosol mixture. This makes it possible to stabilize the vapor zone which is thus confined in a cylinder surrounding the discharge electrode 1.
  • FIG. 6 shows a device according to the present invention with a system for collecting particles having impacted the counter-electrode 2 using microfluidic channels 14.
  • the structuring of the counter-electrode 2 makes it possible to permanently keep a liquid film wetting the surface without have to feed it continuously.
  • the counterelectrode 2 is partially immersed in a tank containing a solvent.
  • the solvent is preferably water.
  • the counter-electrode 2 is partially in a reservoir containing solvent for wetting the counter-electrode 2 with a film of this solvent.
  • This solvent is preferably water which may contain additives. It is therefore advantageous to bathe a counter-electrode end 2 in a water tank. In this variant, the water will then cover the entire surface due to the capillary forces, and it is not necessary to continuously supply the surface to keep it moist. Thus, a film of water is formed on the entire surface of the counter-electrode 2 on which the particles arrive. This film can be set in motion by means of a solenoid valve to collect the collected particles continuously and carry out the treatment in real time. Such a device does not impose any flow constraint, it being understood that the higher the output rate, the more the particles will be diluted.
  • the collected particles are fed after their recovery to the analysis unit 15 which can be combined with the device of the present invention.
  • the particles are continuously collected in the film covering the counter-electrode, from which a small amount of water to be analyzed can be taken at regular intervals.
  • the output of the device is preferably in the aqueous phase to allow analysis.
  • Figure 6 shows the wetting device of the collection electrode.
  • the Peltier cell 16 is used to cool the film of water to prevent it from evaporating while preheating the water to be vaporized. 15 indicates a detection device.
  • the water used for vaporization around the discharge electrode 1 should be pure to ensure that the drop nucleation is only around the particles of interest (for example germs), while the water used to wet the counterelectrode 2 may contain additives (surfactants, pH buffer).
  • the solvent for example a film of water
  • a cooling of the walls of the collection unit may be advantageous for accelerating the condensation of the water vapor around the solid particles which are thus trapped in droplets whose radius increases as and when they transit axial and radial.
  • the device according to the present invention may further comprise collection means using the capillarity, the gravity or the shear of the air.
  • FIG. 7 shows a device according to the present invention with a particle collection system having impacted the counter-electrode 2 using a systematic scanning by electrowetting of the counter-electrode 2.
  • Figure 7 illustrates the possibility of using an addressable electrode array in position by a sufficiently high voltage to cause the displacement of a drop of water (containing any additives) to scan the entire surface of the collection electrode. It is then possible, by successively bringing these electrodes 17 to a potential of the order of a few tens of volts (typically: 60 volts), to move a drop on the surface of the counterelectrode 2 by electrowetting. It is thus possible to sweep with a single drop the entire surface of the electrode 2, drastically reducing the quantity of water necessary to collect the particles or droplets.
  • a cooling system for example a Peltier cell 16 (see Figure 6).
  • the complete system can use several modules, such as the one described above, to increase the flow of air to be treated while preferably keeping a laminar flow inside each module since the flow treated by each modules remain the same.
  • Each of the modules typically measures a few cm in diameter, for one or several tens of cm in height.
  • FIG. 8 illustrates that a helical groove 18 can be machined on the inner face of the main pipe (chamber 7) to collect the particles and form an interlacing with the counter-electrode 2, also consisting of a helical wire.
  • This solution makes it possible to limit the surface of the counter-electrode and thus not to have to functionalize the latter.
  • FIG. 9 illustrates that the use of a planar counter-electrode 2 is conceivable to facilitate the collection of the particles.
  • FIG. 10 shows a second example of a planar configuration that can be envisaged. 8 refers to a steam inlet tube and to a detection device (the analysis unit). 19 indicates the collection areas (counter-electrode 2), 20 indicates a bin, 21 indicates a reagent and 22 indicates the electrodes for moving the drops by electrowetting.
  • the device of the present invention may contain gravity-type collection means (the droplets sink below the counter electrode due to gravity) or air shear (the droplets are carried along the counter-electrode by the flow of air present in the device).
  • the most common applications of the present invention are the extraction of particles suspended in the air for their subsequent analysis (monitoring of pollution, prevention of bioterrorism).
  • Any constituent of air such as gases, microbes (including microorganisms such as spores, bacteria, fungi), dust or any other particles that are entrained or transported by air, can be ionized by the electrostatic field, collected by the collection electrode and, if necessary, analyzed.
  • the main object of the invention is an implementation, the objective of which is to collect the particles in as small a volume of water as possible, for subsequent biological analyzes. This is called microbiological extraction devices.
  • the present invention provides several specific advantages.
  • the device envisaged differs from conventional devices in several respects:
  • the water vapor is confined to a small volume, the water consumption is low enough to have a range of at least one day with a main tank containing a few liters of water.
  • the small format of the device allows to use a large number in parallel while keeping the portable system. It is thus easy to calibrate the final system according to the needs of the analysis by varying the number of modules used in parallel.
  • the invention will be useful in particular for the establishment of mobile air analysis beacons for detecting submicron particles present as traces in the atmosphere (bacteria and viruses). For example, it is conceivable to place such tags at the exit of risky industries to detect in real time the presence of legionellosis.
  • the device of the present invention allows the separation of liquid or solid particles of size between 10 nm and 100 ⁇ m suspended in a gas by a system of electrostatic precipitators. It allows in particular the collection of particles measuring between 50 nm and 10 microns with great efficiency, and a consumption of energy and water compatible with portable use.
  • the proposed invention allows the efficient collection of submicron particles suspended in air for analysis.
  • the device can also be transportable, and have a consumption of energy and products (mainly water) low enough to have a suitable autonomy.

Landscapes

  • Electrostatic Separation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

Dispositif d'extraction air/eau par collection électrostatique semi-humide, comprenant une chambre (7) contenant une électrode de décharge (1) pour créer un flux d'ions à partir d'une poche de gaz ionisée entourant l'électrode de décharge (1) et une contre-électrode (2) , une entrée (3) pour le mélange air et aérosol à extraire qui contient des particules liquides ou solides, un tube d'arrivée de vapeur (8) et une sortie 4 pour l'air nettoyé, caractérisé en ce que le dispositif permet d'introduire la vapeur par ledit tube d'arrivée de vapeur (8) dans l'espace entre l'électrode de décharge (1) et la contre-électrode (2) de manière à former une gaine de vapeur (10) entourant l'électrode de décharge (1) sur toute sa longueur, de telle sorte que l'air traité n'est pas saturé en vapeur.

Description

Demandeurs : Commissariat à l'Energie Atomique 31-33, rue de la Fédération 75752 PARIS CEDEX 16
CNRS
3, rue Michel Ange
75794 PARIS CEDEX 16
Dispositif d' extraction air/eau par collection électrostatique semi-humide et procédé utilisant ce dispositif
L'invention est relative à un dispositif d'extraction air/eau par collection électrostatique humide, en particulier semi- humide, comprenant une chambre contenant une électrode de décharge pour créer un flux d'ions à partir d'une poche de gaz ionisée entourant l'électrode de décharge et une contre- électrode, une entrée pour le mélange air et aérosol à traiter qui contient des particules liquides ou solides, un tube d'arrivée de vapeur et une sortie pour l'air traité, et à un procédé utilisant ce dispositif. Ci-dessous, ces dispositifs seront mentionnés sous le terme d'« électrofiltre ».
Il est d'une grande importance de pouvoir séparer dans l'atmosphère les constituants particulaires des gaz, afin soit de nettoyer l'air traité (par exemple à proximité de bâtiments industriels), ou d'analyser les particules qu'il transporte. Une méthode de séparation très importante consiste en la séparation électrostatique des impuretés dans un électrofiltre. Dans le cas du nettoyage de l'air cependant, des structures de grande taille sont nécessaires pour obtenir des électrodes de collecte ayant la plus grande surface possible, afin de pouvoir augmenter l'efficacité du nettoyage. De grandes structures sont alors nécessaires et des électrofiltres de cette taille réclament à cette fin de grosses quantités d'énergie électrique, destinées à la création et au maintien des champs électrostatiques. De tels électrofiltres ne peuvent donc être utilisés que sur des supports fixes. Dans le cas présent, où l'on souhaite utiliser l' électrofiltre pour analyser les particules contenues dans l'air, des instruments mobiles sont plus avantageux puisque les zones de surveillance intéressant ne sont pas nécessairement fixes ni à proximité d'une source d'électricité. Dan ce cas, il reste primordial d'avoir un taux de collecte très bon pour pouvoir détecter des particules même en très petites quantités.
Il existe actuellement deux types d'appareils, les électrofiltres secs (simplement appelés électrofiltres) et les électrofiltres humides :
Un électrofiltre (ESP, electrostatic precipitator ou ESP en anglais) est un appareil qui nettoie le gaz en utilisant les forces électrostatiques produites par un champ électrique que traversent les particules. Ce champ électrique, qui est élevé (plusieurs dizaines de kV par cm) et non uniforme, est induit par deux électrodes. Il a plus précisément deux effets : il crée un flux d'ions à partir d'une poche de gaz ionisée entourant une des électrodes, typiquement en forme de pointe ou de fil, portée à un potentiel élevé: ce phénomène est appelé effet couronne. Les particules que l'on fait transiter à travers ce flux d' ions se trouvent alors revêtues de ces ions et chargées. Elles deviennent sensibles aux forces de Coulomb qui les entraînent sur la contre-électrode cylindrique ou planaire, portée à la masse. L'efficacité d'un électrofiltre est remarquable pour toutes les tailles avec un minimum généralement en- dessous du micron. On peut trouver des appareils fonctionnant selon ce principe dans le commerce
(par exemple chez United Air Specialists, Inc.). Les avantages sont la compacité et un rendement d'environ 1 pour les particules plus grandes que le micron. Le principal inconvénient de ces systèmes réside dans la collecte des particules submicroniques, dont le rendement est médiocre.
La seconde famille d' électrofiltres est constituée par les électrofiltres humides. Dans ce cas, l'air à traiter contenant les particules est préalablement mélangé avec de la vapeur d'eau introduite sous forme de gouttelettes dans une unité en amont de l'unité de collection. L'objectif est ici d'augmenter la taille des gouttelettes par condensation et de rendre plus sensibles les plus petites particules aux champs électriques. Il existe également de tels systèmes dans le commerce (par exemple chez Wheelabrator Air Pollution Control Inc.) . Ces systèmes, bien que permettant la collecte de très petites particules avec un excellent rendement, sont destinés à une utilisation industrielle et nécessitent des quantités d'eau très importantes (plusieurs dizaines de litres par heure) . Ils ne conviennent donc pas aux applications portables .
WO-2004/041440 présente un électrofiltre portable comprenant :
un système d'entrée d'air formé d'un passage d'air muni d'une entrée et d'une sortie à ses extrémités et d'une pompe à air, destinée à aspirer l'air par ladite entrée à travers ledit passage d'air puis hors de ladite sortie, créant ainsi un courant d'air à travers ledit passage d'air ; une section d'ionisation située dans ledit système d'entrée d'air près de ladite entrée, qui est capable d'ioniser les analytes dans le courant d'air ; et
une électrode de collecte située dans ledit système d'entrée d'air entre la section d'ionisation et la sortie dudit système d'entrée d'air, où ladite électrode de collecte comprend une électrode tubulaire, verticale et est exposée audit courant d'air.
L' électrofiltre de WO-2004/041440 comprend en outre un réservoir contenant un liquide qui est relié hydrauliquement à l'électrode de collecte; une pompe à liquides pour pomper ledit liquide dudit réservoir à l'intérieur de l'électrode de collecte, de telle sorte que ledit liquide coule sur l'extérieur de ladite électrode de collecte et est retourné vers le réservoir. Le liquide sert à nettoyer l'électrode de collecte de manière continuelle ou périodique, ce qui évite l'arrêt de 1 ' électrofiltre pour nettoyer ou remplacer les électrodes. Le liquide est typiquement transporté vers un système de gestion des déchets, où il sera filtré ou à tout le moins nettoyé.
L'électrofiltre de WO-2004/041440 n'est donc pas un électrofiltre humide, l'eau n'intervient que lors de la récupération des résidus à la contre électrode et pas lors de la collecte. Le défaut de ce dispositif est donc celui de tous les précipitateurs secs : il a une efficacité faible pour les petites particules.
Le brevet américain No. Re. 35990 (reissue) présente une méthode et un dispositif pour traiter les résidus. Ces résidus sont incinérés dans une atmosphère riche en oxygène pour produire de la cendre et des gaz résiduels et ces gaz sont brûlés dans une atmosphère déficiente en oxygène pour produire des gaz résiduels brûlés. Un module de filtration électrostatique est utilisé pour purifier le gaz brûlé qui y pénètre, le rendant ainsi plus acceptable du point de vue environnemental.
GB 2403 672 présente un électrofiltre dans lequel les gouttelettes produites par un générateur de gouttelettes à ultrasons peuvent être utilisées pour prévenir la formation de particules solides dans l'électrode de collecte poreuse. En conséquence, des gouttes d'eau peuvent d'ordinaire être ajoutées à l'aérosol avant d'être introduites dans l' électrofiltre.
Ces deux dernières solutions impliquent un consommation d'eau et d'énergie qui son incompatibles avec une utilisation portable.
FR 201249 A divulgue un précipitateur électrostatique de gouttelettes destiné au retrait de la poussière et d'autres matières polluantes dans le courant gazeux. La force électrostatique au champ électrostatique aspire le fluide hors de la buse et provoque la rupture du fluide en petites gouttelettes . Les gouttelettes ayant un rapport charge sur masse très élevée, subissent une accélération très importante du fait du champ régnant entre les buses et la plaque collectrice. Les gouttelettes qui se déplacent peuvent rencontrer les particules présentes dans le courant de gaz et les heurter dans le courant gazeux en les retirant vers la plaque collectrice. Le temps de résidence des gouttelettes dans le courant gazeux est très faible, mais grâce à la grande vitesse la probabilité de collision avec des particules est très importante. Une petite quantité de vapeur présente dans le gaz réduit est donc suffisante pour obtenir une efficacité de collection améliorée par rapport à un précipitateur électrostatique sec. Afin d'éviter un gain de vapeur entre l'électrode de décharge de toute sa longueur, les gouttelettes d'eau selon la FR 201249 A sont accélérées en sortant des buses formant les électrodes de décharge et sont ensuite reparties dans tous les courants de gaz . La vapeur est réduite par un tube d'arrivée de vapeur dans l'espace entre l'électrode de décharge et la contre électrode. Une caractéristique de la FR 201249 A consiste en que l'électrode de décharge est formée par les buses elles- mêmes qui servent en même temps comme tube d'arrivée de vapeur .
La US 4,544,382 A divulgue un électro-filtre qui peut notamment être utilisé à des températures élevées. Les particules présentes dans un courant de gaz à nettoyer sont chargées dans une région spécifique du filtre. Le principe du dispositif selon la US 4,544,382 A consiste en que l'air comprimé et humide entre vite dans le dispositif et dans le gaz humide une décharge couronne se fait entre une aiguille et la tuyère. Dans la partie rétréci de l'injecteur, l'air comprimé et humide subit une expansion qui crée des microparticules de glace qui sortent de l'injecteur et piège les particules chargées dans la couronne de décharge.
L'objectif de la présente invention est donc de proposer un système permettant la collecte de particules en suspension dans un gaz par un système d' électrofiltres avec une grande efficacité, en particulier la collecte des particules liquides ou solides de taille comprise entre 10 nm et 100 μm, et une consommation en énergie et en produits (par exemple d'eau) compatible avec une utilisation portable. D'autre part, cette invention vise à permettre la collecte efficace des particules submicroniques en suspension dans l'air en vue de leur analyse. Ce dispositif permet en outre les applications portables et a une consommation en énergie et en produits (essentiellement en eau) suffisamment faible pour disposer d' une autonomie convenable.
La présente invention concerne donc un dispositif d'extraction air/eau par collection électrostatique humide, comprenant une chambre contenant une électrode de décharge pour créer un flux d'ions à partir d'une poche de gaz ionisée entourant l'électrode de décharge et une contre-électrode, une entrée pour le mélange air et aérosol à extraire qui contient des particules liquides ou solides, un tube d'arrivée de vapeur et une sortie pour l'air nettoyé, caractérisé en ce que le dispositif permet d'introduire la vapeur par ledit tube d'arrivée de vapeur dans l'espace entre l'électrode de décharge et la contre-électrode de manière à former une gaine de vapeur entourant l'électrode de décharge sur toute sa longueur, de telle sorte que l'air traité n'est pas saturé en vapeur.
La présente invention concerne également un procédé de collection par méthode électrostatique humide des particules liquides ou solides de taille comprise entre 10 nm et 100 μm en suspension dans un gaz en utilisant le dispositif décrit ci-dessus, caractérisé en ce que
(a) la vapeur est introduite dans l'espace entre la contre- électrode et l'électrode de décharge pour établir une gaine de vapeur autour de l'électrode de décharge,
(b) un mélange air et aérosol est introduit sous forme d'un écoulement dans l'espace entre l'électrode de décharge et la contre-électrode, (c) les molécules de vapeur sont ionisées par l'électrode de décharge,
(d) les molécules de vapeur ionisées chargent des particules,
(e) les particules chargées croissent pour former des gouttelettes, et
(f) lesdites gouttelettes sont amenées jusqu'à la contre- électrode et sont précipitées sur celle-ci,
(g) les gouttelettes sont récupérées et transportées pour être analysées.
D'autres caractéristiques et avantages de l'invention ressortiront de la description qui va suivre, en référence aux figures des dessins annexés. Les exemples de réalisation décrits avec référence aux dessins ci-annexés ne sont nullement limitatifs.
La figure 1 illustre le principe de l' électrofiltre sec d'après l'état de la technique.
La figure 2 illustre le principe de l' électrofiltre humide d'après l'état de la technique.
La figure 3 illustre le principe de fonctionnement du collecteur électrostatique semi-humide d'un dispositif selon la présente invention.
La figure 4 montre une vision éclatée d'une réalisation éventuelle du dispositif selon la présente invention.
La figure 5 montre qu'un écoulement rotatif dans la chambre contenant une électrode de décharge et une contre-électrode permet de stabiliser le jet de vapeur. Figure 5 illustre l'utilisation d'entrées d'air tangentielles aux parois du canal principal (« canalisation principale ») afin de créer un écoulement d'air hélicoïdal.
La figure β montre un dispositif selon la présente invention avec un système de collecte des particules ayant impacté la contre-électrode utilisant des canaux microfluidiques .
La figure 7 montre un dispositif selon la présente invention avec un système de collecte des particules ayant impacté la contre-électrode utilisant un balayage systématique par électromouillage de la contre-électrode.
La figure 8 illustre un exemple de réalisation de la présente invention où une rigole hélicoïdale peut être usinée sur la face intérieure de la chambre du dispositif selon la présente invention contenant des électrodes (canalisation principale) pour récolter les particules, et former un entrelacs avec la contre-électrode, elle aussi constituée d'un fil hélicoïdal.
La figure 9 décrit un exemple de réalisation de la présente invention avec l'utilisation d'une contre-électrode plane envisageable pour faciliter la collecte des particules.
La figure 10 montre un autre exemple de réalisation selon la présente invention (deuxième exemple de configuration plane envisageable) pour guider le mélange vapeur / aérosol.
Dans les figures, des indices de référence identiques sont utilisés pour la désignation de parties identiques.
La figure 1 illustre le principe de l' électrofiltre sec d'après l'état de la technique. Dans la figure 1, 1 fait référence à l'électrode de décharge, 2 à la contre-électrode, 3 à l'entrée pour le mélange air et aérosol, 4 à la sortie pour l'air nettoyé et 5 à la direction du vent ionique resp. des particules chargées de l'électrode de décharge 1 sur la contre-électrode 2. Grâce aux effets physiques en jeu, les particules qui sont soumises au vent ionique créé à l'électrode 1 (décharge couronne) sont chargées. Ensuite, les particules chargées sont transportées vers la contre- électrode 2 (collecteur électrostatique) . Il est possible de charger les particules en amont au niveau des entrées, auquel cas la seule collecte -qui requiert une tension beaucoup plus faible- se fait grâce au dispositif ci-contre. Ce procédé permet d'optimiser les deux phénomènes physiques indépendamment, tout en perdant en compacité. L'utilisation d'un tel procédé impose en outre que le trajet de l'air traité entre l'unité de charge et l'unité de collecte soit très court pour ne pas laisser aux particules le temps de se décharger .
La figure 2 illustre le principe de l' électrofiltre humide d'après l'état de la technique. Dans la figure 2, 6 fait référence à un récipient pour un liquide, en général de l'eau, qui sera utilisé pour la formation des gouttelettes. Grâce aux mécanismes physiques mis en jeu, on obtient une nucléation de gouttes autours des particules que l'on souhaite collecter. Il se forme un brouillard. Des particules encapsulées dans les gouttelettes sont collectées par force électrostatique.
Cet électrofiltre permet de collecter très efficacement les petites particules qui sont artificiellement grossies. Mais il a pour inconvénient que la quantité de solvant (en général de l'eau) nécessaire à la nucléation autour des particules submicroniques est très importante. Ainsi pour traiter 500 1/min en captant les particules de 1 μm, on consomme 200 1 d'eau par jour. La figure 3 illustre le principe de fonctionnement du dispositif d'extraction air/eau par collection électrostatique semi-humide de la présente invention. Le dispositif d'extraction air/eau par collection électrostatique humide de la présente invention comprend une chambre 7 contenant une électrode de décharge 1 pour créer un flux d'ions à partir d'une poche de gaz ionisée entourant l'électrode de décharge 1 et une contre-électrode 2, une entrée 3 pour le mélange air et aérosol à nettoyer qui contient des particules liquides ou solides, un tube d'arrivée de vapeur 8 et une sortie 4 pour l'air nettoyé, caractérisé en ce que le dispositif permet d'introduire la vapeur par ledit tube 8 d'arrivée de vapeur dans l'espace 9 entre l'électrode de décharge 1 et la contre-électrode 2 de manière à former une gaine de vapeur 10 entourant l'électrode de décharge 1 sur toute sa longueur, si bien que l'air traité n'est pas saturé en vapeur. Dans la figure 3, les chiffres 6 et 12 réfèrent au générateur de vapeur (d'eau) . 6 indique le réservoir de solvant et 12, le chauffage pour produire la vapeur à partir du solvant. 11 indique une pompe qui entraine le mélange air et aérosol au travers du dispositif.
La vapeur de solvant (préférablement d'eau) est produite à partir d'une réserve située en amont 6. Elle est conduite au sein de la chambre 7. L'électrode de décharge 1 est préférablement située dans l'axe du tube d'arrivée de vapeur 8 et portée à haute tension par une alimentation mobile (qui n'est pas montrée ici) . La tension est en général de 5 à 10 kV. L'électrode de décharge 1 peut être soit une pointe, soit un fil. Elle peut être maintenue et guidée à partir du tube d'arrivée de vapeur ou à partir de la canalisation.
Le flux principal d'air contenant les particules (le mélange air et aérosol) pénètre à 3 en périphérie de l'électrode de décharge 2. Ainsi, une gaine de vapeur 10 entoure l'électrode de décharge 1 sur toute sa longueur. De cette manière, la décharge se fait dans la vapeur, et les ions créés sont dans le cas de l'eau des ions H3O+. Si un autre solvant est utilisé, d'autres ions peuvent être formés. Ces ions vont charger les particules présentes dans l'écoulement comme dans un électrofiltre classique. Le débit est tel que l'écoulement d'air et d'aérosol dans la canalisation reste de préférence laminaire. La vitesse du flux gazeux sera déterminée par l'action de la pompe 11.
A la limite de la gaine de vapeur (d'eau) 10, des gouttelettes se forment et encapsulent les particules, comme dans un électrofiltre par voie humide. Puis, lorsque ces gouttelettes sont amenées vers la contre-électrode, elles entraînent avec elles toutes les particules qu'elles rencontrent .
Dans la présente invention, les gouttelettes de vapeur se forment très tard. Tout d'abord, la vapeur est introduite par la buse à l'extrémité du tube d'arrivée de vapeur 8 dans l'espace entre les électrodes et on travaille dans une atmosphère non-saturée. Ce n'est qu'à l'extrémité de la gaine de vapeur que les gouttelettes se forment.
Ceci est réalisé de préférence dans le dispositif selon la présente invention grâce aux propriétés suivantes de la buse :
- l'extrémité de l'électrode de décharge se situe à une distance de la buse inférieure au diamètre de la buse. - le débit de vapeur d'eau en sortie de la buse vaut entre quelques millièmes et cinq centièmes du débit d'air. En outre, la sortie de la buse doit se situer entre l'électrode de décharge 1 est la contre-électrode 2 afin que les gouttelettes récoltées traversent l'intégralité de l'espace contenant le mélange air et aérosol.
II est particulièrement avantageux que la vapeur sortant de la buse présente les propriétés suivantes : Pression légèrement supérieure ou égale à la pression atmosphérique, température égale à la température d' ébullition (1000C à pression atmosphérique) ou supérieure, débit inférieur à cinq centièmes du débit d'air. Ainsi, l'air auquel se mélange la vapeur ne sera pas saturé.
L'avantage de la présente invention (dispositif et procédé) est de bénéficier du gain en rendement de collecte similaire à celui des électrofiltres par voie humide, tout en utilisant une quantité du solvant (préférablement d'eau) beaucoup moins importante, puisqu'il n'est pas question ici de saturer en vapeur d'eau tout l'air traité.
Différents solvants peuvent être utilisés dans la présente invention, pour autant qu'ils puissent être vaporisés dans le dispositif et que les particules présentes dans la vapeur puissent être au moins partiellement ionisées. Exemples de solvants adéquats : éthanol, acétone, eau. Ceux-ci peuvent être utilisés seuls ou - si possible - en mélange. L'eau étant utilisée de préférence, la vapeur est donc de la vapeur d'eau dans le dispositif et dans le procédé selon la présente invention .
Le solvant (préférablement de l'eau) qui a impacté la contre- électrode 2 n'a plus qu'à être récupéré pour être analysé. Dans le cas d'une analyse biologique ou chimique, il est important que le volume du solvant ainsi récupéré soit aussi petit que possible afin d'éviter une trop grande dilution et de favoriser la détection.
La figure 4 montre une vision éclatée d'une réalisation éventuelle du dispositif selon la présente invention. On y voit en particulier que l'électrode de décharge 1 peut être fixée indifféremment au bâti dans lequel a lieu l'écoulement principal ou être intégré à la buse d'éjection de vapeur 13. Dans les deux cas, l'électrode de décharge 1 peut être courte et relativement épaisse, auquel cas la décharge se fera uniquement à la pointe de l'électrode de décharge 1; ou bien, elle peut être fine et traverser toute la chambre 7 (la canalisation) , auquel cas la décharge a lieu sur toute la longueur de l'électrode de décharge 1 (on parle de décharge fil) . 14 indique un boîtier de commande électrique à basse tension et 15 indique un dispositif de détection (l'unité d' analyse!?) .
L'électrode de décharge 1 est en général au milieu de la chambre 7. Préférablement , l'électrode de décharge est située dans l'axe du tube d'arrivée de vapeur.
L'électrode de décharge 1 peut avoir des formes différentes, par exemple une forme de peigne ou une section carrée. Il est nécessaire pour générer une décharge localisée qu'elle possède une ou des zones dont le rayon de courbure est suffisamment petit pour amorcer la décharge. Il est préférable que l'électrode de décharge soit une pointe ou un fil.
Les électrodes 1 ou 2 peuvent être constituées par différents matériaux conducteurs, par exemple de l'acier inoxydable ou des plastiques conducteurs . La contre-électrode 2 peut être constituée par un matériau conducteur compact ou poreux, en général du métal. Si un matériau conducteur poreux est utilisé, il peut se présenter sous différentes formes: du métal perforé, du métal fritte poreux, une ou plusieurs couches de treillis métallique préférablement roulé en forme de cylindre, un coussin de fibres ou de fils métalliques en forme de cylindre, etc. Pendant que le gaz coule dans le milieu poreux, les particules sont transportées à proximité de la surface des éléments conducteurs, permettant ainsi aux particules chargées de se déposer effectivement à la surface des éléments conducteurs du milieu poreux. Si des électrodes de collection solides sont utilisées, telles qu'un tube solide entourant l'électrode centrale de décharge, les particules chargées doivent être précipitées par la force électrique à travers la couche-frontière fluide adjacente à la surface interne du tube qui l'entoure.
Dans un exemple de réalisation préférable de la présente invention, la contre-électrode 2 est munie d'un système de refroidissement .
Il est préférable selon la méthode de récupération des particules que la contre-électrode 2 soit rendue hydrophile ou hydrophobe par un traitement de surface. Ce traitement peut consister en un rainurage (qui rend la surface très mouillante par capillarité) ou en un dépôt chimique.
Le présent dispositif est très efficace et réalisable en petit format. La forme cylindrique avec section transversale circulaire est la forme la plus adéquate dans de nombreuses applications. Toutefois, il n'est pas nécessaire d'avoir une section transversale de forme circulaire pour tirer parti de nombreux avantages de l'invention. Des sections transversales rectangulaires, elliptiques ou d'autres formes peuvent être utilisées dans le dispositif selon la présente invention.
Le dispositif de la présente invention peut se présenter sous des tailles différentes. Ainsi dans l'exemple de réalisation de la figure 4, le diamètre du cylindre (contre-électrode) est de 50 mm et le diamètre externe de la buse est de 5 mm et le diamètre interne de 4 mm. Mais ce diamètre n'a pas une influence essentielle sur la formation des gouttelettes.
Dans le contexte de la présente invention il est avantageux que le flux principal d'air contenant les particules pénètre tangentiellement aux parois du canal (chambre 7) de manière à obtenir un écoulement hélicoïdal. Cet écoulement permet d'une part d'amener les plus grosses particules vers la contre- électrode 2 par la force centrifuge, et d'autre part, de stabiliser l'écoulement de vapeur engendré autour de l'électrode de décharge pour s'assurer qu'une gaine cylindrique de vapeur entoure l'électrode de décharge 1 sur toute sa longueur.
La figure 5 montre qu'un écoulement rotatif permet de stabiliser le jet de vapeur sortant du tube d'arrivée de vapeur 8. La figure 5 illustre l'utilisation d'entrées tangentielles au canal principal afin de créer un écoulement d'air hélicoïdal dans la chambre 7. 3 indique une entrée pour le mélange air et aérosol. Ceci permet de stabiliser la zone de vapeur qui est ainsi confinée en un cylindre entourant l'électrode de décharge 1. De plus, on peut, de cette manière, séparer le collecteur (contre-électrode 2) en deux zones : Dans la zone I, on récolte les particules les plus grosses par effet cyclone (elles sont entraînées vers l'extérieur par force centrifuge) :
Dans la zone II, on récolte les particules plus petites à l'aide des forces électrostatiques.
L'utilisation d'un écoulement principal hélicoïdal permet de stabiliser l'écoulement de vapeur ainsi que de collecter rapidement les plus grosses particules. Il est donc préférable que l'écoulement d'air et d'aérosol entre tangentiellement aux parois de la chambre 7 afin de créer un écoulement hélicoïdal.
D'autre part, il est avantageux que l'électrode de collecte (contre-électrode 2) subisse un traitement de surface (rainurage ou autre traitement similaire) afin de la rendre très hydrophile et d'uniformiser le dépôt des gouttelettes sur toute la surface par une sorte de film. La figure 6 montre un dispositif selon la présente invention avec un système de collecte des particules ayant impacté la contre- électrode 2 utilisant des canaux microfluidiques 14. La structuration de la contre-électrode 2 permet de garder en permanence un film liquide mouillant la surface sans avoir à l'alimenter en continu.
Il est en outre avantageux que la contre-électrode 2 soit partiellement plongée dans un réservoir contenant un solvant. Le solvant est préférablement de l'eau. Dans ce cas, la contre-électrode 2 se trouve partiellement dans un réservoir contenant du solvant pour mouiller la contre-électrode 2 avec un film de ce solvant. Ce solvant est préférablement de l'eau pouvant contenir des additifs. II est donc avantageux de baigner une extrémité de contre- électrode 2 dans un réservoir d'eau. Dans cette variante, l'eau va alors couvrir l'intégralité de la surface en raison des forces capillaires, et il n'est pas nécessaire d'alimenter en permanence la surface pour la garder humide. On forme donc un film d'eau sur toute la surface de la contre-électrode 2 sur laquelle arrivent les particules . Ce film peut être mis en mouvement à l'aide d'une électrovanne pour récolter ainsi en continu, les particules collectées et procéder au traitement en temps réel. Un tel dispositif n'impose aucune contrainte de débit, étant bien entendu que, plus le débit de sortie est important, plus les particules seront diluées.
Dans une variante préférable, les particules collectées sont amenées après leur récupération vers l'unité d'analyse 15 qui peut être combinée au dispositif de la présente invention. Les particules sont collectées en continu dans le film couvrant la contre-électrode, de laquelle on peut alors prélever à intervalles réguliers une faible quantité d'eau à analyser. La sortie du dispositif se fait préférablement en phase aqueuse pour permettre l'analyse.
La figure 6 montre le dispositif de mouillage de l'électrode de collecte. Lorsque l'on amène de l'eau en excès dans le réservoir du haut, celle-ci s'écoule par effet de siphon le long de la contre-électrode 2 : on a ainsi un débit contrôlé, tout en gardant l'électrode 2 mouillée en permanence. La cellule Peltier 16 permet de refroidir le film d'eau pour éviter qu'il s'évapore, tout en préchauffant l'eau destinée à être vaporisée. 15 indique un dispositif de détection.
L'eau utilisée pour la vaporisation autour de l'électrode de décharge 1 devra être pure afin de s'assurer que la nucléation de gouttes ne se fait qu'autour des particules d'intérêt (par exemple des germes), tandis que l'eau utilisée pour mouiller la contre-électrode 2 peut contenir des additifs (surfactants , tampon pH) .
Pour limiter l' évaporation du solvant (par exemple un film d'eau) sur la contre-électrode, il est intéressant de mettre un système de refroidissement sur la contre-électrode. Il est avantageux d'utiliser une cellule Peltier 16, dont la source chaude sera l'eau destinée à être vaporisée. On préchauffe ainsi cette eau et on limite l'énergie nécessaire à la vaporisation .
En outre, un refroidissement des parois de l'unité de collection peut être avantageux pour accélérer la condensation de la vapeur d'eau autour des particules solides qui se trouvent ainsi piégées dans des gouttelettes dont le rayon croît au fur et à mesure de leur transit axial et radial .
Le dispositif selon la présente invention peut comprendre en outre des moyens de collecte utilisant la capillarité, la gravité ou le cisaillement de l'air.
La figure 7 montre un dispositif selon la présente invention avec un système de collecte des particules ayant impacté la contre-électrode 2 utilisant un balayage systématique par électromouillage de la contre-électrode 2.
II est avantageux, si l'on ne fonctionnalise pas la surface de l'électrode de collecte de manière incompatible (par le rainurage par exemple), d'y disposer un quadrillage d'électrode 17 (cf. fig. 7). La figure 7 illustre la possibilité d'utiliser une matrice d'électrodes adressables en position par une tension suffisamment forte pour provoquer le déplacement d'une goutte d'eau (contenant d'éventuels additifs) afin de balayer toute la surface de l'électrode de collecte. On peut alors, en portant successivement ces électrodes 17 à un potentiel de l'ordre de quelques dizaines de Volts (typiquement : 60 Volts), déplacer une goutte sur la surface de la contre-électrode 2 par électromouillage. On peut ainsi balayer avec une seule goutte toute la surface de l'électrode 2, réduisant drastiquement la quantité d'eau nécessaire pour collecter les particules ou gouttelettes.
Selon le temps que la goutte d'eau passe dans le dispositif, il peut être nécessaire d'y adjoindre un système de refroidissement, par exemple une cellule Peltier 16 (voir figure 6) .
Enfin, le système complet peut utiliser plusieurs modules, tels que celui décrit ci-dessus, afin d'augmenter le débit d'air à traiter tout en gardant de préférence un écoulement laminaire à l'intérieur de chaque module puisque le débit traité par chacun des modules reste le même. Chacun des modules mesure typiquement quelques cm de diamètre, pour une ou plusieurs dizaines de cm de hauteur.
La figure 8 illustre qu'une rigole hélicoïdale 18 peut être usinée sur la face intérieure de la canalisation principale (chambre 7) pour récolter les particules et former un entrelacs avec la contre-électrode 2, elle aussi constituée d'un fil hélicoïdal. Cette solution permet de limiter la surface de la contre-électrode et ainsi de ne pas à avoir à fonctionnaliser cette dernière.
La figure 9 illustre que l'utilisation d'une contre-électrode 2 plane est envisageable pour faciliter la collecte des particules. La figure 10 montre un deuxième exemple de configuration plane envisageable. 8 fait référence à un tube d'arrivée de vapeur et 15 à un dispositif de détection (l'unité d'analyse). 19 indique les zones de collecte (contre- électrode 2), 20 indique une poubelle, 21 indique un réactif et 22 indique les électrodes de déplacement des gouttes par électromouillage .
Le dispositif de la présente invention peut contenir des moyens de collecte de type gravité (les gouttelettes coulent en contrebas de la contre-électrode grâce à la gravité) ou cisaillement d'air (les gouttelettes sont emportées le long de la contre électrode par le flux d'air présent au sein du dispositif) .
Les applications les plus courantes de la présente invention sont l'extraction des particules en suspension dans l'air en vue de leur analyse ultérieure (suivi de la pollution, prévention du bioterrorisme). Tout constituant de l'air comme des gaz, des microbes (y compris les microorganismes comme les spores, les bactéries, les champignons) , de la poussière ou toute autre particule qui est entraînée ou transportée par l'air, peut être ionisé par le champ électrostatique, collecté par l'électrode de collecte et, si besoin est, analysé.
L' invention porte principalement sur une mise en œuvre dont l'objectif est de collecter les particules dans un volume d'eau aussi petit que possible, en vue d'analyses biologiques ultérieures. On parle alors de dispositifs d'extraction microbiologique . La présente invention apporte plusieurs avantages spécifiques. Le dispositif envisagé se distingue des dispositifs classiques à plusieurs égards :
L'utilisation de vapeur d'eau au lieu de brouillard
(gouttelettes, comme c'est le cas dans les électrofiltres par voie humide classique) permet d'augmenter le rendement de collecte des particules submicroniques . Ceci reste valable si un autre solvant que l'eau est utilisé pour la formation de vapeur. L'utilisation de vapeur d'eau garantit que la condensation en gouttelettes se fait autour des particules présentes dans l'air.
La vapeur d'eau étant confinée à un petit volume, la consommation en eau est suffisamment faible pour avoir une autonomie d'au moins un jour avec un réservoir principal contenant quelques litres d'eau.
Le petit format du dispositif permet d'en utiliser un grand nombre en parallèle tout en gardant le système portable. Il est ainsi facile de calibrer le système final selon les besoins de l'analyse en variant le nombre de modules utilisés en parallèle.
L'invention sera utile notamment pour la mise en place de balises mobiles d'analyse d'air en vue de détecter des particules submicroniques présentes sous forme de traces dans l'atmosphère (bactéries et virus). On peut envisager, par exemple, de placer de telles balises en sortie des industries à risque pour détecter en temps réel la présence de légionelloses .
Le dispositif de la présente invention permet la séparation des particules liquides ou solides de taille comprise entre 10 nm et 100 μm en suspension dans un gaz par un système d' électrofiltres . Il permet en particulier la collecte de particules mesurant entre 50 nm et 10 μm avec une grande efficacité, et une consommation en énergie et en eau compatible avec une utilisation portable.
En outre, l'invention proposée permet la collecte efficace des particules submicroniques en suspension dans l'air en vue de leur analyse. Le dispositif peut également être transportable, et avoir une consommation en énergie et en produits (essentiellement l'eau) suffisamment faible pour avoir une autonomie convenable.

Claims

Revendications
1. Dispositif d'extraction air/eau par collection électrostatique semi-humide, comprenant une chambre 7 contenant une électrode de décharge 1 pour créer un flux d'ions à partir d'une poche de gaz ionisée entourant l'électrode de décharge 1 et une contre-électrode 2, une entrée 3 pour le mélange air et aérosol à extraire qui contient des particules liquides ou solides, un tube d'arrivée de vapeur 8 et une sortie 4 pour l'air nettoyé, caractérisé en ce que le dispositif permet d'introduire la vapeur par ledit tube d'arrivée de vapeur 8 dans l'espace entre l'électrode de décharge 1 et la contre- électrode 2 de manière à former une gaine de vapeur 10 entourant l'électrode de décharge 1 sur toute sa longueur, de telle sorte que l'air traité n'est pas saturé en vapeur.
2. Dispositif selon la revendication 1, caractérisé en ce que la contre-électrode 2 est partiellement plongée dans un réservoir contenant un solvant.
3. Dispositif selon la revendication 2, caractérisé en ce que le solvant est de l'eau.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que l'électrode de décharge 1 est située dans l'axe du tube d'arrivée de vapeur 8.
5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que l'électrode de décharge 1 est une pointe ou un fil .
6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que la contre-électrode 2 est munie d'un système de refroidissement 16.
7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que la contre- électrode 2 est rendue hydrophile par un traitement de surface.
8. Dispositif selon la revendication 7, caractérisé en ce que le traitement est un rainurage.
9. Dispositif selon l'une des revendications 1 à 8, caractérisé en ce que ledit dispositif comprend en outre des moyens de collecte utilisant la capillarité, la gravité ou le cisaillement de l'air.
10. Procédé de collection par méthode électrostatique humide des particules liquides ou solides de taille comprise entre 10 nm et 100 μm en suspension dans un gaz en utilisant le dispositif selon l'une des revendications 1 à 9, caractérisé en ce que
(a) la vapeur est introduite dans l'espace entre la contre- électrode 2 et l'électrode de décharge 1 pour établir une gaine de vapeur 10 autour de l'électrode de décharge 10,
(b) un mélange air et aérosol est introduit sous forme d'un écoulement dans l'espace entre l'électrode de décharge 1 et la contre-électrode 2,
(c) les molécules de vapeur sont ionisées par l'électrode de décharge 1,
(d) les molécules de vapeur ionisées chargent des particules,
(e) les particules chargées croissent pour former des gouttelettes, et
(f) lesdites gouttelettes sont amenées jusqu'à la contre- électrode 2 et sont précipitées sur celle-ci, (g) les gouttelettes sont récupérées et transportées pour être analysées .
11. Procédé selon la revendication 10, caractérisé en ce que la vapeur est la vapeur d'eau.
12. Procédé selon la revendication 10, caractérisé en ce que ledit écoulement d'air et d'aérosol est laminaire.
13. Procédé selon la revendication 12, caractérisé en ce que ledit écoulement d'air et d'aérosol entre tangentiellement aux parois de la chambre 7 afin de créer un écoulement hélicoïdal.
14. Procédé selon l'une des revendications 10 à 13, caractérisé en ce que la contre-électrode 2 se trouve partiellement dans un réservoir contenant du solvant pour mouiller la contre-électrode 2 avec un film de ce solvant .
15. Procédé selon l'une des revendications 10 à 14, caractérisé en ce que le solvant est de l'eau pouvant contenir des additifs.
EP06762783A 2005-07-28 2006-07-24 Dispositif d' extraction air/eau par collection electrostatique semi-humide et procede utilisant ce dispositif Active EP1919626B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0508100A FR2889082B1 (fr) 2005-07-28 2005-07-28 Dispositif d'extraction air/eau par collection electrostatique semi-humide et procede utilisant ce dispositif
PCT/EP2006/007282 WO2007012447A1 (fr) 2005-07-28 2006-07-24 Dispositif d' extraction air/eau par collection electrostatique semi-humide et procede utilisant ce dispositif

Publications (2)

Publication Number Publication Date
EP1919626A1 true EP1919626A1 (fr) 2008-05-14
EP1919626B1 EP1919626B1 (fr) 2010-05-12

Family

ID=36572056

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06762783A Active EP1919626B1 (fr) 2005-07-28 2006-07-24 Dispositif d' extraction air/eau par collection electrostatique semi-humide et procede utilisant ce dispositif

Country Status (7)

Country Link
US (1) US8206494B2 (fr)
EP (1) EP1919626B1 (fr)
JP (1) JP5400379B2 (fr)
AT (1) ATE467459T1 (fr)
DE (1) DE602006014278D1 (fr)
FR (1) FR2889082B1 (fr)
WO (1) WO2007012447A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021119736A1 (de) 2021-07-29 2023-02-02 Woco Gmbh & Co. Kg Raumluftreiniger
DE102021128346A1 (de) 2021-10-29 2023-05-04 Woco Gmbh & Co. Kg Raumluftreiniger
WO2023079162A2 (fr) 2021-11-08 2023-05-11 Woco Gmbh & Co. Kg Purificateur d'air ambiant

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2011575A1 (fr) * 2007-07-05 2009-01-07 Envirtek A/S Electrode de collecte pour précipitateur électrique de liquide vidangé
FR2929860B1 (fr) * 2008-04-11 2010-12-17 Commissariat Energie Atomique Dispositif d'extraction de particules de l'haleine expiree
FR2930457B1 (fr) * 2008-04-24 2010-06-25 Commissariat Energie Atomique Procede de fabrication de microcanaux reconfigurables
WO2010003613A1 (fr) * 2008-07-07 2010-01-14 Werner Haunold Collecteur d'aérosol électrostatique
WO2010095298A2 (fr) * 2009-02-19 2010-08-26 Panasonic Corporation Procédé de concentration de substances chimiques
CN102224404B (zh) * 2009-06-02 2013-03-27 松下电器产业株式会社 化学物质检测方法
FR2967915B1 (fr) 2010-11-26 2014-05-16 Commissariat Energie Atomique Dispositif d'evaporation
FR2979258B1 (fr) 2011-08-29 2019-06-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de collecte electrostatique de particules en suspension dans un milieu gazeux
FR2989905B1 (fr) 2012-04-27 2014-05-23 Commissariat Energie Atomique Dispositif electrostatique de collecte de particules en suspension dans un milieu gazeux
FR3005271B1 (fr) * 2013-05-02 2015-05-29 Ciat Sa Dispositif, systeme et procede electrostatique humide de traitement de gaz
FR3005272B3 (fr) 2013-05-02 2017-01-06 Cie Ind D'applications Thermiques Dispositif, systeme et procede electrostatique humide de traitement de gaz
CN103674629B (zh) * 2013-12-19 2016-08-17 上海烟草集团有限责任公司 自动化烟气捕集装置及分析方法
JP5966158B1 (ja) * 2015-02-13 2016-08-10 パナソニックIpマネジメント株式会社 静電噴霧装置およびそれを用いて試料ガスから液体サンプルを得る方法
SG11201805565YA (en) * 2015-09-28 2018-07-30 Massachusetts Inst Technology Systems and methods for collecting a species
FI20175319A1 (en) * 2017-04-06 2018-10-07 Olfactomics Oy Method and equipment for the analysis of biological samples
US11617983B2 (en) * 2017-11-13 2023-04-04 Awn Nanotech Inc. Methods and apparatuses for harvesting water from air
WO2021021369A1 (fr) * 2019-08-01 2021-02-04 Infinite Cooling Inc. Systèmes et procédés pour collecter un fluide contenu dans un flux de gaz
CN112432347B (zh) * 2020-12-07 2022-04-22 珠海格力电器股份有限公司 传感器清洁组件、传感器和空调***
FR3117898A1 (fr) * 2020-12-21 2022-06-24 Commissariat à l'Energie Atomique et aux Energies Alternatives Unité de collecte de particules aéroportées
CN114210459B (zh) * 2021-11-30 2022-09-20 华中科技大学 一种基于微纳结构强化放电的静电除雾集水装置和方法
FR3130650B1 (fr) 2021-12-17 2023-11-03 Commissariat Energie Atomique Procédé et dispositif de récupération et d'analyse de particules aéroportées.
FR3130649A1 (fr) 2021-12-17 2023-06-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Membrane de collecte de particules aéroportées
FR3142918A1 (fr) 2022-12-13 2024-06-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Membrane de collecte de particules aéroportées, à surface fonctionnalisée

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2101249A1 (en) * 1970-08-05 1972-03-31 Trw Inc Electrostatic precipitator - with charging system for liquid droplets used for gas scrubbing
US3768258A (en) * 1971-05-13 1973-10-30 Consan Pacific Inc Polluting fume abatement apparatus
DE2134576C3 (de) * 1971-07-10 1975-10-30 Metallgesellschaft Ag, 6000 Frankfurt Röhre n-NaBelektroabscheider
US4010011A (en) * 1975-04-30 1977-03-01 The United States Of America As Represented By The Secretary Of The Army Electro-inertial air cleaner
JPS5193478U (fr) * 1975-12-25 1976-07-27
US4544382A (en) * 1980-05-19 1985-10-01 Office National D'etudes Et De Recherches Aerospatiales (Onera) Apparatus for separating particles in suspension in a gas
SE447797B (sv) * 1980-05-29 1986-12-15 Onera (Off Nat Aerospatiale) Sett och anordning for separering av svevande partiklar fran en gas
US4435190A (en) * 1981-03-14 1984-03-06 Office National D'etudes Et De Recherches Aerospatiales Method for separating particles in suspension in a gas
US4597780A (en) * 1981-06-04 1986-07-01 Santek, Inc. Electro-inertial precipitator unit
JPS6245355A (ja) * 1985-08-23 1987-02-27 Ishikawajima Harima Heavy Ind Co Ltd ダスト除去装置
US5203267A (en) * 1991-01-22 1993-04-20 New Clear Energy, Inc. Method and apparatus for disposing of waste material
JPH06142548A (ja) * 1992-11-10 1994-05-24 Matsushita Seiko Co Ltd 湿式電気集塵装置
FR2713517B1 (fr) * 1993-12-14 1996-02-02 France Grignotage Echangeur cyclonique pour la purification et la dépollution de l'air.
US5648049A (en) * 1995-11-29 1997-07-15 Alanco Environmental Resources Corp. Purging electrostatic gun for a charged dry sorbent injection and control system for the remediation of pollutants in a gas stream
US5914454A (en) * 1997-09-12 1999-06-22 Team Technologies, Llc Apparatus and method for concentrating constituents from a gas stream
US6365112B1 (en) * 2000-08-17 2002-04-02 Sergei Babko-Malyi Distribution of corona discharge activated reagent fluid injected into electrostatic precipitators
JP3787773B2 (ja) * 2002-05-10 2006-06-21 財団法人大阪産業振興機構 イオン化装置及び該イオン化装置を含むシステム
JP2004089929A (ja) * 2002-09-03 2004-03-25 Kazue Tanaka 集塵装置
US6905029B2 (en) * 2002-09-12 2005-06-14 California Institute Of Technology Cross-flow differential migration classifier
US6955075B2 (en) * 2002-11-04 2005-10-18 Westinghouse Savannah River Co., Llc Portable liquid collection electrostatic precipitator
US6902604B2 (en) * 2003-05-15 2005-06-07 Fleetguard, Inc. Electrostatic precipitator with internal power supply
US6848374B2 (en) * 2003-06-03 2005-02-01 Alstom Technology Ltd Control of mercury emissions from solid fuel combustion
US8069797B2 (en) * 2003-06-03 2011-12-06 Alstom Technology Ltd. Control of mercury emissions from solid fuel combustion
TWI220654B (en) * 2003-07-02 2004-09-01 Ind Tech Res Inst Adjustable whirlpool electrostatic filter
JP4244022B2 (ja) * 2004-04-28 2009-03-25 日新電機株式会社 ガス処理装置
US8031853B2 (en) * 2004-06-02 2011-10-04 Clearone Communications, Inc. Multi-pod conference systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007012447A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021119736A1 (de) 2021-07-29 2023-02-02 Woco Gmbh & Co. Kg Raumluftreiniger
DE102021128346A1 (de) 2021-10-29 2023-05-04 Woco Gmbh & Co. Kg Raumluftreiniger
WO2023079162A2 (fr) 2021-11-08 2023-05-11 Woco Gmbh & Co. Kg Purificateur d'air ambiant
DE102021129045A1 (de) 2021-11-08 2023-05-11 Woco Gmbh & Co. Kg Raumluftreiniger

Also Published As

Publication number Publication date
US8206494B2 (en) 2012-06-26
WO2007012447A1 (fr) 2007-02-01
JP5400379B2 (ja) 2014-01-29
FR2889082A1 (fr) 2007-02-02
EP1919626B1 (fr) 2010-05-12
JP2009502457A (ja) 2009-01-29
ATE467459T1 (de) 2010-05-15
US20080295687A1 (en) 2008-12-04
FR2889082B1 (fr) 2007-10-05
DE602006014278D1 (de) 2010-06-24

Similar Documents

Publication Publication Date Title
EP1919626B1 (fr) Dispositif d' extraction air/eau par collection electrostatique semi-humide et procede utilisant ce dispositif
KR100704587B1 (ko) 분석 대상 물질의 분리 및 수집
US6110247A (en) Micromachined impactor pillars
EP2564933B1 (fr) Dispositif de collecte électrostatique de particules en suspension dans un milieu gazeux
US7243560B2 (en) Method and apparatus for airborne particle collection
CA2115987C (fr) Precipitateur electrostatique humide
EP3328548A1 (fr) Methode et dispositif de collecte de particules d'aerosols, a collecte selective en fonction de la granulometrie des particules
EP3328549B1 (fr) Methode d'epuration selective d'aerosols
EP2108456B1 (fr) Dispositif d'extraction de particules de l'haleine expirée
FR2784607A1 (fr) Filtration de gaz par force centrifuge
EP0746751A1 (fr) Appareil electro-atomiseur produisant des gouttelettes uniformes d'une taille inferieure au micron
WO2008088574A2 (fr) Procédé et appareil de collecte continue de particules
CN104297369A (zh) 一种中空纤维流场流分离测定纳米材料的装置和方法
EP2656921B1 (fr) Dispositif éléctrostatique de collecte de particules en suspension dans un milieu gazeux
US8520202B2 (en) Asymmetrical-nanofinger device for surface-enhanced luminescense
WO2006025897A2 (fr) Procede et appareil pour la collecte de particules en suspension dans l'air
FR2983093A1 (fr) Dispositif de collecte electrostatique de particules en suspension dans un milieu gazeux
EP3909684A1 (fr) Précipitateur/collecteur électrostatique à électrode(s) de collecte revêtue(s) d'un ou plusieurs film(s) comprenant une couche électriquement conductrice et une couche absorbante de particules et gaz, ensemble de film(s) pelable(s) associé
EP4197641A1 (fr) Membrane de collecte de particules aéroportées
FR3044236A1 (fr) Dispositif de colonne de decantation
FR3111569A1 (fr) Appareil de traitement de l’air et des surfaces intérieures d’un local comprenant une turbine et un réservoir de composition liquide décontaminante pour mélange avec l’air à traiter aspiré par la turbine.
FR2560783A1 (fr) Procede et dispositif pour capter et recueillir des produits a la sortie d'un chromatographe, appareil de traitement d'un aerosol

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080527

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CNRS

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602006014278

Country of ref document: DE

Date of ref document: 20100624

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100512

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100823

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100912

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100813

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100526

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

BERE Be: lapsed

Owner name: CNRS

Effective date: 20100731

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

26N No opposition filed

Effective date: 20110215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006014278

Country of ref document: DE

Effective date: 20110214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100724

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100812

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230724

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 18

Ref country code: DE

Payment date: 20230720

Year of fee payment: 18