EP1224145B1 - System for controlling movements of a load lifting device - Google Patents

System for controlling movements of a load lifting device Download PDF

Info

Publication number
EP1224145B1
EP1224145B1 EP00969555A EP00969555A EP1224145B1 EP 1224145 B1 EP1224145 B1 EP 1224145B1 EP 00969555 A EP00969555 A EP 00969555A EP 00969555 A EP00969555 A EP 00969555A EP 1224145 B1 EP1224145 B1 EP 1224145B1
Authority
EP
European Patent Office
Prior art keywords
lifting device
load lifting
force
load
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00969555A
Other languages
German (de)
French (fr)
Other versions
EP1224145A1 (en
Inventor
Gerd Münnekehoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1224145A1 publication Critical patent/EP1224145A1/en
Application granted granted Critical
Publication of EP1224145B1 publication Critical patent/EP1224145B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D3/00Portable or mobile lifting or hauling appliances
    • B66D3/18Power-operated hoists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/005Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes with balanced jib, e.g. pantograph arrangement, the jib being moved manually

Definitions

  • the present invention relates to a load lifting device with a control system in particular with respect to a crane trolley guided on a rail construction their movements in a horizontal defined by coordinate axes Level, with the load love device being a - at least in the rest position due to gravity - Has vertically aligned support element, and the load lifting device for execution assigned at least one motor drive device to the movements is, each depending on one of the support element in substantially in the horizontal direction, in particular to be applied manually, force that can be detected by means of a sensor device.
  • the invention relates to such a system in which the load lifting device has a flexible, windable, pendulum supporting element, which in Rest position is vertically aligned due to gravity.
  • the load lifting device or trolley has in many cases a flexible, windable support element, for example a support rope or a chain, which, in the idle state, is vertically aligned due to gravity often rigid, rod-like support elements are used. With the load lifting device a load can be raised or lowered in the vertical direction, by winding or unwinding the support element or moving it vertically as a whole.
  • the trolley can move freely over the corresponding ones Freewheel bearing, for example rollers, guided
  • the horizontal movements the trolley is caused manually by the operator via the support element be by the trolley with the support element or the hanging Load is pulled or pushed in the appropriate direction.
  • a Flexible support element can large deflections of the support element depending on the height of the load be required before the trolley moves.
  • At the end of undesired overshoot often occurs during the respective movement, i.e. to an unwanted further movement of the trolley over the desired position and possibly even relatively hard against an end stop the respective mounting rail. It is therefore often necessary that the trolley also braked via the support element and possibly even pulled back a little must become. Then there is a relatively wide reverse deflection of the support element required. All of this results in a bad, cumbersome, time and effort-consuming handling.
  • Crane tracks with motorized trolleys are also known.
  • the trolley drive from a cab or a manual keyboard from corresponding, e.g. controlled electrical switching means.
  • the load lifting device to perform the movements at least one motor Assign drive device, each depending on one of the support element is controllable in a substantially horizontal direction acting force.
  • This force which has to be applied manually, is used in the known system detected by means of a sensor device, the operator therefore only needs a slight manipulation force directly on the load or in the area of the load suspension device to apply, which makes the lifting device with the load moves automatically in the appropriate direction by motor without force the load stops immediately.
  • the load can therefore be manipulated very sensitively and precisely and be placed.
  • DMS strain gauges
  • Strain gauges are also found in a known control system according to GB-A-2 110 428 and in a known lifting system according to WO 98/43911 application.
  • the first-mentioned document discloses a control system for a load lifting device, in which a support element by manual inputs in a master control in X and Y axis directions can be controlled.
  • the second document describes a manually operated pneumatic lifting system, which acts as a force transducer
  • piezoelectric sensors are also disclosed.
  • a sensor device is provided with which the deflections of the Support element are detected relative to the vertical, and then depending on the direction and preferably also the degree of deflection control signals generated for driving the drive device of the load lifting device.
  • the Sensor device of the known system has a measuring unit, on the one hand a deflector connected to the support element and on the other hand comprises at least one distance sensor The distance sensor is horizontal in one determined distance that can be changed by means of the manipulation force next to Deflection body held.
  • the present invention has for its object a control system of the above Type, in particular by the type of design of the force detection by the sensor device, in a simple and inexpensive manner in terms of its ease of use to improve, especially in such a way that with high positioning accuracy and rapid positioning speed a load-independent control can take place.
  • the sensor device is designed in this way and is arranged in relation to the support element that the force is detected without travel is, wherein the sensor device is a measuring unit with a housing and with a with the supporting element connected measuring body and with at least one assigned to the respective coordinate axis or the associated drive device Has force transducer that is in contact with the measuring body.
  • force-free is understood to mean that the parts of the sensor device are relative do not travel to each other in a macroscopically recordable way.
  • force transducers can advantageously be known strain gauge force transducers, magnetoelastic, piezoelectric or fiber optic force transducers come into use.
  • the sensor device can be used to generate the control signals be designed such that movement of the load lifting device in a certain coordinate direction by an approximately rectified, the desired direction of movement essentially corresponding force of Carrying element is effected.
  • the sensor device can be designed in such a sensitive manner be that a very low force, such as that of a very small one little deflection of a flexible support element in a maximum angular range occurs from only about 0 to 3 ° to the vertical, a motor drive in the triggers corresponding direction.
  • the drive speed of the The amount of force can be controlled dependent (lower speed with lower Strength and higher speed with stronger strength).
  • the present invention is suitable for uniaxial, but preferably for biaxial Execution of crane runways.
  • the two-axis version can be achieved according to the invention that two of the two coordinate directions in drives assigned to a level (X, Y) can be controlled individually or simultaneously, so that by superimposing the drives also any movements in to Coordinate axes oblique directions are possible by the support element also applied force exactly in the respective desired direction of movement or is deflected.
  • one can also move in an angular range around a vertical axis pivotally mounted boom can be provided, which is also a motor Drive device can be assigned, each depending on the one Supporting element in a substantially horizontal direction, in particular to be applied manually and can be detected by means of a sensor device Force can be controlled.
  • this system is particularly suitable for use in combination with so-calledISsbalancem.
  • the load lifting device is designed such that the hanging, practically “floating" load due to low, manually in forces applied in the vertical direction can be raised or lowered.
  • Combination with the present invention can thus provide the suspended load regardless of their weight due to very low forces anywhere in the room manipulated, i.e. be moved vertically and / or horizontally.
  • Such a combined Embodiment can therefore be used as a "three-coordinate balancer” or as a “spatial balancer” be designated.
  • a crane runway 1 is first exemplary in an embodiment as Monorail shown.
  • a track construction 2 with one horizontally and in particular rectilinearly extending track 4 provided which a load lifting device 6, in particular a so-called trolley 8, in Direction of a horizontal coordinate axis X-X is guided back and forth.
  • the running rail construction 2 is via holding elements 10 on a not shown Building ceiling and / or separate stationary support 12 (see. Fig. 2) attached.
  • the load lifting device 6 has in the illustrated and described below first exemplary embodiments a flexible and therefore rollable as a result
  • Pendulum-capable support element 14 which is used here, for example, as a support cable (steel cable) is shown, but also e.g. can be formed by a chain.
  • the support element 14 On his one lower end, the support element 14 has a load-bearing device 16, in simplest case, for example a hook or the like, on; it can also act on vacuum cleaners, grippers, pallet forks and the like.
  • a motorized winding and unwinding device with the support element 14 18 connected (see FIG. 4). So that the support member 14 Load suspension device 16 with a load 20 (FIG. 3) in the vertical spatial direction Z-Z moved, i.e. be raised or lowered.
  • the crane runway 1 is an example in a second embodiment as a traveling crane shown.
  • the rail construction 2 consists on the one hand of the Load lifting device 6 in the coordinate direction X-X leading track 4 and on the other hand from further rails 22, these further rails 22 being stationary are attached via the holding elements 10, and wherein the running rail 4 in a second horizontal coordinate direction Y-Y back and forth on the rails 22 is led.
  • the two coordinate directions X-X and Y-Y are perpendicular to each other arranged and form a plane X-Y.
  • the load lifting device 6 is arbitrary Movable over the entire area covered by the running rail construction 2.
  • the load lifting device 6 is for its movements in the direction X-X and / or Y-Y assigned at least one motor drive device 23a (FIG. 1).
  • the two directions of movement X-X and Y-Y each have a corresponding drive device 23a and 23b, however, each in the drawing figures - including the corresponding Active connections (in the form of unmarked arrows) - only schematically (in Block diagram) is shown.
  • a special control system is provided in these exemplary embodiments, the or each drive device 23a, 23b depending on one - starting from the vertical which is automatically adjusted in the rest position due to gravity Alignment - forced deflection of the support element 14 can be controlled.
  • the system has a special sensor device 24, for which purpose in particular 4 and 5 is pointed out.
  • This sensor device 24 can Deflections of the support element 14 relative to the vertical 26 detected very sensitively become.
  • the sensor device 24 then generates depending on the direction and preferably also control signals from the degree (angular dimension) of the deflection for controlling the respective drive device 23a, 23b of the load lifting device 6.
  • the sensor device 24 is preferably related to the generation of the control signals designed such that a movement of the load lifting device 6 in a certain Coordinate direction, e.g. ⁇ X and / or ⁇ Y, by an approximately rectified, of the desired Direction of movement essentially corresponding deflection of the support element 14 is effected.
  • FIG. 3 This is illustrated in FIG. 3 by the arrows shown.
  • an operator 28 manually carries the support element 14 by means of the load 20 and / or the load suspension device 16 in the direction of the arrow 30 a manipulation force F and thereby corresponding to the Direction of movement -Y by an angle ⁇ from the vertical 26 in a slight oblique orientation 32 deflected, so cause by the sensor device 24 generated control signals drive the load lifting device 6 exactly in the Direction of movement -Y, i.e. in the direction of arrow 34.
  • a reverse would accordingly Force F or deflection in arrow direction 36 drives in arrow direction 38, i.e. in Cause direction of movement + Y.
  • the sensor device 24 has a measuring unit 40 with a Housing 41 on.
  • the measuring unit 40 has one connected to the support element 14 Deflection body 42 and on the other hand at least one of the respective coordinate axis X-X or Y-Y - and thus the associated drive device 23a, 23b - assigned distance sensor 44a, 44b.
  • the deflecting body 42 sits in this way longitudinally displaceable on the support element 14, that on the one hand the support element 14 in Direction of the vertical axis Z-Z relative to that in this axis direction in essentially stationary deflection body 42 for the purpose of lifting or lowering the Load or the load bearing device 16 is movable, and on the other hand, the Deflection body 42 when the support element 14 is deflected relative to the distance sensors 44a, 44b for changing the for generating the control signals detectable distance is taken. Each distance sensor 44a, 44b is for this held horizontally at a certain distance next to the deflecting body 42.
  • the measuring unit 40 has two coordinate directions X and Y the two coordinate axes at an angle of 90 ° to each other arranged distance sensors 44a, 44b.
  • the deflecting body 42 Expediently designed as a circular cylindrical body and in a hollow cylindrical Receiving housing 41 arranged, the sensors 44a, 44b in the Wall of this housing 41 are supported.
  • the deflecting body 42 is hereby in its rest position (exactly vertically aligned support element 14) surrounded by a uniform annular gap 46.
  • the clear width of this annular gap 46 is detected by sensors 44a, 44b in each case by measuring technology and then into the Control signals implemented.
  • the distance sensors 44a, 44b are only one schematically illustrated, in particular electronic evaluation unit 47 connected, which in turn the control signals for the drive devices 23a, 23b generated from the respective sensor output signals.
  • the measuring unit 40 has in the upper region of the receiving housing 41 a stationary guide 48 for the support element 14 so as to support the support element 14 support laterally against deflections.
  • the guide 48 can be of a Feed-through opening are formed, the one on the cross section of the Support element 14 adapted opening cross-section that the support element 14th vertically movable, but is guided horizontally in this fixed point. This fixed point thus forms pivot axes for the deflections below lying (hanging) section of the support element 14.
  • Each drive device 23a, 23b is preferably a speed-controlled motor, in particular with a travel drive acting on the mounting rail construction 2, educated. It can be advantageous e.g. are a friction wheel drive. Of course can alternatively, for example, also gear drives or toothed belts be provided.
  • the manipulation force F is preferred or the resulting deflection of the support element according to a progressive characteristic curve 50 implemented in the drive speed v.
  • this will by appropriate design or programming of the electronic Evaluation unit 47 reached that an adjustment of the characteristic and thus the System response to different lifting tasks.
  • the advantages of this progressive characteristic curve 50 with a flat initial increase exist all in a gentle, largely jerk-free start and stop of the load lifting device 6 and the avoidance of vibrations when starting and braking, but high speeds are still possible.
  • would Implementation on the basis of a linear characteristic curve 52, indicated by dashed lines in FIG. 6 would take place, a jerky, oscillating oscillation would result Start-up / braking result.
  • a correspondingly flatter rise in a linear Above all, curve would have the disadvantage that even with a high force F only one relative low speed could be caused, which can lead to that System does not respond to minor (short) excursions.
  • the system can preferably be used in combination with a so-called weight balancer be used.
  • the support element 14 is preferred for its vertical Movements in the Z-Z axis direction (not shown in the drawing) Torque-controlled drive assigned, which is a constant depending on the load Torque generated such that the load 20 in the vertical direction in any Position is kept static, i.e. practically hovers.
  • Torque-controlled drive assigned, which is a constant depending on the load Torque generated such that the load 20 in the vertical direction in any Position is kept static, i.e. practically hovers.
  • small, in particular, manually applied forces acting vertically upwards or downwards ( Load changes) due to the constant torque automatically a lifting or Lowering the load 20. This results in a very simple and comfortable Manipulation of a supposedly suspended load in the room by very low forces also in vertical directions.
  • FIGS. 7 and 8 An embodiment of a system for controlling a load lifting device according to the invention 6 is initially shown as an example in FIGS. 7 and 8.
  • a sensor device 25 is provided, which is designed and with respect to the Support element 14 is arranged that the force F, which is used to control the system is applied, in particular one in the region of the free, lower end of the Carrying element 14 arranged load receiving device 16 acting force F, is recorded without path.
  • the sensor device 25 again has a measuring unit, which is designated here by reference numeral 39.
  • the measuring unit 39 comprises a housing 41, in which, however, there is no deflecting body 42 here with the support member 14 connected measuring body 43 and at least one, in the illustrated Execution of two, the respective coordinate axis X-X, Y-Y and the associated force device 45a, 23b associated force transducer 45a, 45b, 45c, 45d are (t) / (n).
  • Each of the force transducers 45a, 45b, 45c, 45d stands in permanent contact with the measuring body 43.
  • the support element 14 acts it is in turn a flexible, windable support element, such as a rope, which over three guide rollers 43a, 43b, 43c of the measuring body 43 runs.
  • the measuring body 43 is in Direction of the vertical axis Z-Z and the support member 14 is stationary for lifting or lowering a load 20 by one of each other 120 ° offset guide rollers 43a, 43b, 43c formed in the central opening Measuring body 43 longitudinally displaceable in the direction of the vertical axis Z-Z relative to that Measuring body 43 movable.
  • the further details of the mode of operation of the sensor device 25 (for example Response of the sensor device 25 when the support element 14 is deflected with respect to the vertical 26, size and direction of the in the control device 47 for the drive devices 23a, 23b generated signals, type of used Drive devices 23a, 23b, possibility of designing the load lifting device 6 as weight balancer, non-linear characteristic, etc.) agree with those described above Executions of the control system match. That's why in one block 1 the measuring device 40 and the measuring device 39 as Alternatives specified.
  • the force transducers 45a, 45b, 45c, 45d Measuring device 39 according to the invention essentially free of gaps on the measuring body 43 are on the one hand no load-dependent manipulation force for generating a Control signal necessary, on the other hand, the system can also operate under harsh environmental conditions ensure a consistently high level of functional reliability.
  • the Path-free force detection also ensures increased reliability of the System, in that the sensor device 25 has a lower risk of contamination - and thus the possibility of long-term negative influence on the sensitivity - exists than in the case that the force transducer (s) 44a, 44b in a certain Distance (annular gap 46) is / are held next to a deflecting body 42.
  • the sensor device 25 can also be used as a pathless force transducer 45a, 45b, 45c, 45d Advantage have at least one strain gauge force transducer.
  • strain gauge (DMS) force transducers are the most important representatives of the electrical Force transducer. In the simplest case, the manufacture of such a strain gauge transducer four strain gauges (DMS) on an elastic hollow cylinder glued. If the cylinder is compressed by a load, the change Resistance of the DMS. The four strain gauges are in a Wheatstone bridge connected together. Instead of tubular (hollow cylindrical) deformation body rod-shaped deformation bodies can also be used. It is advantageous in particular that strain gauge force transducers are suitable for static and dynamic ones Measurements and for nominal forces in the range from 5 N to 20 MN are suitable.
  • the sensor device 25 can act as a force transducer 45a, 45b, 45c, 45d have at least one magnetoelastic force transducer.
  • the mode of action Such a magnetoelastic force transducer is based on the magnetoelastic Effect of ferromagnetic materials, according to which their permeability changes under force. The resulting change in inductance of a Coil with a core made of the ferromagnetic material on which the When force is applied, it directly changes a current that flows through the coil. Because the current is direct can be measured, no measuring amplifiers are required, such Force transducers, in particular for use under robust operating conditions predestined.
  • piezoelectric force transducers can also be used with advantage.
  • basis for this piezoelectric force transducer is the piezoelectric effect, according to the charges occur in certain crystals when they are mechanically stressed become. Quartz crystals have the highest constancy of their properties and that best insulation, which is why they are best suited for measurement purposes. In one Piezoelectric force transducer (load cell) affects the force on two piezo crystals mechanically one behind the other, electrically but parallel.
  • the output (signal) size of a piezoelectric force transducer is a charge from a charge amplifier into a corresponding one Voltage is converted.
  • the advantage of using this force transducer shows mainly in the case of fast dynamic measurements where small measurements are required Size and insensitivity to temperature fluctuations are important. Piezoelectric force transducers also have a very good resolution and low measurement uncertainty.
  • the sensor device 25 as Force transducers 45a, 45b, 45c, 45d at least one fiber optic force transducer having. With such a transducer, either the detection or the Transmission of the measured value using an optical fiber.
  • the fiber In an intrinsic fiber optic pickup, the fiber itself serves as the sensitive Element in which the measurement variable (force F) is converted into an optical signal. For example, if you apply lateral force to one with a thin wire wrapped optical fiber is a loss of transmitted light flux that over Photo detectors can be detected by evaluation electronics.
  • an extrinsic fiber optic sensor In an extrinsic fiber optic sensor is the primary purpose of the most trouble-free Transfer of the measured value from the measuring location to an evaluation location.
  • the change of Measured variable in an optical signal takes place at the measuring location outside the fiber, e.g. by means of integrated-optical or micro-optical components. So it can too measuring force control the opening width of an aperture for a luminous flux, while another part of the luminous flux remains unchanged as a reference signal.
  • the evaluation electronics compares the two luminous fluxes and uses them to generate neutral lines a force gauge.
  • the use of fiber optic pickups is particularly then appropriate when the measuring conditions are "difficult", such as strong electrical or magnetic interference fields, high temperatures, explosive or corrosive atmospheres.
  • FIGS. 9 and 10 and 11 and 12 Two advantageous embodiments of the invention are also in FIGS. 9 and 10 and 11 and 12 are shown. It is characteristic of both versions that the system according to the invention for controlling the lifting device by one Angle ⁇ (Fig. 10 and 12) pivotable about a vertical axis W-W (Fig. 9 and 11) mounted boom 54.
  • Angle ⁇ Fig. 10 and 12
  • W-W Fig. 9 and 11
  • the boom 54 can, as indicated schematically in each of FIGS. 10 and 12 - what but is not necessarily required - a motor drive device 23c can be assigned, each depending on the support element 14 in substantially horizontal direction, in particular manually applied, force F which can be detected by the sensor device 25 can be controlled. Also this drive device 23c can - like the other drive devices 23a, 23b - advantageously as a servo motor, especially with a friction wheel, gear wheel or toothed belt drive be trained.
  • the sensor device 25 can also advantageously be designed such that a movement of the load lifting device 6 in the direction of a deflection around the Angle ⁇ (arrow with reference numeral 56) through an approximately the same desired Force F applied in the direction of movement is effected.
  • the Drive speed v of the drive device 23c can in turn - as above shown - controlled depending on the size of the force F applied in each case are, preferably based on a progressive curve 50 with a flat initial rise, as shown in Fig. 6
  • the measuring unit 39 has four corresponding to the two coordinate axes X-X, Y-Y path-free sensors 45a, 45b arranged at an angle of 90 ° to one another, 45c, 45d, can in the electronic evaluation unit 47 using the respective sensor output signals simultaneously - depending on the direction of action of the attacking force F in the four formed by the coordinate axes X-X, Y-Y Quadrant control signals for both the linear drive devices 23a, 23b and also generated for the drive device 23c for pivoting the boom 54 become.
  • the housing 41 of the measuring device 39 is rotatable relative to the measuring body 43 and the measuring body 43 and the housing 41 are attached to the boom 54 in such a way that when the boom is pivoted 54 around the angle ⁇ around the vertical axis W-W around the housing 41 Angle is rotated so that the housing 41 with the pathless force transducers 45a, 45b, 45c, 45d its angular orientation relative to the running rail construction 2 maintains.
  • a toothed belt drive 60 is also the other 7 enlarged view. It runs parallel to the boom 54 above the sensor device 25, the housing 41 in the direction of the Cantilever 54 has an axial tubular extension 62 which of the Toothed belt 60 is gripped and roller bearings 64 on a likewise tubular Extension 66 is held at the free end of the boom 54. Through the inside of the Attachment 66, the support element 14 is guided over a deflection roller 68.
  • a Systems for controlling a load lifting device 6 is in contrast to that Designs described above, the holding element 14 not as a rope but rigid - as a rod - otherwise the basic structure of the measuring unit 39 essentially the same as that of the embodiment described above. In this respect refer to the above explanations. Differences to the above Execution still exist in the storage of the rigid holding element 14 and in a special design of an operating handle 70.
  • the holding element 14 is not guided over guide rollers 43a, 43b, 43c, but instead preferably has - as shown - two spherical thickenings 14a, 14b, which to serve its storage in the measuring body 43 and in the arm 54.
  • the tubular control handle 70 engages around the holding element 14 and has two sleeve-like metal parts 70a, 70b insulated from one another, as also shown in FIGS 14 and 16 and 17 clearly appear.
  • the metal parts 70a, 70b are made by Manual override of the operator 28 electrically bridges, creating a circuit is closed, the one switched on in the idle state of the system Safety blocking switches off.
  • the control handle 70 is also particularly for controlling vertical Movements of hanging from the support member 14 loads 20 are formed.
  • a load 20 be raised or lowered.
  • the force is measured using a sensor 72, through which a change in distance caused by a vertical operating force a sliding sleeve 74 is detected and a corresponding signal to the electronic Control unit 47 is issued.
  • This signal can be there in an analogous manner like this happens with the signals of the path-free sensors 45a, 45b, 45c, 45d in one Control signal for a drive device for vertical movement of the load 20 implemented become.
  • Such drive devices are in Fig.
  • the sensor device 25 for detecting the control forces F for the To arrange horizontal movement also directly in the control handle 70.
  • four path-free sensors 45a, 45b, 45c, 45d can be quadrant-accurate Detection of the forces F can be formed by strain gauges.
  • the second arm 54b is at an angle ⁇ 1 pivotable between arm 54b and arm 54a about a vertical axis W1-W1.
  • the two cantilever arms 54a, 54b are pivoted as in the first two A mechanical tracking of the sensor device 25 in such a way that the pathless force transducers 45a, 45b, 45c, 45d relative to the rail construction 2 or maintain their angular alignment with the axes of the X-Y plane.
  • a toothed belt drive 60 for mechanical tracking - as in the second version of the boom 54 - provided, here two timing belts 60a, 60b - one for each arm 54a, 54b of the arm 54 for use come.
  • the arm 54 is connected to a rod 76 connected to the trolley 8 so that it cannot rotate guided vertically, with a special one for movement in the Z-Z direction Drive 23d can be provided, which, as already mentioned, is controllable and, for example - Similar to Fig. 4 for the flexible support member 14 shown there - with a Motorized winding and unwinding device 18 can be connected to a rope 78.
  • All existing drive devices 23a, 23b and 23d are shown in Figs. 14 and 15, as well also in the other figures not only schematically, but figuratively shown. Special drives 23c for the angle adjustment of the arm 54 or of its arms 54a, 54b are not provided since this is done manually.
  • the boom 54 in a fourth embodiment also from two arms 54a, 54b educated.
  • the vertical mobility of the load 20 is achieved here, however, in that the first arm 54a not only around the vertical axis W-W in the horizontal direction, but is also pivotable in the vertical direction.
  • the arm 54a exists to this Purpose from two mutually parallel pivot levers 80a, 80b at one end to a holding part 82 connected to the trolley 8 and at the other end a holding part 84 connected to the second arm 54b is rotatably articulated are.
  • Systems in this embodiment is not a mechanical one, but one electrical tracking following the movement of the boom 54 in the X-Y plane the measuring device 39 or sensor device 25, which is implemented as “tracking via an electrical wave "can be designated Generation of signals for the angles ⁇ , ⁇ 1 about which the cantilever arms 54a, 54b pivoted incremental rotation angle measuring disks in the respective articulation points (Encoder) 86, 88 provided that are coaxial to the vertical Pivot axes W-W, W1-W1 of the cantilever arms 54a, 54b are arranged.
  • the the Signals corresponding to pivot angles ⁇ , ⁇ 1 of the arms 54a, 54b are the supplied to electronic evaluation unit 47, where by addition or subtraction resulting angle value for an actuator 23e for tracking the pathless ones Sensors 45a, 45b, 45c, 45d is calculated.
  • This actuator 23e can preferably a stepper motor.
  • the tracking can be an advantage e.g. via a toothed belt drive 60 acting on the measuring unit 39, but also directly acting on actuator 39 from actuator 23e.
  • the pivots of the arms 54a, 54b on the vertical axes W-W, W1-W1 and the Swivel levers 80a, 80b on the horizontal axes can preferably be braked when controlling the travel drives 23a, 23b, so that in the process not due to the inertia of the parts mentioned unwanted spontaneous movement occurs.
  • the activation of parking brakes located on the swivel joints the one can cause rigid relative position of the arms 54a, 54b or 80a, 80b to each other with Advantage can also be realized via the control handle 70, in particular, by the operator 28 by hand overlapping the two described above sleeve-like metal parts 70a, 70b which are insulated from one another and thereby electrically bridged a corresponding activation circuit is closed.
  • this is at all embodiments possible in which rotary joints are provided.
  • FIG. 14 Another embodiment of a control system according to the invention with one by one vertical axis W-W rotatable boom 54 is shown in FIG.
  • This Execution has several similarities with that shown in FIGS. 14 and 15 Execution, however, the boom 54 is rotatable directly on the axis W-W the trolley 8 is articulated and not rotatable on the vertical rod 76. It is although there is also a vertical rod 76, the Load suspension device 16 - in this case a fork - is guided vertically.
  • the vertical Management and control of the load suspension device 16 is carried out on the same way as in the embodiment shown in FIGS. 14 and 15 an unwinder 18 for a cable 78 acting vertical drive 23d, the in turn can be controlled by the electronic evaluation device 47.
  • This receives its control signals from the measuring device 39 with the pathless working sensors 45a, 45b, 45c, 45d and from the control handle 70, in which one Sensor 72 for vertical control is located.
  • the control handle 70 and the Measuring device 39 also form here - as in the case of those described above Versions - a unit, which in this case, but on the rotating on the Trolley 8 hinged vertical rod 76 is also attached to this version can be a mechanical tracking of the sensors 45a, 45b, 45c, 45d or a Tracking in the manner of an electrical shaft can be provided.
  • the invention is not limited to the exemplary embodiments shown, but rather also includes all embodiments having the same effect in the sense of the invention. This concerns in particular the sensor device 25; here is every other embodiment suitable with the forces on the support element 14 can be detected without a path and in control signals are feasible.
  • the proposed drives 23a, 23b, 23c can be used as electrical, pneumatic and / or hydraulic motors can be formed.
  • the in the Examples only shown schematically electronic evaluation unit 47 can preferably in a mobile part of the system, such as trolley 8, be integrated.
  • the invention is not based on the combination of features defined in claim 1 restricted, but can also be by any other combination of certain features of all of the individual features disclosed are defined. This means that basically every single feature of claim 1 omitted or by at least one disclosed elsewhere in the application Single feature can be replaced. In this respect, claim 1 is only a first To understand formulation attempt for an invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Jib Cranes (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

The invention relates to a system for controlling movements of a load lifting device on a horizontal plane whereby the load lifting device ( 6 ) comprises a vertically oriented carrier element ( 14 ). The vertical orientation of said carrier element is at least due to gravity when the element is in a resting position. At least one motor device ( 23 a, 23 b, 23 c) is connected in order to execute said movements. Said movements can be controlled by a force impinging in a substantially horizontal direction relative to the carrier element ( 14 ), in particular a force which can be applied and which can be detected by a sensor device ( 25 ). In order to improve upon a control system in a simple to operate and low cost manner, in particular in such a way that load independent control is achieved with a high degree of positioning accuracy and rapid positioning speed, the sensor device ( 25 ), according to the invention, is embodied in such a manner and arranged in such a manner with respect to the carrier element ( 14 ) that the force is detected in a path-free manner. Path-free in this context is taken to mean that components of the sensor device ( 25 ) do not move through macroscopically registerable path with respect to each other.

Description

Die vorliegende Erfindung betrifft eine Lasthebevorrichtung, mit einem Steuersystem insbesondere einer an einer Laufschienenkonstruktion geführten Kran-Laufkatze, bezüglich ihrer Bewegungen in einer durch Koordinatenachsen definierten horizontalen Ebene, wobei die Lastliebevorrichtung ein - zumindest in Ruhelage schwerkraftbedingt - vertikal ausgerichtetes Tragelement aufweist, und der Lasthebevorrichtung zur Ausführung der Bewegungen mindestens eine motorische Antriebsvorrichtung zugeordnet ist, die jeweils in Abhängigkeit von einer das Tragelement in im wesentlichen horizontaler Richtung beaufschlagenden, insbesondere manuell aufzubringenden, mittels einer Sensoreinrichtung erfaßbaren Kraft ansteuerbar ist.The present invention relates to a load lifting device with a control system in particular with respect to a crane trolley guided on a rail construction their movements in a horizontal defined by coordinate axes Level, with the load love device being a - at least in the rest position due to gravity - Has vertically aligned support element, and the load lifting device for execution assigned at least one motor drive device to the movements is, each depending on one of the support element in substantially in the horizontal direction, in particular to be applied manually, force that can be detected by means of a sensor device.

Insbesondere betrifft die Erfindung ein solches System, bei dem die Lasthebevorrichtung ein flexibles, aufwickelbares, pendelfähiges Tragelement aufweist, das in Ruhelage schwerkraftbedingt vertikal ausgerichtet ist.In particular, the invention relates to such a system in which the load lifting device has a flexible, windable, pendulum supporting element, which in Rest position is vertically aligned due to gravity.

Es sind Kranbahnen mit einer in nur einer Koordinatenrichtung hin- und herbeweglichen Laufkatze (Einschienenbahn) sowie auch mit einer über eine Fläche hinweg in zwei Koordinatenrichtungen beweglichen Laufkatze (Laufkran) bekannt Dabei ist die Laufkatze selbst an einer Schiene geführt, und diese Schiene ist dann gegebenenfalls an weiteren Schienen mit zu ihrer Längserstreckung senkrechter Bewegungsrichtung geführt. Die Lasthebevorrichtung bzw. Laufkatze weist in vielen Fällen ein flexibles, aufwickelbaren Tragelement, beispielsweise ein Tragseil oder eine Kette, auf, welches im Ruhezustand schwerkraftbedingt vertikal ausgerichtet ist Es werden oftmals auch starre, stangenartige Tragelemente verwendet. Mit der Lasthebevorrichtung kann eine Last in vertikaler Raumrichtung gehoben oder gesenkt werden, indem das Tragelement auf- oder abgewickelt bzw. insgesamt vertikal bewegt wird.They are crane runways with one in only one coordinate direction Movable trolley (monorail) as well as with a surface known trolley movable in two coordinate directions (overhead crane) The trolley itself is guided on a rail, and this rail is then optionally on further rails with a direction of movement perpendicular to their longitudinal extent guided. The load lifting device or trolley has in many cases a flexible, windable support element, for example a support rope or a chain, which, in the idle state, is vertically aligned due to gravity often rigid, rod-like support elements are used. With the load lifting device a load can be raised or lowered in the vertical direction, by winding or unwinding the support element or moving it vertically as a whole.

Bei vielen solchen Kranbahnen ist die Laufkatze freibeweglich über entsprechende Freilauflager, beispielsweise Rollen, geführt Hierbei müssen die horizontalen Bewegungen der Laufkatze von der Bedienungsperson manuell über das Tragelement veranlaßt werden, indem die Laufkatze mit dem Tragelement bzw. der daran hängenden Last in die entsprechende Richtung gezogen oder geschoben wird. Im Falle eines flexiblen Tragelementes können je nach Höhe der Last große Auslenkungen des Tragelementes erforderlich sein, bevor sich die Laufkatze überhaupt bewegt. Zum Ende der jeweiligen Bewegung kommt es oft auch zu einem unerwünschten Überschwingen, d.h. zu einer ungewollten Weiterbewegungen der Laufkatze über die jeweils gewünschte Position hinaus und gegebenenfalls sogar relativ hart gegen einen Endanschlag der jeweiligen Tragschiene. Es ist daher oft erforderlich, daß die Laufkatze über das Tragelement auch abgebremst und gegebenenfalls sogar wieder etwas zurückgezogen werden muß. Hierzu ist dann eine relativ weite umgekehrte Auslenkung des Tragelementes erforderlich. Aus alledem resultiert eine schlechte, umständliche, zeit- und müheaufwendige Handhabung.In many such crane tracks, the trolley can move freely over the corresponding ones Freewheel bearing, for example rollers, guided Here, the horizontal movements the trolley is caused manually by the operator via the support element be by the trolley with the support element or the hanging Load is pulled or pushed in the appropriate direction. in case of a Flexible support element can large deflections of the support element depending on the height of the load be required before the trolley moves. At the end of undesired overshoot often occurs during the respective movement, i.e. to an unwanted further movement of the trolley over the desired position and possibly even relatively hard against an end stop the respective mounting rail. It is therefore often necessary that the trolley also braked via the support element and possibly even pulled back a little must become. Then there is a relatively wide reverse deflection of the support element required. All of this results in a bad, cumbersome, time and effort-consuming handling.

Es sind auch Kranbahnen mit motorisch angetriebenen Laufkatzen bekannt. Dabei wird üblicherweise der Laufkatzenantrieb von einem Führerstand bzw. einer Handtastatur aus über entsprechende, z.B. elektrische Schaltmittel gesteuert. Auch hierbei treten Probleme auf. Vor allem resultieren aus jeder Geschwindigkeitsänderung, d.h. aus jedem Beschleunigungs- und Bremsvorgang, Pendelbewegungen der an dem Tragelement hängenden Last. In ungünstigen Fällen können solche Bewegungen so stark werden, daß z.B. ein freistehender Kran sogar wegkippen kann.Crane tracks with motorized trolleys are also known. there is usually the trolley drive from a cab or a manual keyboard from corresponding, e.g. controlled electrical switching means. Here too problems arise. Above all, result from every speed change, i.e. from every acceleration and braking process, pendulum movements on the Supporting element hanging load. In unfavorable cases, such movements can become strong that e.g. a free-standing crane can even tip away.

Um ein System zum Steuern einer Lasthebevorrichtung, insbesondere ein System zum Steuern der Bewegung einer an einer Laufschienenkonstruktion geführten Kran-Laufkatze mit einem vertikal ausgerichteten Tragelement, zu schaffen, das auf steuertechnisch einfache Weise eine besonders komfortable Bedienung bei gleichzeitig hoher Sicherheit gewährleistet, ist es aus der DE-A-198 25 312 bekannt, der Lasthebevorrichtung zur Ausführung der Bewegungen mindestens eine motorische Antriebsvorrichtung zuzuordnen, die jeweils in Abhängigkeit von einer das Tragelement in im wesentlichen horizontaler Richtung beaufschlagenden Kraft ansteuerbar ist. Diese insbesondere manuell aufzubringende Kraft wird in dem bekannten System mittels einer Sensoreinrichtung erfaßt Die Bedienungsperson braucht somit nur noch eine geringfügige Manipulationskraft direkt an der Last oder im Bereich der Lastaufnahmeeinrichtung aufzubringen, wodurch sich die Hebevorrichtung mit der Last selbstätig motorisch in die entsprechende Richtung bewegt Ohne Krafteinwirkung bleibt die Last sofort stehen. Die Last kann daher sehr feinfühlig und genau manipuliert und plaziert werden. To a system for controlling a load lifting device, in particular a system for Controlling the movement of a crane trolley guided on a rail construction with a vertically aligned support element, to create that on control simple way a particularly comfortable operation at the same time Guaranteed high security, it is known from DE-A-198 25 312, the load lifting device to perform the movements at least one motor Assign drive device, each depending on one of the support element is controllable in a substantially horizontal direction acting force. This force, which has to be applied manually, is used in the known system detected by means of a sensor device, the operator therefore only needs a slight manipulation force directly on the load or in the area of the load suspension device to apply, which makes the lifting device with the load moves automatically in the appropriate direction by motor without force the load stops immediately. The load can therefore be manipulated very sensitively and precisely and be placed.

Die jeweilige Kraft kann in dem bekannten System unmittelbar, z.B. mittels DMS-Technik (DMS = Dehnungsmeßstreifen), erfaßt werden, was sich vor allem bei Verwendung eines starren Tragelementes anbietet, wo die jeweilige Manipulationskraft über das starre Tragelement nahezu ohne Auslenkungen auf eine im Bereich der Lasthebevorrichtung angeordnete Sensoreinrichtung übertragen werden kann.The respective force can be used directly in the known system, e.g. using strain gauge technology (DMS = strain gauges), what is particularly important when used offers a rigid support element, where the respective manipulation force via the rigid support element with almost no deflections in the area of Load lifting device arranged sensor device can be transmitted.

Dehnungsmeßstreifen finden auch in einem bekannten Steuersystem gemäß der GB-A-2 110 428 und in einem bekannten Hebesystem gemäß der WO 98/43911 Anwendung. Das erstgenannte Dokument offenbart dabei ein Steuersytem für eine Lasthebevorrichtung, in dem ein Tragelement durch manuelle Eingaben in eine Leitsteuerung in X- und Y-Achsrichtungen gesteuert werden kann. Das zweitgenannte Dokument beschreibt ein manuell betätigtes pneumatisches Hebesystem, in dem als Kraftaufnehmer neben Dehnungsmeßstreifen auch piezoelektrische Sensoren offenbart sind.Strain gauges are also found in a known control system according to GB-A-2 110 428 and in a known lifting system according to WO 98/43911 application. The first-mentioned document discloses a control system for a load lifting device, in which a support element by manual inputs in a master control in X and Y axis directions can be controlled. The second document describes a manually operated pneumatic lifting system, which acts as a force transducer In addition to strain gauges, piezoelectric sensors are also disclosed.

Alternativ zu derartigen technischen Lösungen ist bekanntermaßen vor allem bei Verwendung eines flexiblen und daher pendelfähigen Tragelementes eine indirekte Krafterfasssung vorgesehen, indem von der jeweiligen Manipulationskraft abhängige, gegenüber der Vertikalen aufgezwungene Auslenkungen des Tragelementes erfaßt werden. Hierzu ist eine Sensoreinrichtung vorgesehen, mit der Auslenkungen des Tragelementes relativ zur Vertikalen erfaßt werden, und die dann in Abhängigkeit von der Richtung und vorzugsweise auch von dem Grad der Auslenkung Steuersignale zum Ansteuern der Antriebseinrichtung der Lasthebevorrichtung erzeugt. Die Sensoreinrichtung des bekannten Systems weist eine Meßeinheit auf, die einerseits einen mit dem Tragelement verbundenen Auslenkkörper sowie andererseits mindestens einen Abstandssensor umfaßt Der Abstandssensor ist horizontal in einem bestimmten, mittels der Manipulationskraft veränderbaren Abstand neben dem Auslenkkörper gehaltert. Es liegt somit eine wegabhängige Krafterfasssung vor. Ein Nachteil dieses bekannten Systems besteht aber darin, daß die Bedienkräfte lastabhängig sind, d.h. bei größeren Lasten, z.B. bei Lasten über 100 kg, muß eine höhere Manipulationskraft aufgebracht werden als bei kleineren Lasten, um das Tragelement gegenüber der Vertikalen um ein- und denselben Betrag auszulenken.As is known, an alternative to such technical solutions is above all in Use of a flexible and therefore pendulum-capable support element is an indirect one Force detection provided by the manipulation force dependent, deflections of the support element imposed on the vertical are detected become. For this purpose, a sensor device is provided with which the deflections of the Support element are detected relative to the vertical, and then depending on the direction and preferably also the degree of deflection control signals generated for driving the drive device of the load lifting device. The Sensor device of the known system has a measuring unit, on the one hand a deflector connected to the support element and on the other hand comprises at least one distance sensor The distance sensor is horizontal in one determined distance that can be changed by means of the manipulation force next to Deflection body held. There is therefore a path-dependent force detection. On The disadvantage of this known system is that the operating personnel are load-dependent, i.e. with larger loads, e.g. for loads over 100 kg, one must higher manipulation force are applied than with smaller loads, so that Deflect the support element in relation to the vertical by one and the same amount.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Steuersystem der genannten Art, insbesondere durch die Art der Gestaltung der Krafterfassung durch die Sensoreinrichtung, in einfacher und preiswerter Weise hinsichtlich seines Bedienkomforts zu verbessern, insbesondere derart, daß damit bei hoher Positioniergenauigkeit und rascher Positioniergeschwindigkeit eine lastunabhängige Steuerung, erfolgen kann.The present invention has for its object a control system of the above Type, in particular by the type of design of the force detection by the sensor device, in a simple and inexpensive manner in terms of its ease of use to improve, especially in such a way that with high positioning accuracy and rapid positioning speed a load-independent control can take place.

Erfindungsgemäß wird dies dadurch erreicht, daß die Sensoreinrichtung derart ausgebildet und in bezug auf das Tragelement angeordnet ist, daß die Kraft wegfrei erfaßt wird, wobei die Sensoreinrichtung eine Meßeinheit mit einem Gehäuse und mit einem mit dem Tragetement in Verbindung stehenden Meßkörper und mit mindestens einem der jeweiligen Koordinatenachse bzw. der zugehörigen Antriebseinrichtung zugeordneten Kraftaufnehmer aufweist, der in Berührung mit dem Meßkörper steht.According to the invention, this is achieved in that the sensor device is designed in this way and is arranged in relation to the support element that the force is detected without travel is, wherein the sensor device is a measuring unit with a housing and with a with the supporting element connected measuring body and with at least one assigned to the respective coordinate axis or the associated drive device Has force transducer that is in contact with the measuring body.

Unter "wegfrei" wird dabei verstanden, daß die Teile der Sensoreinrichtung relativ zueinander keine makroskopisch registrierbaren Wege zurücklegen. Als wegfreie Kraftaufnehmer können erfindungsgemäß mit Vorteil an sich bekannte Dehnungsmeßstreifen-Kraftaufnehmer, magnetoelastische, piezoelektrische oder faseroptische Kraftaufnehmer zur Anwendung kommen."Path-free" is understood to mean that the parts of the sensor device are relative do not travel to each other in a macroscopically recordable way. As pathless According to the invention, force transducers can advantageously be known strain gauge force transducers, magnetoelastic, piezoelectric or fiber optic force transducers come into use.

Für eine vorteilhafte Handhabung kann die Sensoreinrichtung bezüglich der Erzeugung der Steuersignale derart ausgelegt sein, daß eine Bewegung der Lasthebevorrichtung in eine bestimmte Koordinatenrichtung durch eine etwa gleichgerichtete, der gewünschten Bewegungsrichtung im wesentlichen entsprechende Kraft des Tragelementes bewirkt wird. Die Sensoreinrichtung kann derart feinfühlig ausgelegt sein, daß bereits eine sehr geringe Kraft, wie sie beispielsweise bei einer nur sehr geringen Auslenkung eines flexiblen Tragelementes in einem maximalen Winkelbereich von nur etwa 0 bis 3° zur Vertikalen auftritt, einen motorischen Antrieb in die entsprechende Richtung auslöst. Dabei kann die Antriebsgeschwindigkeit von der Höhe der Kraft abhängig gesteuert werden (geringere Geschwindigkeit bei geringerer Kraft und größere Geschwindigkeit bei stärkerer Kraft).For advantageous handling, the sensor device can be used to generate the control signals be designed such that movement of the load lifting device in a certain coordinate direction by an approximately rectified, the desired direction of movement essentially corresponding force of Carrying element is effected. The sensor device can be designed in such a sensitive manner be that a very low force, such as that of a very small one little deflection of a flexible support element in a maximum angular range occurs from only about 0 to 3 ° to the vertical, a motor drive in the triggers corresponding direction. The drive speed of the The amount of force can be controlled dependent (lower speed with lower Strength and higher speed with stronger strength).

Bei Verwendung eines flexiblen Tragelementes, wie eines Seiles, erhöht sich mit zunehmender Last die Spannung des Tragelementes (Seilspannung) was sich vorteilhaft auf die Wirkung des Tragelementes auf die wegfreien Kraftaufnehmer auswirkt, an denen es anliegt. Damit das System anspricht, sind somit keine großen Austenkungswinkel des Tragelementes gegenüber der Vertikalen notwendig. When using a flexible support element, such as a rope, increases with increasing Load the tension of the support element (rope tension) which is advantageous affects the effect of the support element on the path-free force transducers on which it concerns. So that the system responds, there are no large deflection angles of the support element relative to the vertical.

Hierbei ist es besonders vorteilhaft, wenn die Manipulationskraft nicht nach einer linearen, sondern vielmehr nach einer progressiven Kurve in die Geschwindigkeit umgesetzt wird. Hierdurch werden ein langsames Anfahren und sanftes Abbremsen erreicht sowie Schwingungen beim Anfahren und Abbremsen vermieden.It is particularly advantageous here if the manipulation force does not occur after one linear but rather following a progressive curve in speed is implemented. This makes slow starting and gentle braking reached and vibrations when starting and braking are avoided.

Vorteilhafterweise genügt auch bei relativ großer Last eine relativ geringe, im wesentlichen horizontal wirkende Manipulationskraft, die somit sehr einfach und ohne besondere Kraftanstrengung manuell von einer Bedienungsperson aufgebracht werden kann. Auch ein positionsexaktes Anhalten ist leicht möglich, da bei Erreichen der gewünschten Position durch bloßes Loslassen der motorische Antrieb sofort stehenbleibt, weil die Manipulationskraft zu Null wird.Advantageously, even with a relatively large load, a relatively low im substantial horizontal manipulation force, which is therefore very simple and without special effort manually applied by an operator can be. Stopping exactly at the position is also easily possible, since when it is reached the desired position by simply releasing the motor drive immediately stops because the manipulation force becomes zero.

Die vorliegende Erfindung eignet sich für einachsige, bevorzugt aber für zweiachsige Ausführungen von Kranbahnen. Bei der zweiachsigen Ausführung kann erfindungsgemäß erreicht werden, daß zwei den beiden Koordinatenrichtungen in einer Ebene (X, Y) zugeordnete Antriebe einzeln oder gleichzeitig angesteuert werden, so daß durch Überlagerung der Antriebe auch alle beliebigen Bewegungen in zu den Koordinatenachsen schrägen Richtungen möglich sind, indem das Tragelement ebenfalls genau in die jeweilige gewünschte Bewegungsrichtung mit Kraft beaufschlagt bzw. ausgelenkt wird.The present invention is suitable for uniaxial, but preferably for biaxial Execution of crane runways. The two-axis version can can be achieved according to the invention that two of the two coordinate directions in drives assigned to a level (X, Y) can be controlled individually or simultaneously, so that by superimposing the drives also any movements in to Coordinate axes oblique directions are possible by the support element also applied force exactly in the respective desired direction of movement or is deflected.

Des weiteren kann auch ein in einem Winkelbereich um eine vertikale Achse schwenkbar gelagerter Ausleger vorgesehen sein, dem ebenfalls eine motorische Antriebsvorrichtung zugeordnet sein kann, die jeweils in Abhängigkeit von einer das Tragelement in im wesentlichen horizontaler Richtung beaufschlagenden, insbesondere manuell aufzubringenden, mittels einer Sensoreinrichtung erfaßbaren Kraft ansteuerbar ist.Furthermore, one can also move in an angular range around a vertical axis pivotally mounted boom can be provided, which is also a motor Drive device can be assigned, each depending on the one Supporting element in a substantially horizontal direction, in particular to be applied manually and can be detected by means of a sensor device Force can be controlled.

Aufgrund der durch die Erfindung erreichten, sehr komfortablen Bedienungsart eignet sich dieses System insbesondere zur Verwendung in Kombination mit sogenannten Gewichtsbalancem. Dabei ist die Lasthebevorrichtung derart ausgebildet, daß die an dem Tragelement hängende, praktisch "schwebende" Last durch geringe, manuell in vertikaler Richtung aufgebrachte Kräfte gehoben oder gesenkt werden kann. Durch Kombination mit der vorliegenden Erfindung kann somit die schwebende Last unabhängig von deren Gewicht durch sehr geringe Kräfte beliebig im Raum manipuliert, d.h. vertikal und/oder horizontal bewegt werden. Eine solche kombinierte Ausführungsform kann daher als "Drei-Koordinatenbalancer" oder als "Raumbalancer" bezeichnet werden.Suitable due to the very comfortable type of operation achieved by the invention this system is particularly suitable for use in combination with so-called Gewichtsbalancem. The load lifting device is designed such that the hanging, practically "floating" load due to low, manually in forces applied in the vertical direction can be raised or lowered. By Combination with the present invention can thus provide the suspended load regardless of their weight due to very low forces anywhere in the room manipulated, i.e. be moved vertically and / or horizontally. Such a combined Embodiment can therefore be used as a "three-coordinate balancer" or as a "spatial balancer" be designated.

Weitere vorteilhafte Ausgestaltungsmerkmale der Erfindung sind in den Unteransprüchen sowie der nachfolgenden Beschreibung enthalten. Further advantageous design features of the invention are in the Subclaims and the following description included.

Anhand von bevorzugten, in der Zeichnung veranschaulichten Ausführungsbeispielen soll die Erfindung nun genauer erläutert werden. Dabei zeigen:

Fig. 1
eine vereinfachte Perspektivdarstellung einer Kranbahn mit einer längs einer horizontalen Bewegungsachse X-X beweglichen Lasthebevorrichtung (Laufkatze),
Fig. 2
eine Kranbahn in einer Ausführung mit in Richtung von zwei Koordinatenachsen X-X und Y-Y über eine horizontale Fläche hinweg beweglicher Lasthebevorrichtung,
Fig. 3
eine vergrößerte Seitenansicht in Pfeilrichtung III gemäß Fig. 2 mit zusätzlicher Darstellung einer Last und einer Bedienungsperson,
Fig. 4
einen Vertikalschnitt durch eine Hauptkomponente einer Sensoreinrichtung des Steuersystems,
Fig. 5
einen Horizontalschnitt in der Ebene V-V gemäß Fig. 4,
Fig. 6
ein Kraft-/Geschwindigkeitsdiagramm für eine bevorzugte Ausführung mit progressiver Umsetzung von Kraft in Geschwindigkeit,
Fig. 7
in Analogie zu Fig. 4, einen Vertikalschnitt durch eine Hauptkomponente einer ersten Ausführung einer Sensoreinrichtung eines erfindungs-gemäßen Steuersystems,
Fig. 8
in Analogie zu Fig. 5, einen Horizontalschnitt in der Ebene VIII-VIII gemäß Fig. 7,
Fig. 9
einen seitlichen Schnitt durch eine erste Ausführung eines um mindestens eine vertikale Achse drehbaren Auslegers eines erfindungsgemäßen Steuersystems,
Fig. 10
eine Draufsicht auf den in Fig. 9 dargestellten Ausleger,
Fig. 11
einen seitlichen Schnitt durch eine zweite Ausführung eines um mindestens eine vertikale Achse drehbaren Auslegers eines erfindungsgemäßen Steuersystems,
Fig. 12
eine Draufsicht auf den in Fig. 11 dargestellten Ausleger,
Fig. 13
in Analogie zu Fig. 7, einen Vertikalschnitt durch eine Hauptkomponente einer zweiten Ausführung einer Sensoreinrichtung eines erfindungs-gemäßen Steuersystems,
Fig. 14
einen seitlichen Schnitt durch eine dritte Ausführung eines um mindestens eine vertikale Achse drehbaren Auslegers eines erfindungsgemäßen Steuersystems,
Fig. 15
eine Draufsicht auf den in Fig. 14 dargestellten Ausleger,
Fig. 16
einen seitlichen Schnitt durch eine vierte Ausführung eines um mindestens eine vertikale Achse drehbaren Auslegers eines erfindungsgemäßen Steuersystems,
Fig. 17
einen seitlichen Schnitt durch eine fünfte Ausführung eines um mindestens eine vertikale Achse drehbaren Auslegers eines erfindungsgemäßen Steuersystems.
The invention will now be explained in more detail with reference to preferred exemplary embodiments illustrated in the drawing. Show:
Fig. 1
a simplified perspective view of a crane runway with a load lifting device (trolley) movable along a horizontal movement axis XX,
Fig. 2
a crane runway in an embodiment with a lifting device that can move in the direction of two coordinate axes XX and YY over a horizontal surface,
Fig. 3
2 shows an enlarged side view in the direction of arrow III according to FIG. 2 with an additional illustration of a load and an operator,
Fig. 4
3 shows a vertical section through a main component of a sensor device of the control system,
Fig. 5
4 shows a horizontal section in the plane VV according to FIG. 4,
Fig. 6
a force / speed diagram for a preferred embodiment with progressive conversion of force into speed,
Fig. 7
4, a vertical section through a main component of a first embodiment of a sensor device of a control system according to the invention,
Fig. 8
5, a horizontal section in the plane VIII-VIII according to FIG. 7,
Fig. 9
3 shows a lateral section through a first embodiment of a boom of a control system according to the invention which can be rotated about at least one vertical axis,
Fig. 10
9 shows a plan view of the boom shown in FIG. 9,
Fig. 11
3 shows a lateral section through a second embodiment of a boom of a control system according to the invention which can be rotated about at least one vertical axis,
Fig. 12
11 shows a plan view of the boom shown in FIG. 11,
Fig. 13
7, a vertical section through a main component of a second embodiment of a sensor device of a control system according to the invention,
Fig. 14
3 shows a lateral section through a third embodiment of a boom of a control system according to the invention which can be rotated about at least one vertical axis,
Fig. 15
14 shows a plan view of the boom shown in FIG. 14,
Fig. 16
3 shows a lateral section through a fourth embodiment of a boom of a control system according to the invention which can be rotated about at least one vertical axis,
Fig. 17
a lateral section through a fifth embodiment of a boom of a control system according to the invention rotatable about at least one vertical axis.

In den verschiedenen Figuren der Zeichnung sind dieselben Teile auch stets mit denselben Bezugszeichen versehen, so daß sie in der Regel auch jeweils nur einmal beschrieben werden.The same parts are always included in the various figures of the drawing provided the same reference numerals, so that they usually only once to be discribed.

In Fig. 1 ist zunächst beispielhaft eine Kranbahn 1 in einer Ausführung als Einschienenbahn dargestellt. Hierbei ist eine Laufschienenkonstruktion 2 mit einer sich horizontal und insbesondere geradlinig erstreckenden Laufschiene 4 vorgesehen, an der eine Lasthebevorrichtung 6, insbesondere eine sogenannte Laufkatze 8, in Richtung einer horizontalen Koordinatenachse X-X hin- und herbeweglich geführt ist. Die Laufschienenkonstruktion 2 ist über Halteelemente 10 an einer nicht dargestellten Gebäudedecke und/oder gesonderten stationären Trägem 12 (vgl. Fig. 2) befestigt. In Fig. 1, a crane runway 1 is first exemplary in an embodiment as Monorail shown. Here is a track construction 2 with one horizontally and in particular rectilinearly extending track 4 provided which a load lifting device 6, in particular a so-called trolley 8, in Direction of a horizontal coordinate axis X-X is guided back and forth. The running rail construction 2 is via holding elements 10 on a not shown Building ceiling and / or separate stationary support 12 (see. Fig. 2) attached.

Die Lasthebevorrichtung 6 weist in den dargestellten und im folgenden beschriebenen ersten Ausführungsbeispielen ein flexibles und daher aufrollbares sowie demzufolge pendelfähiges Tragelement 14 auf, welches hier beispielhaft als Tragseil (Stahlseil) dargestellt ist, jedoch auch z.B. von einer Kette gebildet sein kann. An seinem einen, unteren Ende weist das Tragelement 14 eine Lastaufnahmeeinrichtung 16, im einfachsten Fall beispielsweise einen Haken oder dergleichen, auf; es kann sich hierbei auch um Unterdrucksauger, Greifer, Palettengabeln und dergleichen handeln. Anderendig ist mit dem Tragelement 14 eine motorische Auf- und Abwickeleinrichtung 18 verbunden (vgl. Fig. 4). Damit kann über das Tragelement 14 die Lastaufnahmeeinrichtung 16 mit einer Last 20 (Fig. 3) in vertikaler Raumrichtung Z-Z bewegt, d.h. angehoben oder abgesenkt werden.The load lifting device 6 has in the illustrated and described below first exemplary embodiments a flexible and therefore rollable as a result Pendulum-capable support element 14, which is used here, for example, as a support cable (steel cable) is shown, but also e.g. can be formed by a chain. On his one lower end, the support element 14 has a load-bearing device 16, in simplest case, for example a hook or the like, on; it can also act on vacuum cleaners, grippers, pallet forks and the like. At the other end is a motorized winding and unwinding device with the support element 14 18 connected (see FIG. 4). So that the support member 14 Load suspension device 16 with a load 20 (FIG. 3) in the vertical spatial direction Z-Z moved, i.e. be raised or lowered.

In Fig. 2 ist die Kranbahn 1 beispielhaft in einer zweiten Ausführung als Laufkran dargestellt. Dabei besteht die Laufschienenkonstruktion 2 einerseits aus der die Lasthebevorrichtung 6 in Koordinatenrichtung X-X führenden Laufschiene 4 sowie andererseits aus weiteren Schienen 22, wobei diese weiteren Schienen 22 ortsfest über die Halteelemente 10 befestigt sind, und wobei die Laufschiene 4 in einer zweiten horizontalen Koordinatenrichtung Y-Y an den Schienen 22 hin- und herbeweglich geführt ist. Die beiden Koordinatenrichtungen X-X und Y-Y sind senkrecht zueinander angeordnet und bilden eine Ebene X-Y. Somit ist die Lasthebevorrichtung 6 beliebig über die gesamte von der Laufschienenkonstruktion 2 überdeckte Fläche bewegbar.In Fig. 2 the crane runway 1 is an example in a second embodiment as a traveling crane shown. The rail construction 2 consists on the one hand of the Load lifting device 6 in the coordinate direction X-X leading track 4 and on the other hand from further rails 22, these further rails 22 being stationary are attached via the holding elements 10, and wherein the running rail 4 in a second horizontal coordinate direction Y-Y back and forth on the rails 22 is led. The two coordinate directions X-X and Y-Y are perpendicular to each other arranged and form a plane X-Y. Thus, the load lifting device 6 is arbitrary Movable over the entire area covered by the running rail construction 2.

Der Lasthebevorrichtung 6 ist für ihre Bewegungen in Richtung X-X und/oder Y-Y mindestens eine motorische Antriebseinrichtung 23a (Fig. 1) zugeordnet. In der bevorzugten Ausführungsform nach Fig. 2 ist für die beiden Bewegungsrichtungen X-X sowie Y-Y jeweils eine entsprechende Antriebseinrichtung 23a und 23b vorgesehen, die jedoch jeweils in den Zeichnungsfiguren - einschließlich der entsprechenden Wirkverbindungen (in Form unbezeichneter Pfeile) - nur schematisch (in Blockdarstellung) dargestellt ist. Zur Ansteuerung der bzw. jeder Antriebseinrichtung 23a, 23b ist in diesen Ausführungsbeispielen ein spezielles Steuersystem vorgesehen, wobei die bzw. jede Antriebseinrichtung 23a, 23b in Abhängigkeit von einer - ausgehend von der sich schwerkraftbedingt in Ruhelage selbstätig einstellenden vertikalen Ausrichtung - aufgezwungenen Auslenkung des Tragelementes 14 ansteuerbar ist. Hierzu weist das System eine spezielle Sensoreinrichtung 24 auf, wozu insbesondere auf die Fig. 4 und 5 hingewiesen wird. Mit dieser Sensoreinrichtung 24 können Auslenkungen des Tragelementes 14 relativ zur Vertikalen 26 sehr feinfühlig erfaßt werden. Die Sensoreinrichtung 24 erzeugt dann in Abhängigkeit von der Richtung sowie vorzugsweise auch von dem Grad (Winkelmaß) der Auslenkung Steuersignale zum Ansteuem der jeweiligen Antriebseinrichtung 23a, 23b der Lasthebevorrichtung 6. Die Sensoreinrichtung 24 ist vorzugsweise bezüglich der Erzeugung der Steuersignale derart ausgelegt, daß eine Bewegung der Lasthebevorrichtung 6 in eine bestimmte Koordinatenrichtung, z.B. ± X und/oder ± Y, durch eine etwa gleichgerichtete, der gewünschten Bewegungsrichtung im wesentlichen entsprechende Auslenkung des Tragelementes 14 bewirkt wird.The load lifting device 6 is for its movements in the direction X-X and / or Y-Y assigned at least one motor drive device 23a (FIG. 1). In the preferred 2 is for the two directions of movement X-X and Y-Y each have a corresponding drive device 23a and 23b, however, each in the drawing figures - including the corresponding Active connections (in the form of unmarked arrows) - only schematically (in Block diagram) is shown. To control the or each drive device 23a, 23b, a special control system is provided in these exemplary embodiments, the or each drive device 23a, 23b depending on one - starting from the vertical which is automatically adjusted in the rest position due to gravity Alignment - forced deflection of the support element 14 can be controlled. For this purpose, the system has a special sensor device 24, for which purpose in particular 4 and 5 is pointed out. With this sensor device 24 can Deflections of the support element 14 relative to the vertical 26 detected very sensitively become. The sensor device 24 then generates depending on the direction and preferably also control signals from the degree (angular dimension) of the deflection for controlling the respective drive device 23a, 23b of the load lifting device 6. The sensor device 24 is preferably related to the generation of the control signals designed such that a movement of the load lifting device 6 in a certain Coordinate direction, e.g. ± X and / or ± Y, by an approximately rectified, of the desired Direction of movement essentially corresponding deflection of the support element 14 is effected.

Dies ist in Fig. 3 beispieihaft anhand von eingezeichneten Pfeilen veranschaulicht. Wird beispielsweise von einer Bedienungsperson 28 manuell das Tragelement 14 mittels der Last 20 und/oder der Lastaufnahmeeinrichtung 16 in Pfeilrichtung 30 mit einer Manipulationskraft F beaufschlagt und dadurch entsprechend der Bewegungsrichtung -Y um einen Winkel α aus der Vertikalen 26 in eine geringfügig schräge Ausrichtung 32 ausgelenkt, so bewirken die von der Sensoreinrichtung 24 erzeugten Ansteuersignale einen Antrieb der Lasthebevorrichtung 6 genau in der Bewegungsrichtung -Y, d.h. in Pfeilrichtung 34. Entsprechend würde eine umgekehrte Kraft F bzw. Auslenkung in Pfeilrichtung 36 einen Antrieb in Pfeilrichtung 38, d.h. in Bewegungsrichtung +Y bewirken. Entsprechendes gilt auch für die Bewegungsachse X-X sowie auch für Bewegungen in beiden Achsen, d.h. für überlagerte Bewegungen schräg zu den Koordinatenachsen.This is illustrated in FIG. 3 by the arrows shown. For example, if an operator 28 manually carries the support element 14 by means of the load 20 and / or the load suspension device 16 in the direction of the arrow 30 a manipulation force F and thereby corresponding to the Direction of movement -Y by an angle α from the vertical 26 in a slight oblique orientation 32 deflected, so cause by the sensor device 24 generated control signals drive the load lifting device 6 exactly in the Direction of movement -Y, i.e. in the direction of arrow 34. A reverse would accordingly Force F or deflection in arrow direction 36 drives in arrow direction 38, i.e. in Cause direction of movement + Y. The same applies to the axis of movement X-X as well as for movements in both axes, i.e. for superimposed movements at an angle to the coordinate axes.

Gemäß Fig. 4 und 5 weist die Sensoreinrichtung 24 eine Meßeinheit 40 mit einem Gehäuse 41 auf. Im dargestellten (Vergleichs-)Beispiel, bei dem eine indirekte Krafterfassung über eine kraftproportionale Auslenkung des Tragelementes 14 vorgesehen ist, besitzt die Meßeinheit 40 einerseits einen mit dem Tragelement 14 verbundenen Auslenkkörper 42 sowie andererseits mindestens einen der jeweiligen Koordinatenachse X-X bzw. Y-Y - und damit der zugehörigen Antriebseinrichtung 23a, 23b - zugeordneten Abstandssensor 44a, 44b. Der Auslenkkörper 42 sitzt derart längsverschiebbar auf dem Tragelement 14, daß einerseits das Tragelement 14 in Richtung der vertikalen Achse Z-Z relativ zu dem in dieser Achsrichtung im wesentlichen ortsfest gehaltenen Auslenkkörper 42 zwecks Heben oder Senken der Last bzw. der Lastaufnahmeeinrichtung 16 beweglich ist, sowie andererseits der Auslenkkörper 42 bei Auslenkungen des Tragelementes 14 relativ zu den Abstandsensoren 44a, 44b zur Veränderung des zur Erzeugung der Ansteuersignale erfaßbaren Abstandes mitgenommen wird. Jeder Abstandssensor 44a, 44b ist hierzu horizontal in einem bestimmten Abstand neben dem Auslenkkörper 42 gehaltert.4 and 5, the sensor device 24 has a measuring unit 40 with a Housing 41 on. In the illustrated (comparison) example, in which an indirect force detection Provided via a force-proportional deflection of the support member 14 is on the one hand, the measuring unit 40 has one connected to the support element 14 Deflection body 42 and on the other hand at least one of the respective coordinate axis X-X or Y-Y - and thus the associated drive device 23a, 23b - assigned distance sensor 44a, 44b. The deflecting body 42 sits in this way longitudinally displaceable on the support element 14, that on the one hand the support element 14 in Direction of the vertical axis Z-Z relative to that in this axis direction in essentially stationary deflection body 42 for the purpose of lifting or lowering the Load or the load bearing device 16 is movable, and on the other hand, the Deflection body 42 when the support element 14 is deflected relative to the distance sensors 44a, 44b for changing the for generating the control signals detectable distance is taken. Each distance sensor 44a, 44b is for this held horizontally at a certain distance next to the deflecting body 42.

Für die Ausführung mit Bewegungsmöglichkeit der Lasthebevorrichtung 6 in zwei Koordinatenrichtungen X und Y weist die Meßeinheit 40 - wie dargestellt - zwei entsprechend den beiden Koordinatenachsen in einem Winkel von 90° zueinander angeordnete Abstandssensoren 44a, 44b auf. Dabei ist der Auslenkkörper 42 zweckmäßigerweise als kreiszylindrischer Körper ausgebildet und in einem hohlzylindrischen Aufnahmegehäuse 41 angeordnet, wobei die Sensoren 44a, 44b in der Wandung dieses Aufnahmegehäuses 41 gehaltert sind. Der Auslenkkörper 42 ist hierdurch in seiner Ruhelage (genau vertikal ausgerichtetes Tragelement 14) von einem gleichmäßigen Ringspalt 46 umgeben. Die lichte Weite dieses Ringspaltes 46 wird von den Sensoren 44a, 44b jeweils meßtechnisch erfaßt und dann in die Ansteuersignale umgesetzt. Hierzu sind die Abstandssensoren 44a, 44b mit einer nur schematisch dargestellten, insbesondere elektronischen Auswerteeinheit 47 verbunden, die ihrerseits die Steuersignale für die Antriebseinrichtungen 23a, 23b anhand der jeweiligen Sensor-Ausgangssignale erzeugt.For the version with the possibility of moving the load lifting device 6 in two As shown, the measuring unit 40 has two coordinate directions X and Y the two coordinate axes at an angle of 90 ° to each other arranged distance sensors 44a, 44b. The deflecting body 42 Expediently designed as a circular cylindrical body and in a hollow cylindrical Receiving housing 41 arranged, the sensors 44a, 44b in the Wall of this housing 41 are supported. The deflecting body 42 is hereby in its rest position (exactly vertically aligned support element 14) surrounded by a uniform annular gap 46. The clear width of this annular gap 46 is detected by sensors 44a, 44b in each case by measuring technology and then into the Control signals implemented. For this purpose, the distance sensors 44a, 44b are only one schematically illustrated, in particular electronic evaluation unit 47 connected, which in turn the control signals for the drive devices 23a, 23b generated from the respective sensor output signals.

Gemäß Fig. 4 weist die Meßeinheit 40 im oberen Bereich des Aufnahmegehäuses 41 eine ortsfeste Führung 48 für das Tragelement 14 auf, um so das Tragelement 14 seitlich gegen Auslenkungen abzustützen. Die Führung 48 kann von einer Durchführöffnung gebildet sein, die einen derart an den Querschnitt des Tragelementes 14 angepaßten Öffnungsquerschnitt aufweist, daß das Tragelement 14 zwar vertikal relativbeweglich, aber horizontal in diesem Fixpunkt ortsfest geführt ist. Dieser Fixpunkt bildet somit Schwenkachsen für die Auslenkungen des unterhalb liegenden (hängenden) Abschnitts des Tragelementes 14.4, the measuring unit 40 has in the upper region of the receiving housing 41 a stationary guide 48 for the support element 14 so as to support the support element 14 support laterally against deflections. The guide 48 can be of a Feed-through opening are formed, the one on the cross section of the Support element 14 adapted opening cross-section that the support element 14th vertically movable, but is guided horizontally in this fixed point. This fixed point thus forms pivot axes for the deflections below lying (hanging) section of the support element 14.

Jede Antriebseinrichtung 23a, 23b ist bevorzugt als drehzahlgesteuerter Motor, insbesondere mit einem auf die Tragschienenkonstruktion 2 wirkenden Fahrantrieb, ausgebildet. Mit Vorteil kann es sich z.B. um einen Reibradantrieb handeln. Selbstverständlich können alternativ dazu beispielsweise auch Zahnradtriebe oder Zahnriemen vorgesehen sein. Each drive device 23a, 23b is preferably a speed-controlled motor, in particular with a travel drive acting on the mounting rail construction 2, educated. It can be advantageous e.g. are a friction wheel drive. Of course can alternatively, for example, also gear drives or toothed belts be provided.

Wie sich aus dem Diagramm in Fig. 6 ergibt, wird bevorzugt die Manipulationskraft F bzw. die daraus resultierende Auslenkung des Tragelementes entsprechend einer progressiven Kennlinie 50 in die Antriebsgesschwindigkeit v umgesetzt. Dies wird durch entsprechende Auslegung bzw. Programmierung der elektronischen Auswerteeinheit 47 erreicht, die eine Anpassung der Kennlinie und damit des Ansprechverhaltens des Systems an unterschiedliche Lasthebe-Aufgaben ermöglicht. Die Vorteile dieser progressiven Kennlinie 50 mit flachem Anfangsanstieg bestehen vor allem in einem sanften, weitgehend ruckfreien Anlaufen und Anhalten der Lasthebevorrichtung 6 und der Vermeidung von Schwingungen beim Anlaufen und Abbremsen, wobei dennoch auch hohe Geschwindigkeiten möglich sind. Würde demgegenüber die Umsetzung anhand einer - in Fig. 6 gestrichelt angedeuteten - linearen Kennlinie 52 erfolgen, so würde daraus ein ruckartiges, Pendelschwingungen erzeugendes Anlaufen/Abbremsen resultieren. Ein entsprechend flacherer Anstieg einer linearen Kurve hätte vor allem den Nachteil, daß auch mit einer hohen Kraft F nur eine relativ geringe Geschwindigkeit bewirkt werden könnte, was dazu führen kann, daß das System bei geringfügigen (kurzen) Auslenkungen nicht reagiert.As can be seen from the diagram in FIG. 6, the manipulation force F is preferred or the resulting deflection of the support element according to a progressive characteristic curve 50 implemented in the drive speed v. this will by appropriate design or programming of the electronic Evaluation unit 47 reached that an adjustment of the characteristic and thus the System response to different lifting tasks. The advantages of this progressive characteristic curve 50 with a flat initial increase exist all in a gentle, largely jerk-free start and stop of the load lifting device 6 and the avoidance of vibrations when starting and braking, but high speeds are still possible. In contrast, would Implementation on the basis of a linear characteristic curve 52, indicated by dashed lines in FIG. 6 would take place, a jerky, oscillating oscillation would result Start-up / braking result. A correspondingly flatter rise in a linear Above all, curve would have the disadvantage that even with a high force F only one relative low speed could be caused, which can lead to that System does not respond to minor (short) excursions.

Das System kann bevorzugt in Kombination mit einem sogenannten Gewichtsbalancer eingesetzt werden. Dabei ist bevorzugt dem Tragelement 14 für dessen vertikale Bewegungen in Achsrichtung Z-Z ein (nicht zeichnerisch dargestellter) drehmomentengesteuerter Antrieb zugeordnet, der jeweils lastabhängig ein konstantes Drehmoment derart erzeugt, daß die Last 20 in vertikaler Richtung in jeder beliebigen Lage statisch gehalten wird, d.h. praktisch schwebt. Hierbei bewirken dann geringe, insbesondere manuell aufgebrachte, vertikal nach oben oder unten wirkende Kräfte (= Laständerungen) wegen des konstanten Drehmomentes automatisch ein Heben oder Senken der Last 20. Hieraus resultiert eine sehr einfache und komfortable Manipulation einer vermeintlich schwebenden Last im Raum durch sehr geringe Kräfte auch in vertikalen Richtungen.The system can preferably be used in combination with a so-called weight balancer be used. The support element 14 is preferred for its vertical Movements in the Z-Z axis direction (not shown in the drawing) Torque-controlled drive assigned, which is a constant depending on the load Torque generated such that the load 20 in the vertical direction in any Position is kept static, i.e. practically hovers. Here, small, in particular, manually applied forces acting vertically upwards or downwards (= Load changes) due to the constant torque automatically a lifting or Lowering the load 20. This results in a very simple and comfortable Manipulation of a supposedly suspended load in the room by very low forces also in vertical directions.

Eine erfindungsgemäße Ausführung eines Systems zum Steuern einer Lasthebevorrichtung 6 ist beispielhaft zunächst in den Fig. 7 und 8 dargestellt. Anstelle der oben beschriebenen Sensoreinrichtung 24, die auf der Messung eines Abstands beruht, ist eine Sensoreinrichtung 25 vorgesehen, die derart ausgebildet und in bezug auf das Tragelement 14 angeordnet ist, daß die Kraft F, die zur Steuerung des Systems aufgebracht wird, insbesondere eine im Bereich einer am freien, unteren Ende des Tragelementes 14 angeordneten Lastaufnahmeeinrichtung 16 angreifende Kraft F, wegfrei erfaßt wird.An embodiment of a system for controlling a load lifting device according to the invention 6 is initially shown as an example in FIGS. 7 and 8. Instead of the above described sensor device 24, which is based on the measurement of a distance a sensor device 25 is provided, which is designed and with respect to the Support element 14 is arranged that the force F, which is used to control the system is applied, in particular one in the region of the free, lower end of the Carrying element 14 arranged load receiving device 16 acting force F, is recorded without path.

Die Sensoreinrichtung 25 weist wie beim vorstehend dargestellten Beispiel wiederum eine Meßeinheit auf, die hier mit dem Bezugszeichen 39 bezeichnet ist. Die Meßeinheit 39 umfaßt ein Gehäuse 41, in dem sich jedoch hier kein Auslenkkörper 42, sondern ein mit dem Tragelement 14 verbundener Meßkörper 43 und mindestens ein, in der dargestellten Ausführung jeweils zwei, der jeweiligen Koordinatenachse X-X, Y-Y bzw. der zugehörigen Antriebseinrichtung 23a, 23b zugeordnete(r) Kraftaufnehmer 45a, 45b, 45c, 45d befinde(t)/(n). Jeder der Kraftaufnehmer 45a, 45b, 45c, 45d steht dabei in permanenter Berührung mit dem Meßkörper 43. Bei dem Tragelement 14 handelt es sich wiederum um ein flexibles, aufwickelbares Tragelement, wie ein Seil, das über drei Führungsrollen 43a, 43b, 43c des Meßkörpers 43 läuft. Der Meßkörper 43 ist in Richtung der vertikalen Achse Z-Z ortsfest angeordnet und das Tragelement 14 ist zwecks Heben oder Senken einer Last 20 durch eine von den gegeneinander jeweils um 120° versetzen Führungsrollen 43a, 43b, 43c gebildete zentrische Öffnung in dem Meßkörper 43 längsverschiebbar in Richtung der vertikalen Achse Z-Z relativ zu dem Meßkörper 43 beweglich.As in the example shown above, the sensor device 25 again has a measuring unit, which is designated here by reference numeral 39. The measuring unit 39 comprises a housing 41, in which, however, there is no deflecting body 42 here with the support member 14 connected measuring body 43 and at least one, in the illustrated Execution of two, the respective coordinate axis X-X, Y-Y and the associated force device 45a, 23b associated force transducer 45a, 45b, 45c, 45d are (t) / (n). Each of the force transducers 45a, 45b, 45c, 45d stands in permanent contact with the measuring body 43. The support element 14 acts it is in turn a flexible, windable support element, such as a rope, which over three guide rollers 43a, 43b, 43c of the measuring body 43 runs. The measuring body 43 is in Direction of the vertical axis Z-Z and the support member 14 is stationary for lifting or lowering a load 20 by one of each other 120 ° offset guide rollers 43a, 43b, 43c formed in the central opening Measuring body 43 longitudinally displaceable in the direction of the vertical axis Z-Z relative to that Measuring body 43 movable.

Die weiteren Details der Wirkungsweise der Sensoreinrichtung 25 (beispielsweise Ansprechen der Sensoreinrichtung 25 bei Auslenkung des Tragelements 14 gegenüber der Vertikalen 26, Größe und Richtung der in der Steuereinrichtung 47 für die Antriebseinrichtungen 23a, 23b erzeugten Signale, Art der verwendeten Antriebseinrichtungen 23a, 23b, Möglichkeit der Ausbildung der Lasthebevorrichtung 6 als Gewichtsbalancer, nichtlineare Kennlinie usw.) stimmen mit den vorstehend beschriebenen Ausführungen des Steuersystems überein. Deswegen sind in einem Block der Blockdarstellung von Fig. 1 die Meßeinrichtung 40 und die Meßeinrichtung 39 als Altemativen angegeben. Dadurch, daß aber die Kraftaufnehmer 45a, 45b, 45c, 45d der erfindungsgemäßen Meßeinrichtung 39 im wesentlichen spaltfrei an dem Meßkörper 43 anliegen, ist einerseits keine lastabhängige Manipulationskraft zur Erzeugung eines Steuersignals notwendig, andererseits kann das System auch unter härteren Umweltbedingungen eine gleichbleibend hohe Funktionssicherheit gewährleisten. Die wegfreie Krafterfassung gewährleistet somit auch eine erhöhte Zuverlässigkeit des Systems, indem für die Sensoreinrichtung 25 eine geringere Verschmutzungsgefahr - und damit Möglichkeit zur langzeitlich negativen Beeinflussung der Empfindlichkeit - besteht, als in dem Fall, daß der/die Kraftaufnehmer 44a, 44b in einem bestimmten Abstand (Ringspalt 46) neben einem Auslenkkörper 42 gehaltert ist/sind.The further details of the mode of operation of the sensor device 25 (for example Response of the sensor device 25 when the support element 14 is deflected with respect to the vertical 26, size and direction of the in the control device 47 for the drive devices 23a, 23b generated signals, type of used Drive devices 23a, 23b, possibility of designing the load lifting device 6 as weight balancer, non-linear characteristic, etc.) agree with those described above Executions of the control system match. That's why in one block 1 the measuring device 40 and the measuring device 39 as Alternatives specified. The fact that the force transducers 45a, 45b, 45c, 45d Measuring device 39 according to the invention essentially free of gaps on the measuring body 43 are on the one hand no load-dependent manipulation force for generating a Control signal necessary, on the other hand, the system can also operate under harsh environmental conditions ensure a consistently high level of functional reliability. The Path-free force detection also ensures increased reliability of the System, in that the sensor device 25 has a lower risk of contamination - and thus the possibility of long-term negative influence on the sensitivity - exists than in the case that the force transducer (s) 44a, 44b in a certain Distance (annular gap 46) is / are held next to a deflecting body 42.

Als weglosen Kraftaufnehmer 45a, 45b, 45c, 45d kann die Sensoreinrichtung 25 mit Vorteil mindestens einen Dehnungsmeßstreifen-Kraftaufnehmer aufweisen. Dehnungsmeßstreifen- (DMS-)Kraftaufnehmer sind die wichtigsten Vertreter der elektrischen Kraftaufnehmer. Im einfachsten Fall werden zur Herstellung eines solchen DMS-Aufnehmers auf einen elastischen Hohlzylinder vier Dehnungsmeßstreifen (DMS) geklebt. Wird der Zylinder durch eine Belastung gestaucht, verändern sich die Widerstände der DMS. Die vier DMS werden in einer Wheatstone-Brücke zusammengeschaltet. Anstelle rohrförmiger (hohlzylindrischer) Verformungskörper können auch stabförmige Verformungskörper eingesetzt werden. Vorteilhaft ist dabei insbesondere, daß sich DMS-Kraftaufnehmer für statische und für dynamische Messungen sowie für Nennkräfte im Bereich von 5 N bis 20 MN eignen.The sensor device 25 can also be used as a pathless force transducer 45a, 45b, 45c, 45d Advantage have at least one strain gauge force transducer. strain gauge (DMS) force transducers are the most important representatives of the electrical Force transducer. In the simplest case, the manufacture of such a strain gauge transducer four strain gauges (DMS) on an elastic hollow cylinder glued. If the cylinder is compressed by a load, the change Resistance of the DMS. The four strain gauges are in a Wheatstone bridge connected together. Instead of tubular (hollow cylindrical) deformation body rod-shaped deformation bodies can also be used. It is advantageous in particular that strain gauge force transducers are suitable for static and dynamic ones Measurements and for nominal forces in the range from 5 N to 20 MN are suitable.

Des weiteren kann die Sensoreinrichtung 25 als Kraftaufnehmer 45a, 45b, 45c, 45d mindestens einen magnetoelastischen Kraftaufnehmer aufweisen. Die Wirkungsweise eines solchen magnetoelastischen Kraftaufnehmers beruht auf dem magnetoelastischen Effekt von ferromagnetischen Materialien, wonach sich deren Permeabilität unter Krafteinwirkung ändert. Die sich daraus ergebende Induktivitätsänderung einer Spule mit einem aus dem ferromagnetischen Material bestehenden Kern, auf den die Kraft einwirkt, ändert direkt einen Strom, der durch die Spule fließt. Da der Strom direkt gemessen werden kann, sind keine Meßverstärker erforderlich, was derartige Kraftaufnehmer insbesondere für einen Einsatz unter robusten Betriebsbedingungen prädestiniert.Furthermore, the sensor device 25 can act as a force transducer 45a, 45b, 45c, 45d have at least one magnetoelastic force transducer. The mode of action Such a magnetoelastic force transducer is based on the magnetoelastic Effect of ferromagnetic materials, according to which their permeability changes under force. The resulting change in inductance of a Coil with a core made of the ferromagnetic material on which the When force is applied, it directly changes a current that flows through the coil. Because the current is direct can be measured, no measuring amplifiers are required, such Force transducers, in particular for use under robust operating conditions predestined.

In der Sensoreinrichtung 25 können als weglose Kraftaufnehmer 45a, 45b, 45c, 45d mit Vorteil auch piezoelektrische Kraftaufnehmer eingesetzt werden. Grundlage für diese piezoelektrischen Kraftaufnehmer ist der piezoelektrische Effekt, nach dem auf bestimmten Kristallen Ladungen auftreten, wenn diese mechanisch beansprucht werden. Quarzkristalle haben dabei die höchste Konstanz ihrer Eigenschaften und die beste Isolation, weshalb sie für Meßzwecke am besten geeignet sind. In einem piezoelektrischen Kraftaufnehmer (Meßdose) wirkt die Kraft auf zwei Piezokristalle, die mechanisch hintereinander, elektrisch aber parallel liegen. Auf diese Weise kann eine erforderliche Isolierung einer zwischen den beiden Piezokristallen angeordneten mittleren metallischen Elektrode gegenüber einem als zweite Elektrode dienenden metallischen Gehäuse ohne weiteren Aufwand nur mittels der beiden Piezokristalle erreicht werden. Die Ausgangs-(Signal-)größe eines piezoelektrischen Kraftaufnehmers ist eine Ladung, die von einem Ladungsverstärker in eine entsprechende Spannung umgewandelt wird. Der Vorteil der Verwendung dieser Kraftaufnehmer zeigt sich hauptsächlich bei schnellen dynamische Messungen, bei denen es auf kleine Baugröße und Unempfindlichkeit gegenüber Temperaturschwankungen ankommt. Piezoelektrische Kraftaufnehmer besitzen außerdem eine sehr gute Auflösung und geringe Meßunsicherheit.In the sensor device 25 can be used as pathless force transducers 45a, 45b, 45c, 45d piezoelectric force transducers can also be used with advantage. basis for this piezoelectric force transducer is the piezoelectric effect, according to the charges occur in certain crystals when they are mechanically stressed become. Quartz crystals have the highest constancy of their properties and that best insulation, which is why they are best suited for measurement purposes. In one Piezoelectric force transducer (load cell) affects the force on two piezo crystals mechanically one behind the other, electrically but parallel. In this way, a required insulation of one arranged between the two piezo crystals middle metallic electrode compared to a serving as a second electrode metallic housing without any additional effort using only the two piezo crystals can be achieved. The output (signal) size of a piezoelectric force transducer is a charge from a charge amplifier into a corresponding one Voltage is converted. The advantage of using this force transducer shows mainly in the case of fast dynamic measurements where small measurements are required Size and insensitivity to temperature fluctuations are important. Piezoelectric force transducers also have a very good resolution and low measurement uncertainty.

Schließlich besteht auch die Möglichkeit, daß die Sensoreinrichtung 25 als Kraftaufnehmer 45a, 45b, 45c, 45d mindestens einen faseroptischen Kraftaufnehmer aufweist. Bei einem solchen Aufnehmer erfolgt entweder die Erfassung oder die Übertragung des Meßwerts mittels einer Lichtleitfaser. Je nach Funktion der Faser unterscheidet man intrinsische und extrinsische faseroptische Aufnehmer. In einem intrinsischen faseroptischen Aufnehmer dient die Faser selbst als das empfindliche Element, in dem die Wandlung der Meßgröße (Kraft F) in ein optisches Signal erfolgt. Beispielsweise entsteht bei seitlicher Krafteinwirkung auf eine mit einem dünnen Draht umwickelte optische Faser ein Verlust des durchgeleiteten Lichtstroms, der über Photodetektoren durch eine Auswerteelektronik erfaßt werden kann. In einem extrinsischen faseroptischen Sensor ist der primäre Zweck die möglichst störungsfreie Übertragung des Meßwertes vom Meßort zu einem Auswerteort. Die Wandlung der Meßgröße in ein optisches Signal erfolgt dabei am Meßort außerhalb der Faser, z.B. mittels integriert-optischer oder mikro-optischer Komponenten. So kann die zu messende Kraft die Öffnungsweite einer Blende für einen Lichtstrom steuern, während ein anderer Teil des Lichtstromes als Referenzsignal unverändert bleibt. Die Auswerteelektronik vergleicht dann die beiden Lichtströme und erzeugt daraus strekenneutral eine Kraftanzeige. Der Einsatz von faseroptischen Aufnehmem ist besonders dann angebracht, wenn meßtechnisch "schwierige" Umgebungsbedingungen herrschen, etwa starke elektrische oder magnetische Störfelder, hohe Temperaturen, explosive oder korrosive Atmosphären.Finally, there is also the possibility that the sensor device 25 as Force transducers 45a, 45b, 45c, 45d at least one fiber optic force transducer having. With such a transducer, either the detection or the Transmission of the measured value using an optical fiber. Depending on the function of the fiber a distinction is made between intrinsic and extrinsic fiber optic sensors. In an intrinsic fiber optic pickup, the fiber itself serves as the sensitive Element in which the measurement variable (force F) is converted into an optical signal. For example, if you apply lateral force to one with a thin wire wrapped optical fiber is a loss of transmitted light flux that over Photo detectors can be detected by evaluation electronics. In an extrinsic fiber optic sensor is the primary purpose of the most trouble-free Transfer of the measured value from the measuring location to an evaluation location. The change of Measured variable in an optical signal takes place at the measuring location outside the fiber, e.g. by means of integrated-optical or micro-optical components. So it can too measuring force control the opening width of an aperture for a luminous flux, while another part of the luminous flux remains unchanged as a reference signal. The evaluation electronics then compares the two luminous fluxes and uses them to generate neutral lines a force gauge. The use of fiber optic pickups is particularly then appropriate when the measuring conditions are "difficult", such as strong electrical or magnetic interference fields, high temperatures, explosive or corrosive atmospheres.

Zwei vorteilhafte Ausführungsformen der Erfindung sind auch in den Fig. 9 und 10 sowie 11 und 12 dargestellt. Für beide Ausführungen ist dabei charakteristisch, daß das erfindungsgemäße System zum Steuem der Lasthebevorrichtung einen um einen Winkel ϕ (Fig. 10 und 12) um eine vertikale Achse W-W (Fig. 9 und 11) schwenkbar gelagerten Ausleger 54 aufweist.Two advantageous embodiments of the invention are also in FIGS. 9 and 10 and 11 and 12 are shown. It is characteristic of both versions that the system according to the invention for controlling the lifting device by one Angle ϕ (Fig. 10 and 12) pivotable about a vertical axis W-W (Fig. 9 and 11) mounted boom 54.

Dem Ausleger 54 kann, wie in Fig. 10 und 12 jeweils schematisch angedeutet - was allerdings nicht notwendigerweise erforderlich ist - eine motorische Antriebseinrichtung 23c zugeordnet sein, die jeweils in Abhängigkeit von einer das Tragelement 14 in im wesentlichen horizontaler Richtung beaufschlagenden, insbesondere manuell aufzubringenden, mittels der Sensoreinrichtung 25 erfaßbaren Kraft F ansteuerbar ist. Auch diese Antriebseinrichtung 23c kann - wie die anderen Antriebseinrichtungen 23a, 23b - mit Vorteil als Servomotor, insbesondere mit Reibrad-, Zahnrad- oder Zahnriemenantrieb ausgebildet sein.The boom 54 can, as indicated schematically in each of FIGS. 10 and 12 - what but is not necessarily required - a motor drive device 23c can be assigned, each depending on the support element 14 in substantially horizontal direction, in particular manually applied, force F which can be detected by the sensor device 25 can be controlled. Also this drive device 23c can - like the other drive devices 23a, 23b - advantageously as a servo motor, especially with a friction wheel, gear wheel or toothed belt drive be trained.

Die Sensoreinrichtung 25 kann dabei mit Vorteil außerdem derart ausgelegt sein, daß eine Bewegung der Lasthebevorrichtung 6 in Richtung einer Auslenkung um den Winkel ϕ (Pfeil mit dem Bezugszeichen 56) durch eine etwa in der gleichen gewünschten Bewegungsrichtung aufgebrachte Kraft F bewirkt wird. Auch die Antriebsgeschwindigkeit v der Antriebsvorrichtung 23c kann wiederum - wie oben dargestellt - in Abhängigkeit von der Größe der jeweils aufgebrachten Kraft F gesteuert werden, und zwar vorzugsweise anhand einer progressiven Kurve 50 mit einem flachen Anfangsanstieg, wie sie Fig. 6 zeigtThe sensor device 25 can also advantageously be designed such that a movement of the load lifting device 6 in the direction of a deflection around the Angle ϕ (arrow with reference numeral 56) through an approximately the same desired Force F applied in the direction of movement is effected. Also the Drive speed v of the drive device 23c can in turn - as above shown - controlled depending on the size of the force F applied in each case are, preferably based on a progressive curve 50 with a flat initial rise, as shown in Fig. 6

Dadurch, daß die Meßeinheit 39 vier entsprechend den beiden Koordinatenachsen X-X, Y-Y in einem Winkel von 90° zueinander angeordnete wegfreie Sensoren 45a, 45b, 45c, 45d aufweist, können in der elektronischen Auswerteeinheit 47 anhand der jeweiligen Sensor-Ausgangssignale gleichzeitig - je nach der Wirkungsrichtung der angreifenden Kraft F in den vier durch die Koordinatenachsen X-X, Y-Y gebildeten Quadranten - Steuersignale sowohl für die linearen Antriebseinrichtungen 23a, 23b als auch für die Antriebseinrichtung 23c zum Verschwenken des Auslegers 54 erzeugt werden.Because the measuring unit 39 has four corresponding to the two coordinate axes X-X, Y-Y path-free sensors 45a, 45b arranged at an angle of 90 ° to one another, 45c, 45d, can in the electronic evaluation unit 47 using the respective sensor output signals simultaneously - depending on the direction of action of the attacking force F in the four formed by the coordinate axes X-X, Y-Y Quadrant control signals for both the linear drive devices 23a, 23b and also generated for the drive device 23c for pivoting the boom 54 become.

Hierbei ist es von besonderem Vorteil, wenn das Gehäuse 41 der Meßeinrichtung 39 gegenüber dem Meßkörper 43 verdrehbar ist und der Meßkörper 43 und das Gehäuse 41 derart an dem Ausleger 54 befestigt sind, daß beim Verschwenken des Auslegers 54 um den Winkel ϕ um die vertikale Achse W-W das Gehäuse 41 um denselben Winkel derart verdreht wird, daß das Gehäuse 41 mit den weglosen Kraftaufnehmem 45a, 45b, 45c, 45d relativ zur Laufschienenkonstruktion 2 seine Winkelausrichtung beibehält.It is particularly advantageous here if the housing 41 of the measuring device 39 is rotatable relative to the measuring body 43 and the measuring body 43 and the housing 41 are attached to the boom 54 in such a way that when the boom is pivoted 54 around the angle ϕ around the vertical axis W-W around the housing 41 Angle is rotated so that the housing 41 with the pathless force transducers 45a, 45b, 45c, 45d its angular orientation relative to the running rail construction 2 maintains.

Diese winkelgetreue Mitführung des Gehäuses 41 bewirkt, daß bei jedem Winkel ϕ, um den der Ausleger 54 verschwenkt wird, eine einfache Signalauswertung durch die elektronische Auswerteeinheit 47 möglich ist, da die Paare der Kraftaufnehmer 45a, 45b und 45c, 45d jeweils immer im selben Winkel zu den horizontalen Hauptachsen X-X, Y-Y des Raumes - beispielsweise, wie aus Fig. 10 und 12 besonders deutlich wird - einerseits achsparallel und andererseits rechtwinklig zu den Achsen X-X, Y-Y ausgerichtet sind.This true-to-angle entrainment of the housing 41 causes that at every angle ϕ to which the boom 54 is pivoted, a simple signal evaluation by the electronic evaluation unit 47 is possible because the pairs of force transducers 45a, 45b and 45c, 45d always at the same angle to the horizontal main axes X-X, Y-Y of the room - for example, as is particularly clear from FIGS. 10 and 12 - on the one hand axially parallel and on the other hand aligned perpendicular to the axes X-X, Y-Y are.

Zur Mitführung des Gehäuses 41 kann dabei je nach Ausführungsart mit Vorteil entweder eine einendig am Ausleger 54 und anderendig am Gehäuse 41 drehbeweglich angelenkte Koppelstange 58 (Fig. 9 und 10) bzw. auch ein entsprechender Zahnriementrieb 60 (Fig. 11 und 12), ein Kettentrieb oder dergleichen Verwendung finden. Ein solcher Zahnriementrieb 60 ist im übrigen auch der vergrößerten Darstellung in Fig. 7 zu entnehmen. Er verläuft parallel zu dem Ausleger 54 oberhalb der Sensoreinrichtung 25, deren Gehäuse 41 in Richtung auf den Ausleger 54 hin eine axiale rohrförmige Verlängerung 62 aufweist, die von dem Zahnriemen 60 umgriffen wird und über Wälzlager 64 an einem ebenfalls rohrförmigen Ansatzstück 66 am freien Ende des Auslegers 54 gehalten ist. Durch das Innere des Ansatzstücks 66 ist das Tragelement 14 über eine Umlenkrolle 68 geführt.Depending on the design, it can be advantageous to carry the housing 41 with it either one end on the arm 54 and the other end on the housing 41 rotatably articulated coupling rod 58 (Fig. 9 and 10) or a corresponding toothed belt drive 60 (Fig. 11 and 12), a chain drive or the like Find use. Such a toothed belt drive 60 is also the other 7 enlarged view. It runs parallel to the boom 54 above the sensor device 25, the housing 41 in the direction of the Cantilever 54 has an axial tubular extension 62 which of the Toothed belt 60 is gripped and roller bearings 64 on a likewise tubular Extension 66 is held at the free end of the boom 54. Through the inside of the Attachment 66, the support element 14 is guided over a deflection roller 68.

Bei den in Fig. 13 bis 17 dargestellten erfindungsgemäßen Ausführungen eines Systems zum Steuern einer Lasthebevorrichtung 6 ist im Gegensatz zu den vorstehend beschriebenen Ausführungen das Halteelement 14 nicht als Seil sondern starr - als Stange - ausgebildet Im übrigen ist der Grundaufbau der Meßeinheit 39 im wesentlichen der gleiche wie der der oben beschriebenen Ausführung. Insofern wird auf die obigen diesbezüglichen Erläuterungen verwiesen. Unterschiede zur obigen Ausführung bestehen aber noch in der Lagerung des starren Halteelementes 14 und in einer speziellen Gestaltung eines Bediengriffes 70.In the embodiments according to the invention shown in FIGS. 13 to 17, a Systems for controlling a load lifting device 6 is in contrast to that Designs described above, the holding element 14 not as a rope but rigid - as a rod - otherwise the basic structure of the measuring unit 39 essentially the same as that of the embodiment described above. In this respect refer to the above explanations. Differences to the above Execution still exist in the storage of the rigid holding element 14 and in a special design of an operating handle 70.

Das Halteelement 14 ist nicht über Führungsrollen 43a, 43b, 43c geführt, sondern besitzt vorzugsweise - wie dargestellt - zwei kugelartige Verdickungen 14a, 14b, die zu seiner Lagerung im Meßkörper 43 und im Ausleger 54 dienen. The holding element 14 is not guided over guide rollers 43a, 43b, 43c, but instead preferably has - as shown - two spherical thickenings 14a, 14b, which to serve its storage in the measuring body 43 and in the arm 54.

Der rohrförmig ausgebildete Bediengriff 70 umgreift das Halteelement 14 und weist zwei voneinander isolierte hülsenartige Metallteile 70a, 70b auf, wie dies auch aus den Fig. 14 sowie 16 und 17 deutlich hervorgeht. Die Metallteile 70a, 70b werden durch Handübergriff der Bedienperson 28 elektrisch überbrückt, wodurch ein Stromkreis geschlossen wird, der eine im Ruhezustand des Systems eingeschaltete Sicherheitsblockierung abschaltet.The tubular control handle 70 engages around the holding element 14 and has two sleeve-like metal parts 70a, 70b insulated from one another, as also shown in FIGS 14 and 16 and 17 clearly appear. The metal parts 70a, 70b are made by Manual override of the operator 28 electrically bridges, creating a circuit is closed, the one switched on in the idle state of the system Safety blocking switches off.

Der Bediengriff 70 ist des weiteren auch insbesondere zur Steuerung von vertikalen Bewegungen von an dem Tragelement 14 hängenden Lasten 20 ausgebildet. Durch geringe, manuell in vertikaler Richtung 26 aufgebrachte Kräfte kann eine Last 20 gehoben oder gesenkt werden. Die Krafterfassung erfolgt dabei mittels eines Sensors 72, durch den eine durch eine vertikale Bedienkraft bewirkte Abstandsveränderung einer Schiebehülse 74 detektiert und ein entsprechendes Signal an die elektronische Steuereinheit 47 abgegeben wird. Dieses Signal kann dort in analoger Weise wie dies mit den Signalen der wegfreien Sensoren 45a, 45b, 45c, 45d geschieht, in ein Steuersignal für eine Antriebsvorrichtung zur Vertikalbewegung der Last 20 umgesetzt werden. Derartige Antriebsvorrichtungen sind in Fig. 14, 15 und 17 mit dem Bezugszeichen 23d dargestellt Fig. 13, 16 und 17 enthalten exemplarisch in Form von Wirkungspfeilen eine Veranschaulichung des beschriebenen Signalflusses aus dem Griff 70, insbesondere von dessen Sensor 72 ausgehend, zur elektronischen Steuereinheit 47, wobei Fig. 17 exemplarisch in Form eines Wirkungspfeiles zusätzlich auch die Veranschaulichung des Signalflusses von der elektronischen Steuereinheit 47 zum Vertikalantrieb 23d enthält. Wie bereits erwähnt, kann durch eine solche Kombination mit der vorliegenden Erfindung somit die schwebende Last 20 unabhängig von deren Gewicht durch sehr geringe Kräfte beliebig im Raum manipuliert, d.h. vertikal und/oder horizontal bewegt werden. In der gezeigten Darstellung in Fig. 13 (des weiteren auch in Fig. 14 und 16) ist als Lastaufnahmevorrichtung 16 ein Haken vorgesehen, der sich unmittelbar unter dem Bediengriff 70 befindet.The control handle 70 is also particularly for controlling vertical Movements of hanging from the support member 14 loads 20 are formed. By Low, manually applied forces in the vertical direction 26 can be a load 20 be raised or lowered. The force is measured using a sensor 72, through which a change in distance caused by a vertical operating force a sliding sleeve 74 is detected and a corresponding signal to the electronic Control unit 47 is issued. This signal can be there in an analogous manner like this happens with the signals of the path-free sensors 45a, 45b, 45c, 45d in one Control signal for a drive device for vertical movement of the load 20 implemented become. Such drive devices are in Fig. 14, 15 and 17 with the 13, 16 and 17 contain exemplary in the form of Effect arrows an illustration of the described signal flow from the Handle 70, in particular starting from its sensor 72, to the electronic control unit 47, with FIG. 17 additionally also in the form of an action arrow the illustration of the signal flow from the electronic control unit 47 to the Contains vertical drive 23d. As already mentioned, such a combination with the present invention thus the suspended load 20 regardless of its Weight manipulated arbitrarily in space by very low forces, i.e. vertical and / or be moved horizontally. In the illustration shown in FIG. 13 (further also in 14 and 16), a hook is provided as the load carrying device 16, which hooks itself is located directly under the control handle 70.

Eine weitere, nicht dargestellte Ausführungsmöglichkeit der Meßeinrichtung 39 besteht darin, die Sensoreinrichtung 25 zur Erfassung der Steuerkräfte F für die Horizontalbewegung ebenfalls direkt im Bediengriff 70 anzuordnen. Vorzugsweise können dabei vier wegfreie Sensoren 45a, 45b, 45c, 45d zur quadrantengenauen Erfassung der Kräfte F durch Dehnungsmeßstreifen gebildet sein. Another possible embodiment of the measuring device 39, not shown, exists therein, the sensor device 25 for detecting the control forces F for the To arrange horizontal movement also directly in the control handle 70. Preferably four path-free sensors 45a, 45b, 45c, 45d can be quadrant-accurate Detection of the forces F can be formed by strain gauges.

Fig. 14 und 15 zeigen in zwei verschiedenen Ansichten wiederum ein erfindungsgemäßes Steuersystem, und zwar mit einer dritten Ausführung des drehbaren Auslegers 54 und mit der zweiten Ausführung der Meßeinheit 39. Die Darstellungen in der Zeichnung sind analog zu denen der ersten Ausführung (Fig. 9 und 10) und der zweiten Ausführung (Fig. 11 und 12) gewählt. Der wesentlichste Unterschied der dritten Ausführung gegenüber den vorstehend beschriebenen Varianten besteht dabei darin, daß der Ausleger 54 aus zwei gelenkig miteinander verbundenen Armen 54a, 54b besteht. Der erste Arm 54a ist - wie in Fig. 10 und 12 für den Ausleger 54 dargestellt - um einen Winkel ϕ zwischen Arm 54a und X-X-Achse um die vertikale Achse W-W verschwenkbar, der zweite Arm 54b ist um einen Winkel ϕ1 zwischen Arm 54b und Arm 54a um eine vertikale Achse W1-W1 verschwenkbar. Beim Verschwenken der beiden Auslegerarme 54a, 54b erfolgt wie bei den ersten beiden Ausführungen eine mechanische Nachführung der Sensoreinrichtung 25 derart, daß die weglosen Kraftaufnehmer 45a, 45b, 45c, 45d relativ zur Laufschienenkonstruktion 2 bzw. zur den Achsen der X-Y-Ebene ihre Winkelausrichtung beibehalten. Insbesondere ist zur mechanischen Nachführung dabei ein Zahnriementrieb 60 - wie bei der zweiten Ausführung des Auslegers 54 - vorgesehen, wobei hier zwei Zahnriemen 60a, 60b - jeweils einer für jeden Arm 54a, 54b des Auslegers 54 zur Anwendung kommen.14 and 15 again show two different views control system according to the invention, with a third embodiment of the rotatable Cantilever 54 and with the second embodiment of the measuring unit 39. Die Representations in the drawing are analogous to those of the first embodiment (FIG. 9 and 10) and the second embodiment (FIGS. 11 and 12). The most essential Difference of the third embodiment compared to those described above Variants consist in that the boom 54 consists of two hinged together Arms 54a, 54b. The first arm 54a is - as in FIGS. 10 and 12 for the boom 54 shown - by an angle ϕ between the arm 54a and the X-X axis the vertical axis W-W is pivotable, the second arm 54b is at an angle ϕ1 pivotable between arm 54b and arm 54a about a vertical axis W1-W1. At the The two cantilever arms 54a, 54b are pivoted as in the first two A mechanical tracking of the sensor device 25 in such a way that the pathless force transducers 45a, 45b, 45c, 45d relative to the rail construction 2 or maintain their angular alignment with the axes of the X-Y plane. In particular is a toothed belt drive 60 for mechanical tracking - as in the second version of the boom 54 - provided, here two timing belts 60a, 60b - one for each arm 54a, 54b of the arm 54 for use come.

Der Ausleger 54 ist an einer drehfest mit der Laufkatze 8 verbundenen Stange 76 vertikalbeweglich geführt, wobei zur Bewegung in der Z-Z-Richtung ein spezieller Antrieb 23d vorgesehen sein kann, der wie bereits erwähnt steuerbar und beispielsweise - ähnlich wie in Fig. 4 für das dort flexible Tragelement 14 dargestellt - mit einer motorischen Auf- und Abwickeleinrichtung 18 für ein Seil 78 verbunden sein kann. (Alle vorhandenen Antriebsvorrichtungen 23a, 23b und 23d sind in Fig. 14 und 15, sowie auch in den weiteren Figuren nicht nur schematisch, sondern gegenständlich dargestellt. Spezielle Antriebe 23c für die Winkelverstellung des Auslegers 54 bzw. von dessen Armen 54a, 54b sind nicht vorgesehen, da diese manuell erfolgt.)The arm 54 is connected to a rod 76 connected to the trolley 8 so that it cannot rotate guided vertically, with a special one for movement in the Z-Z direction Drive 23d can be provided, which, as already mentioned, is controllable and, for example - Similar to Fig. 4 for the flexible support member 14 shown there - with a Motorized winding and unwinding device 18 can be connected to a rope 78. (All existing drive devices 23a, 23b and 23d are shown in Figs. 14 and 15, as well also in the other figures not only schematically, but figuratively shown. Special drives 23c for the angle adjustment of the arm 54 or of its arms 54a, 54b are not provided since this is done manually.)

Bei der in Fig. 16 dargestellten Ausführung eines erfindungsgemäßen Steuersystems ist der Ausleger 54 (in einer vierten Ausführung) ebenfalls aus zwei Armen 54a, 54b gebildet. Die Vertikalbeweglichkeit der Last 20 wird hier jedoch dadurch erreicht, daß der erste Arm 54a nicht nur um die vertikale Achse W-W in horizontaler Richtung, sondern auch in vertikaler Richtung verschwenkbar ist. Der Arm 54a besteht zu diesem Zweck aus zwei parallel zueinander angeordneten Schwenkhebeln 80a, 80b die einendig an einem mit der Laufkatze 8 verbundenen Halteteil 82 und anderendig an einem mit dem zweiten Arm 54b verbundenen Halteteil 84 drehbeweglich angelenkt sind.In the embodiment of a control system according to the invention shown in FIG. 16 is the boom 54 (in a fourth embodiment) also from two arms 54a, 54b educated. The vertical mobility of the load 20 is achieved here, however, in that the first arm 54a not only around the vertical axis W-W in the horizontal direction, but is also pivotable in the vertical direction. The arm 54a exists to this Purpose from two mutually parallel pivot levers 80a, 80b at one end to a holding part 82 connected to the trolley 8 and at the other end a holding part 84 connected to the second arm 54b is rotatably articulated are.

Im Unterschied zu den bisher dargestellten Ausführungen des erfindungsgemäßen Systems ist bei diesem Ausführungsbeispiel keine mechanische, sondern eine elektrische, der Bewegung des Auslegers 54 in der X-Y-Ebene folgende Nachführung der Meßeinrichtung 39 bzw. Sensoreinrichtung 25 realisiert, die als "Nachführung über eine elektrische Welle" bezeichnet werden kann. Dabei sind als Einrichtungen zur Erzeugung von Signalen für die Winkel ϕ, ϕ1, um die die Auslegerarme 54a, 54b verschwenkt werden, in den jeweiligen Gelenkpunkten inkrementale Drehwinkelmeßscheiben (Encoder) 86, 88 vorgesehen, die koaxial zu den vertikal verlaufenden Schwenkachsen W-W, W1-W1 der Auslegerarme 54a, 54b angeordnet sind. Die den Schwenkwinkeln ϕ, ϕ1 der Arme 54a, 54b entsprechenden Signale werden der elektronischen Auswerteeinheit 47 zugeleitet, wo durch Addition bzw. Subtraktion ein resultierender Winkeiwert für einen Stellantrieb 23e zur Nachführung der weglosen Sensoren 45a, 45b, 45c, 45d berechnet wird. Bei diesem Stellantrieb 23e kann es sich vorzugsweise um einen Schrittmotor handeln. Die Nachführung kann dabei mit Vorteil z.B. über einen auf die Meßeinheit 39 wirkenden Zahnriementrieb 60, aber auch direkt vom Stellantrieb 23e auf die Meßeinheit 39 wirkend, geschehen.In contrast to the previously described versions of the invention Systems in this embodiment is not a mechanical one, but one electrical tracking following the movement of the boom 54 in the X-Y plane the measuring device 39 or sensor device 25, which is implemented as "tracking via an electrical wave "can be designated Generation of signals for the angles ϕ, ϕ1 about which the cantilever arms 54a, 54b pivoted incremental rotation angle measuring disks in the respective articulation points (Encoder) 86, 88 provided that are coaxial to the vertical Pivot axes W-W, W1-W1 of the cantilever arms 54a, 54b are arranged. The the Signals corresponding to pivot angles ϕ, ϕ1 of the arms 54a, 54b are the supplied to electronic evaluation unit 47, where by addition or subtraction resulting angle value for an actuator 23e for tracking the pathless ones Sensors 45a, 45b, 45c, 45d is calculated. This actuator 23e can preferably a stepper motor. The tracking can be an advantage e.g. via a toothed belt drive 60 acting on the measuring unit 39, but also directly acting on actuator 39 from actuator 23e.

Die Drehgelenke der Arme 54a, 54b an den vertikalen Achsen W-W, W1-W1 bzw. der Schwenkhebel 80a, 80b an den horizontalen (nicht näher bezeichneten) Achsen können mit Vorzug bei der Ansteuerung der Fahrantriebe 23a, 23b gebremst sein, damit beim Verfahren nicht durch die Massenträgheit der genannten Teile eine ungewollte Spontanbewegung auftritt.The pivots of the arms 54a, 54b on the vertical axes W-W, W1-W1 and the Swivel levers 80a, 80b on the horizontal axes (not specified) can preferably be braked when controlling the travel drives 23a, 23b, so that in the process not due to the inertia of the parts mentioned unwanted spontaneous movement occurs.

Die Aktivierung von an den Drehgelenken befindlichen Feststellbremsen, die eine starre Relativlage der Arme 54a, 54b bzw. 80a, 80b zueinander bewirken, kann mit Vorteil ebenfalls über den Bediengriff 70 realisiert werden, und zwar insbesondere, indem die Bedienperson 28 durch Handübergriff die beiden, oben beschriebenen voneinander isolierten hülsenartige Metallteile 70a, 70b elektrisch überbrückt wodurch ein entsprechender Aktivierungs-Stromkreis geschlossen wird. Dies ist im übrigen bei allen Ausführungsbeispielen möglich, bei denen Drehgelenke vorgesehen sind.The activation of parking brakes located on the swivel joints, the one can cause rigid relative position of the arms 54a, 54b or 80a, 80b to each other with Advantage can also be realized via the control handle 70, in particular, by the operator 28 by hand overlapping the two described above sleeve-like metal parts 70a, 70b which are insulated from one another and thereby electrically bridged a corresponding activation circuit is closed. Incidentally, this is at all embodiments possible in which rotary joints are provided.

Eine weitere Ausführung eines erfindungsgemäßen Steuersystems mit einem um eine vertikale Achse W-W drehbaren Ausleger 54 ist in Fig. 17 dargestellt. Diese Ausführung besitzt mehrere Gemeinsamkeiten mit der in Fig. 14 und 15 dargestellten Ausführung, jedoch ist der Ausleger 54 drehbeweglich über die Achse W-W direkt an der Laufkatze 8 angelenkt und nicht drehbeweglich an der vertikalen Stange 76. Es ist zwar ebenfalls eine vertikale Stange 76 vorhanden, an der jedoch die Lastaufnahmeeinrichtung 16 - in diesem Fall eine Gabel - vertikal geführt ist. Die vertikale Führung und Steuerung der Lastaufnahmevorrichtung 16 erfolgt dabei auf die gleiche Weise wie bei der in Fig. 14 und 15 dargestellten Ausführung über einen auf eine Abwickelvorrichtung 18 für ein Seil 78 wirkenden Vertikalantrieb 23d, der wiederum durch die elektronische Auswerteeinrichtung 47 ansteuerbar ist. Diese empfängt ihre Steuersignale wiederum aus der Meßeinrichtung 39 mit den weglos arbeitenden Sensoren 45a, 45b, 45c, 45d und aus dem Bediengriff 70, in dem sich ein Sensor 72 für die Vertikalsteuerung befindet. Der Bediengriff 70 und die Meßeinrichtung 39 bilden auch hier - wie bei den vorstehend beschriebenen Ausführungen - eine Einheit, die in diesem Fall aber an der drehbeweglich an der Laufkatze 8 angelenkten vertikalen Stange 76 befestigt ist Auch für diese Ausführung kann eine mechanische Nachführung der Sensoren 45a, 45b, 45c, 45d oder eine Nachführung nach der Art einer elektrischen Welle vorgesehen sein.Another embodiment of a control system according to the invention with one by one vertical axis W-W rotatable boom 54 is shown in FIG. This Execution has several similarities with that shown in FIGS. 14 and 15 Execution, however, the boom 54 is rotatable directly on the axis W-W the trolley 8 is articulated and not rotatable on the vertical rod 76. It is Although there is also a vertical rod 76, the Load suspension device 16 - in this case a fork - is guided vertically. The vertical Management and control of the load suspension device 16 is carried out on the same way as in the embodiment shown in FIGS. 14 and 15 an unwinder 18 for a cable 78 acting vertical drive 23d, the in turn can be controlled by the electronic evaluation device 47. This receives its control signals from the measuring device 39 with the pathless working sensors 45a, 45b, 45c, 45d and from the control handle 70, in which one Sensor 72 for vertical control is located. The control handle 70 and the Measuring device 39 also form here - as in the case of those described above Versions - a unit, which in this case, but on the rotating on the Trolley 8 hinged vertical rod 76 is also attached to this version can be a mechanical tracking of the sensors 45a, 45b, 45c, 45d or a Tracking in the manner of an electrical shaft can be provided.

Die Erfindung ist nicht auf die dargestellten Ausführungsbeispiele beschränkt, sondern umfaßt auch alle im Sinne der Erfindung gleichwirkenden Ausführungen. Dies betrifft insbesondere die Sensoreinrichtung 25; hier ist auch jede andere Ausführungsform geeignet, mit der Kräfte auf das Tragelementes 14 weglos erfaßbar und in Ansteuersignale umsetzbar sind. Die vorgesehenen Antriebe 23a, 23b, 23c können als elektrische, pneumatische und/oder hydraulische Motore ausgebildet sein. Die in den Beispielen nur schematisch dargestellte elektronische Auswerteeinheit 47 kann vorzugsweise in einen fahrbaren Teil des Systems, wie beispielsweise die Laufkatze 8, integriert sein.The invention is not limited to the exemplary embodiments shown, but rather also includes all embodiments having the same effect in the sense of the invention. this concerns in particular the sensor device 25; here is every other embodiment suitable with the forces on the support element 14 can be detected without a path and in control signals are feasible. The proposed drives 23a, 23b, 23c can be used as electrical, pneumatic and / or hydraulic motors can be formed. The in the Examples only shown schematically electronic evaluation unit 47 can preferably in a mobile part of the system, such as trolley 8, be integrated.

Der Fachmann kann des weiteren das erfindungsgemäße Steuersystem durch geeignete technische Maßnahmen ergänzen. Hinsichtlich derartiger Möglichkeiten zur Steuerung von vertikalen Bewegungen der Last 20 wird dabei zusätzlich zu den vorstehenden Ausführungen in vollem Umfang insbesondere auf den Gegenstand der deutschen Gebrauchsmusteranmeldung DE 299 02 364.8 verwiesen.The person skilled in the art can also use suitable control systems according to the invention complement technical measures. With regard to such possibilities for Control of vertical movements of the load 20 is in addition to the The above statements in full in particular on the subject of German utility model application DE 299 02 364.8 referenced.

Ferner ist die Erfindung nicht auf die im Anspruch 1 definierte Merkmalskombination beschränkt, sondern kann auch durch jede beliebige andere Kombination von bestimmten Merkmalen aller insgesamt offenbarten Einzelmerkmale definiert sein. Dies bedeutet, daß grundsätzlich praktisch jedes Einzelmerkmal des Anspruchs 1 weggelassen bzw. durch mindestens ein an anderer Stelle der Anmeldung offenbartes Einzelmerkmal ersetzt werden kann. Insofern ist der Anspruch 1 lediglich als ein erster Formulierungsversuch für eine Erfindung zu verstehen. Furthermore, the invention is not based on the combination of features defined in claim 1 restricted, but can also be by any other combination of certain features of all of the individual features disclosed are defined. This means that basically every single feature of claim 1 omitted or by at least one disclosed elsewhere in the application Single feature can be replaced. In this respect, claim 1 is only a first To understand formulation attempt for an invention.

Bezugszeichenreference numeral

11
Kranbahncrane runway
22
LaufschienenkonstruktionRunning rail construction
44
Laufschienerunner
66
LasthebevorrichtungLoad lifting device
88th
Laufkatzetrolley
1010
Halteelementeretaining elements
1212
Trägercarrier
1414
Tragelementsupporting member
14a14a
Verdickung an 14Thickening on 14
14b14b
Verdickung an 14Thickening on 14
1616
LastaufnahmeeinrichtungLifting accessory
1818
Abwickeleinrichtungunwinding
2020
Lastload
2222
Schienerail
23a23a
Antriebseinrichtung (X-X)Drive device (X-X)
23b23b
Antriebseinrichtung (Y-Y)Drive device (Y-Y)
23c23c
Antriebseinrichtung für 54 (Rotation in X-Y-Ebene)Drive device for 54 (rotation in the X-Y plane)
23d23d
Antriebseinrichtung (Z-Z)Drive device (Z-Z)
23e23e
Antriebseinrichtung für 25 bzw. 39Drive device for 25 or 39
2424
Sensoreinrichtungsensor device
2525
Sensoreinrichtungsensor device
2626
Vertikalevertical
2828
Bedienpersonoperator
3030
KraftwirkungsrichtungForce action direction
3232
Ausrichtung von 14 (ausgelenkt)Alignment of 14 (deflected)
3434
Bewegungsrichtung von 14 bei 30Direction of movement from 14 to 30
3636
KraftwirkungsrichtungForce action direction
3838
Bewegungsrichtung von 14 bei 36Direction of movement from 14 to 36
3939
Meßeinheit von 24Measuring unit from 24
4040
Meßeinheit von 24Measuring unit from 24
4141
Gehäuse von 39, 40 Housing of 39, 40
4242
Auslenkkörper von 40Deflection body of 40
4343
Meßkörper von 39Measuring body of 39
43a43a
Führungsrolle in 43 für 14Leadership in 43 for 14
43b43b
Führungsrolle in 43 für 14Leadership in 43 for 14
43c43c
Führungsrolle in 43 für 14Leadership in 43 for 14
44a44a
Abstandssensor in 40Distance sensor in 40
44b44b
Abstandssensor in 40Distance sensor in 40
45a45a
wegfreier Sensor in 39displacement-free sensor in 39
45b45b
wegfreier Sensor in 39displacement-free sensor in 39
45c45c
wegfreier Sensor in 39displacement-free sensor in 39
45d45d
wegfreier Sensor in 39displacement-free sensor in 39
4646
Ringspalt um 42Annular gap around 42
4747
elektronische Auswerteeinheitelectronic evaluation unit
4848
Führung von 40Leadership of 40
5050
Kennlinie v von FCharacteristic curve v of F
5252
Kennlinie v von FCharacteristic curve v of F
5454
Auslegerboom
54a54a
erster Auslegerarmfirst boom arm
54b54b
zweiter Auslegerarmsecond extension arm
5656
Bewegungsrichtung von 54Direction of movement from 54
5858
Koppelstangecoupling rod
6060
Zahnriementriebtoothed belt drive
60a60a
erster Zahnriemen von 60first toothed belt from 60
60b60b
zweiter Zahnriemen von 60second toothed belt from 60
6262
Verlängerung von 41Extension of 41
6464
Wälzlagerroller bearing
6666
Ansatzstück an 54Attachment to 54
6868
Umlenkrolle für 14Pulley for 14
7070
Bediengriffoperating handle
70a70a
erstes Metallteil von 70first metal part of 70
70b70b
zweites Metallteil von 70second metal part of 70
7272
Sensor in 70Sensor in 70th
7474
Schiebehülsesliding sleeve
7676
Stangepole
7878
Seil rope
80a80a
Schwenkhebel von 54aSwivel lever from 54a
80b80b
Schwenkhebel von 54aSwivel lever from 54a
8282
Halteteil für 80a, 80b an 8Holding part for 80a, 80b on 8
8484
Halteteil für 80a, 80b an 54bHolding part for 80a, 80b to 54b
8686
Encoder (Achse W-W)Encoder (axis W-W)
8888
Encoder (Achse W1-W1)Encoder (axis W1-W1)
FF
Kraftforce
vv
Geschwindigkeitspeed
W-WW-W
Schwenkachse von 54 bzw. 54aSwivel axis of 54 or 54a
W1-W1W1-W1
Schwenkachse von 54b54b swivel axis
XX
Raumkoordinatespatial coordinate
X-XX X
Raumrichtung (horizontal)Spatial direction (horizontal)
X-YX-Y
Raumebene (horizontal)Room level (horizontal)
YY
Raumkoordinatespatial coordinate
Y-YY-Y
Raumrichtung (horizontal)Spatial direction (horizontal)
ZZ
Raumkoordinatespatial coordinate
Z-ZZ-Z
Raumrichtung (vertikal)Spatial direction (vertical)
αα
Auslenkungswinkel von 14Deflection angle of 14
ϕφ
Schwenkwinkel von 54 bzw. 54aSwivel angle of 54 or 54a
ϕ1φ1
Schwenkwinkel von 54b54b swivel angle

Claims (26)

  1. Load lifting device (6) with a control system, in particular a crane crab (8) guided on a running rail structure (2), in respect of its movements in a horizontal plane (X-Y) defined by coordinate axes (X-X, Y-Y), wherein the load lifting device (6) has a vertically (Z-Z) aligned carrying element (14) - conditional on gravitational force at least in the resting position - and allocated to the load lifting device (6) for carrying out the movements is at least one motor drive device (23a, 23b, 23c), which can be triggered in each case as a function of a force (F) impacting the carrying element (14) in a substantially horizontal direction, in particular to be applied manually and detectable by means of a sensor device (25), characterised in that the sensor device (25) is constructed and arranged in relation to the carrying element (14) in such a way that the force is detected path-free, wherein the sensor device (25) has a measuring unit (39) with a housing (41) and with a measuring body (43) connected to the carrying element (14) and with at least one force transducer (45a, 45b, 45c, 45d) allocated to the respective coordinate axis (X-X; Y-Y) or the associated drive device (23a, 23b) and in contact with the measuring body (43).
  2. Load lifting device according to claim 1, characterised in that the load lifting device (6) has a flexible carrying element (14) which can be wound up and is capable of oscillating and in the resting position is vertically (Z-Z) aligned conditional on gravitational force.
  3. Load lifting device according to claim 1 or 2,
    characterised by a boom (54) held as swivellable by an angle (ϕ) about at least one vertical axis (W-W).
  4. Load lifting device according to claim 3, characterised in that the boom (54) consists of a first arm (54a) which is swivellable by an angle (ϕ) about a first vertical axis (W-W) and of a second arm (54b) which is swivellable by an angle (ϕ1) about a second vertical axis (W-W).
  5. Load lifting device according to claim 3 or 4,
    characterised in that allocated to the boom (54) is a motor drive device (23c) which can be triggered in each case as a function of a force (F) impacting the carrying element (14) in a substantially horizontal direction, in particular to be applied manually and detectable by means of the sensor device (25).
  6. Load lifting device according to one of claims 1 to 5, characterised in that the sensor device (25) detects a force (F) impacting the carrying element (14) in the area of a load receiving device (16) arranged at the open, lower end of the carrying element (14).
  7. Load lifting device according to one of claims 1 to 6, characterised in that the sensor device (25) generates signals, detectable in an electronic evaluating unit (47), as a function of the direction and preferably also the size of this force (F), which signals generate control signals for triggering drive device(s) (23a, 23b, 23c) of the load lifting device (6).
  8. Load lifting device according to one of claims 1 to 7, characterised in that the sensor device (25) is configured in such a way that a movement of the load lifting device (6) in a specific coordinate direction (X and/or Y and/or ϕ) is effected by a force (F) applied approximately in the same desired direction of movement.
  9. Load lifting device according to one of claims 1 to 8, characterised in that the drive speed of the drive device (23a, 23b, 23c) is controlled as a function of the size of the force (F) applied in each case, this preferably being with the aid of a progressive curve (50) with a flat initial rise.
  10. Load lifting device according to one of claims 1 to 9, characterised in that the load lifting device (6) is guided as movable beyond a face in the direction of two coordinate axes (X-X and Y-Y) perpendicular to one another, wherein to each axis (X-X; Y-Y) is allocated a separate motor drive device (23a, 23b) and both drive devices (23a, 23b) are triggerable by means of the sensor device (25).
  11. Load lifting device according to one of claims 1 to 10, characterised in that the force (F) is detected by direct force transmission on to the sensor device (25) in manually effected, force-dependent excursions of the carrying element (14) forced up against the vertical (26).
  12. Load lifting device according to one of claims 1 to 11, characterised in that the measuring body (43) is connected to the carrying element (14) via guide rollers (43a, 43b, 43c).
  13. Load lifting device according to claim 12, characterised in that the measuring body (43) is arranged as stationary in the direction of a vertical axis (Z-Z) and for the purpose of lifting or lowering a load (20) the carrying element (14) is movable as longitudinally displaceable in the measuring body in the direction of the vertical axis (Z-Z) relative to the measuring body (43) through a central opening via the guide rollers (43a, 43b, 43c).
  14. Load lifting device according to one of claims 1 to 13, characterised in that the sensor device (25) as force transducer (45a, 45b, 45c, 45d) has at least one strain gauge force transducer, one magnetoelastic, one piezoelectric or one fibre-optic force transducer.
  15. Load lifting device according to one of claims 12 to 14, characterised in that the measuring unit (39) has four force transducers (45a, 45b, 45c, 45d) arranged at an angle of 90° to one another corresponding to the two coordinate axes (X-X; Y-Y).
  16. Load lifting device according to one of claims 1 to 15, characterised in that the/each drive device (23a, 23b, 23c) is constructed as a motor, in particular as a motor controlled by the rotational speed, preferably with frictional wheel and/or toothed wheel and/or toothed belt drive (60).
  17. Load lifting device according to one of claims 1 to 16, characterised in that the load lifting device (6) is constructed as a weight balancer.
  18. Load lifting device according to one of claims 1 to 17, characterised in that allocated to the carrying element (14) for its vertical movements (Z-Z) is a drive (23d), controlled by the torque, which generates in each case dependent on load a constant torque in such a way that the load (20) is held statically in the vertical direction (Z-Z) in any chosen position and small, in particular manually applied forces substantially acting vertically effect lifting or lowering of the load (20).
  19. Load lifting device according to one of claims 12 to 18, characterised in that the housing (41) of the measuring device (39) is rotatable in respect of the measuring body (43) and the measuring body (43) and the housing (41) are fastened to a/the boom (54) or a boom arm (54b) in such a way that on swivelling of the boom (54) or of several boom arms (54a, 54b) by a/the angle (α) or several partial angles (α, α1) about a/the vertical axis (W-W) or about several vertical axes (W-W, W1-W1) the housing (41) is rotated by the same angle (α) or by a summary angle (α ± α1) in such a way that the housing (41) with the force transducers (45a, 45b, 45c, 45d) retains its angle alignment relative to the running rail structure (2).
  20. Load lifting device according to claim 19, characterised in that for rotating the housing (41) a coupling rod (58) is provided, linked as rotationally movable to the boom (54) at one end and to the housing (41) at the other end.
  21. Load lifting device according to claim 19, characterised in that for rotating the housing (41) a belt drive, such as a toothed belt drive (60), a chain drive or similar is provided.
  22. Load lifting device according to claim 19, characterised in that for rotating the housing (41) a separate motor drive (23e) such as a step motor is provided.
  23. Load lifting device according to claim 22, characterised in that the drive (23e) for rotating the housing (41) can be triggered via a/the electronic evaluation unit (47).
  24. Load lifting device according to claim 23, characterised in that as device(s) for generating signals for the angle(s) (ϕ, ϕ1) about which the boom (54) or the boom arms (54a, 54b) are swivelled, (an) incremental angle of rotation measuring disc(s) (encoder 86, 88) is/are provided, arranged coaxially to the vertically running swivel axis/axes (W-W, W1-W1) of the boom arms 54a, 54b, wherein the signal(s) corresponding to the swivel angle(s) (ϕ, ϕ1) is/are fed to the electronic evaluation unit (47), where an angle (ϕ, ϕ ± ϕ1) for the drive (23e) for tracking the force transducers (45a, 45b, 45c, 45d) is calculated.
  25. Load lifting device according to one of claims 7 to 24, characterised in that the electronic evaluation unit (47) is integrated into a movable part of the system, such as, for example, the crane crab (8).
  26. Load lifting device according to one of claims 1 to 25, characterised in that the sensor device (25) forms a structural unit with an operating handle (70), in particular in that the sensor device (25) is integrated into an operating handle (70).
EP00969555A 1999-10-30 2000-10-26 System for controlling movements of a load lifting device Expired - Lifetime EP1224145B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE29919136U 1999-10-30
DE29919136U DE29919136U1 (en) 1999-10-30 1999-10-30 System for controlling the movements of a load lifting device
PCT/EP2000/010548 WO2001032547A1 (en) 1999-10-30 2000-10-26 System for controlling movements of a load lifting device

Publications (2)

Publication Number Publication Date
EP1224145A1 EP1224145A1 (en) 2002-07-24
EP1224145B1 true EP1224145B1 (en) 2003-08-06

Family

ID=8080994

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00969555A Expired - Lifetime EP1224145B1 (en) 1999-10-30 2000-10-26 System for controlling movements of a load lifting device

Country Status (7)

Country Link
US (1) US7070061B1 (en)
EP (1) EP1224145B1 (en)
AT (1) ATE246661T1 (en)
AU (1) AU7923200A (en)
DE (2) DE29919136U1 (en)
ES (1) ES2203522T3 (en)
WO (1) WO2001032547A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744647C1 (en) * 2020-07-16 2021-03-12 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) Method of adaptive control of overhead traveling crane

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10061343A1 (en) * 2000-12-05 2002-06-13 Demag Cranes & Components Gmbh Lifting device for moving a handling device in a straight line
US6634515B2 (en) 2000-12-05 2003-10-21 Demag Cranes & Components Gmbh Lifting apparatus for implementing a rectilinear movement of a handling device
EP1501754B1 (en) * 2002-05-08 2008-11-19 The Stanley Works Methods and apparatus for manipulation of heavy payloads with intelligent assist devices
ITUD20040226A1 (en) * 2004-12-03 2005-03-03 Scaglia Indeva Spa SYSTEM FOR LIFTING AND HANDLING OBJECTS
CN101657377A (en) * 2007-02-14 2010-02-24 株式会社五合 Movement control method, movement operating device, and method for operating movement of moving body
US8317453B2 (en) * 2008-05-15 2012-11-27 Ray Givens Compound-arm manipulator
ES2364359B1 (en) * 2008-12-05 2012-09-14 Consejo Superior De Investigaciones Científicas (Csic) LOAD HANDLING ARM WITH REDUCED ACTION COUPLES.
US8644980B2 (en) 2009-11-30 2014-02-04 GM Global Technology Operations LLC Sensor for handling system
FR2957147B1 (en) * 2010-03-04 2012-11-23 Peugeot Citroen Automobiles Sa FORCE MEASURING DEVICE TO BE APPLIED TO AN OBJECT MANIPULATOR
DE102012002501A1 (en) * 2012-02-10 2013-08-14 Rinke Handling-Systems GmbH operating device
US9308645B2 (en) 2012-03-21 2016-04-12 GM Global Technology Operations LLC Method of inferring intentions of an operator to move a robotic system
DE102013206696B4 (en) 2012-04-18 2018-11-22 Eb-Invent Gmbh Device and a method for controlling a handling device
DE102012217241A1 (en) * 2012-09-25 2014-03-27 Schaeffler Technologies Gmbh & Co. Kg Bearing element for two spatial directions
US9644789B2 (en) * 2012-12-21 2017-05-09 H. Schinkel Holding B.V. Spring balanced support device
EP2989042B1 (en) * 2013-04-26 2020-12-09 J. Schmalz GmbH Device for the hand-guided movement of loads
NL2011445C2 (en) 2013-09-16 2015-03-18 Vanderlande Ind Bv DEVICE FOR MANIPULATING LUGGAGE PIECES.
CN105092224A (en) * 2015-06-23 2015-11-25 吴江万工机电设备有限公司 Test device for shapes of passive type opening cams and manufacture precision
FI127713B (en) * 2017-03-30 2018-12-31 Konecranes Global Oy Device for controlling a lift cable's vertical movement
CN114787071B (en) * 2019-10-21 2024-05-28 株式会社开道 Winch and driving control method for winch
CN113979315B (en) * 2021-10-28 2023-10-31 承德石油高等专科学校 Crown block positioning deviation compensation device
CN114348868B (en) * 2022-03-11 2022-05-24 太原矿机电气股份有限公司 Telescopic lifting beam for coal mine monorail crane

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2940608A (en) * 1959-03-30 1960-06-14 Borg Warner Power hydraulic hoist
FR2462743A1 (en) * 1979-08-02 1981-02-13 Ass Ouvriers Instr Precision MANUAL CONTROL DEVICE, IN PARTICULAR HANDLE FOR CONTROLLING MOVEMENTS OF A MOTORIZED ORGAN
GB2110428A (en) * 1981-11-25 1983-06-15 Offshore Syst Eng Osel Control system for a manipulator arm
SE453589B (en) * 1985-05-31 1988-02-15 Kahlman Innovation Ab DEVICE AT A LOAD LIFT
EP0471026B1 (en) * 1989-05-02 1995-10-04 Kahlman Innovation I Vänersborg Ab Arrangement for a load hoist
US5850928A (en) * 1989-05-02 1998-12-22 Kahlman; Sture Arrangement for a vertical and horizontal goods hoist
US5279309A (en) * 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5915673A (en) 1996-03-27 1999-06-29 Kazerooni; Homayoon Pneumatic human power amplifer module
DE19825312B4 (en) * 1997-07-15 2005-09-01 Münnekehoff, Gerd, Dipl.-Ing. System for controlling the movements of a lifting device
JP3504507B2 (en) * 1998-09-17 2004-03-08 トヨタ自動車株式会社 Appropriate reaction force type work assist device
US6668668B1 (en) * 1999-02-08 2003-12-30 Stanley Assembly Technologies Non-contacting sensors
US6272924B1 (en) * 1999-02-19 2001-08-14 Lockheed Martin Energy Research Corporation Apparatus and methods for a human extender
US6204619B1 (en) * 1999-10-04 2001-03-20 Daimlerchrysler Corporation Dynamic control algorithm and program for power-assisted lift device
US6313595B2 (en) * 1999-12-10 2001-11-06 Fanuc Robotics North America, Inc. Method of controlling an intelligent assist device in a plurality of distinct workspaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744647C1 (en) * 2020-07-16 2021-03-12 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) Method of adaptive control of overhead traveling crane

Also Published As

Publication number Publication date
AU7923200A (en) 2001-05-14
WO2001032547A1 (en) 2001-05-10
DE29919136U1 (en) 2001-03-08
ATE246661T1 (en) 2003-08-15
US7070061B1 (en) 2006-07-04
EP1224145A1 (en) 2002-07-24
DE50003221D1 (en) 2003-09-11
ES2203522T3 (en) 2004-04-16

Similar Documents

Publication Publication Date Title
EP1224145B1 (en) System for controlling movements of a load lifting device
DE2214350C3 (en) Take-up device for tapes or foils
DE102012220036B4 (en) MOVEMENT SYSTEM DESIGNED TO MOVE A USE LOAD INTO MORE DIRECTIONS
DE102012220035B4 (en) MOVEMENT SYSTEM DESIGNED TO MOVE A USE LOAD
EP3253992B1 (en) Cabling device having a motion sensor, and drive arrangement and reel apparatus having such a cabling device
EP0177880A1 (en) Straight line drive
DE9107947U1 (en) Electronic balance control and regulation for a hoist
EP2989042A1 (en) Device for the hand-guided movement of loads
DD262008A5 (en) COMPACTING DEVICE FOR AN ELECTRIC CHAIN BOTTLE TRAIN
DE2815228A1 (en) TEST ARRANGEMENT FOR DESTRUCTION-FREE TESTING OF METALLIC TEST MATERIAL
DE29719865U1 (en) System for controlling the movements of a load lifting device
DE2903035A1 (en) LOAD MONITORING DEVICE
DE2061154A1 (en) Device for continuous position determination
DE4325946C2 (en) Damping and positioning device for active damping of the swaying of loads suspended on cranes
DE3836003C2 (en)
EP1328461B1 (en) System and device for controlling a load lifting device
DE19825312B4 (en) System for controlling the movements of a lifting device
DE3923261A1 (en) Wire feed arrangement for wire erosion machine - has controlled position direction changing roller compensating wire tension variations
DE3343285C2 (en)
DE947108C (en) Device for damping pendulum movements of the load in cranes
EP0962415A2 (en) Apparatus for winding and unwinding filamentary material
DE68905087T2 (en) DEVICE FOR DETECTING A FORCE APPLIED ON A THREAD-SHAPED PART OF A LOAD.
DE19927118C2 (en) Device for controlling the speed of rotation of a motor-driven winding body and method
DE4321703A1 (en) Arrangement for changing the tape tension in a magnetic tape apparatus
DE4402787C2 (en) Vibration deflection angle measuring device for a low-swing deflection crane operation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030806

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030806

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030806

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50003221

Country of ref document: DE

Date of ref document: 20030911

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031026

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031026

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040106

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030806

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2203522

Country of ref document: ES

Kind code of ref document: T3

BERE Be: lapsed

Owner name: *MUNNEKEHOFF GERD

Effective date: 20031031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20101207

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110120 AND 20110126

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50003221

Country of ref document: DE

Owner name: DEMAG CRANES & COMPONENTS GMBH, DE

Free format text: FORMER OWNER: MUENNEKEHOFF, GERD, DIPL.-ING., 42857 REMSCHEID, DE

Effective date: 20110329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141022

Year of fee payment: 15

Ref country code: GB

Payment date: 20141021

Year of fee payment: 15

Ref country code: SE

Payment date: 20141021

Year of fee payment: 15

Ref country code: FR

Payment date: 20141022

Year of fee payment: 15

Ref country code: ES

Payment date: 20141028

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20141021

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141027

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50003221

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151026

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20151101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151026

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151026

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151101

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151027

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151027