EP1178183B1 - Niederdruckdampfturbine mit Mehrkanal-Diffusor - Google Patents

Niederdruckdampfturbine mit Mehrkanal-Diffusor Download PDF

Info

Publication number
EP1178183B1
EP1178183B1 EP01117519A EP01117519A EP1178183B1 EP 1178183 B1 EP1178183 B1 EP 1178183B1 EP 01117519 A EP01117519 A EP 01117519A EP 01117519 A EP01117519 A EP 01117519A EP 1178183 B1 EP1178183 B1 EP 1178183B1
Authority
EP
European Patent Office
Prior art keywords
diffuser
channel
area
exhaust
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01117519A
Other languages
English (en)
French (fr)
Other versions
EP1178183A3 (de
EP1178183A2 (de
Inventor
Franz Kreitmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1178183A2 publication Critical patent/EP1178183A2/de
Publication of EP1178183A3 publication Critical patent/EP1178183A3/de
Application granted granted Critical
Publication of EP1178183B1 publication Critical patent/EP1178183B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like

Definitions

  • the invention relates to an axially flowed through low-pressure steam turbine with a axial / radial multi-channel diffuser and exhaust steam housing for low-loss guidance of the blasting off steam.
  • a diffuser of this type is described in DE 44 22 700.
  • the one revealed there Diffuser has one after the last row of blades Low-pressure steam turbine axial flow inlet and a radial Flow outlet on.
  • the diffuser is with a view to optimizing the Turbine performance designed by a maximum possible pressure recovery.
  • For this are the first sections of the inner and outer diffuser ring respectively with respect to the hub or the blade carrier in a bending angle aligned. This measure serves to homogenize the Total pressure profile above the channel height of the diffuser in the area of the last Blade row.
  • the diffuser has a radially outwardly curved Baffle, which divides it into an inner and an outer channel.
  • the outer and inner channels are arranged on the flow ribs, which are radial or be flowed diagonally.
  • the baffle serves the Redirection as well as the guidance of the outflow.
  • the flow ribs the purpose of the support of the baffle and in particular a reduction of the twist in the deceleration zone, which also makes it the optimization of the Contribute pressure recovery.
  • realized flow ribs can only at a certain operating load to bring about optimal swirl reduction. at a different operating load, the swirl reduction is not necessarily optimal. A diffuser with this measure therefore only achieves one certain operating load an optimal pressure recovery.
  • the Flow ribs and their attachment to the baffles with a relative associated with great design effort.
  • the supersonic interferes Slit flow with the remaining subsonic flow.
  • EP 581 978 in particular in FIG. 4 of that document, is a multi-channel exhaust gas diffuser for an axial flowed gas turbine with axial flow inlet and radial flow outlet disclosed.
  • This multi-channel diffuser faces along its length is three zones.
  • the first zone is in the style of a bell-shaped diffuser formed and extends einkanalig of the last row of blades to Exit plane of several flow ribs.
  • the diffuser rings also point here Bent angle, which are set so that a homogenization of the Total pressure profile is achieved.
  • the second zone faces downstream from the Flow ribs flow guiding rings, which several channels form.
  • the third zone serves to strongly divert the exhaust gas flow into radial Direction and then flows into the chimney of the gas turbine.
  • the purpose is to use the second-zone guide rings along the length of the third zone continued, where they are curved there.
  • the second zone has low Deflection, but high Difffusor Koch on, the third zone large deflection, but only a very modest diffuser effect.
  • a low pressure steam turbine it is the object of the present invention for a low pressure steam turbine to provide an axial / radial multi-pass diffuser with exhaust steam housing which achieves improved pressure recovery compared to the prior art diffusers, thereby increasing the efficiency of the low pressure steam turbine.
  • the multi-channel diffuser should be optimized for as many operating conditions of the steam turbine as possible and be associated with a reduced design effort.
  • the exhaust steam housing should be tuned to the diffuser in terms of turbine performance.
  • the three-channel diffuser has three partial diffusers, an inner, middle and outer partial diffuser, which are formed by an inner diffuser ring, an outer diffuser ring and two baffles arranged between the diffuser rings.
  • a first portion of the inner diffuser ring is arranged with respect to the hub in an inwardly directed towards the rotor axis bending angle and a first portion of the outer diffuser ring is in a relative to the blade channel at the height of the last blade row outwardly, directed away from the rotor axis bending angle ,
  • the inventive axial / radial three-channel diffuser extend in particular the two baffles over the entire length of the diffuser. you are distributed unevenly between the inner and outer diffuser ring so that the area distribution on the three partial diffusers in the entrance surface of the diffuser is uneven. It accounts for the majority of the Entrance surface on the inner and middle part of the diffuser and a small part of the Entrance surface on the outer part of the diffuser.
  • the baffles are possible arranged near the last row of blades, wherein the distance between the last blade row and the leading edges of the baffles by the for all Operating conditions permissible minimum distance is determined.
  • the diffusion zone of the diffuser is characterized by the following features.
  • the ratio of the exit surface to the entrance surface of the individual partial diffusers is greater than two for the middle part of the diffuser and greater than three for the outside Part diffuser.
  • For the inner partial diffuser is the corresponding geometric Area ratio in a range of 1.5 to 1.8.
  • the ratio of its length to his Channel height in the entrance area at least four.
  • the ratio of length to channel height in the entrance surface at least equal to 10
  • for the inner partial diffuser is the corresponding Ratio at least equal to 2.5. Due to these relatively large length to channel height ratios the deflections of the partial diffusers are corresponding relatively gently.
  • the ratio of the exit surface to the entry surface of the entire diffuser is about two.
  • the exhaust steam housing of the diffuser is designed so that the size the area of the dividing plane between the upper and lower half of the Abdampfgeffeuses on the size of the exit surfaces of the partial diffusers is tuned.
  • the two baffles serve to separate the diffuser channel into three partial diffusers, in which the Beschaufelungsabströmung is performed.
  • the effected Flow guidance is the better the more part diffusers at the same Total diffuser are present.
  • more friction losses and higher barriers the more baffles are arranged.
  • the one chosen here Number, three partial diffusers and two baffles has the advantage that a optimized flow control with reasonable friction losses at the Surfaces of the baffles and obstructions is effected.
  • the baffles and partial diffusers cause a guidance and stabilization of the Beschaufelungsabströmung and a deflection in a radial direction. Since the baffles extend over the entire length of the diffuser, this guide is further supported. The radial extent of the partial diffusers further serves to reduce the tangential velocity in a natural way. The partial diffusers are thereby optimal for all operating conditions with regard to the reduction of the tangential velocity. Furthermore, the design effort for the baffles is relatively small and for the reduction of the tangential speed no further constructive measures such as diversion and flow ribs are necessary.
  • the flow guidance and stabilization is further brought about in particular by the distribution of the diffuser inlet surface on the three partial diffusers.
  • a large part of the inlet surface is omitted on the inner and middle channel, whereby the majority of the flow is guided by the blading to Abdampfgephaseuse.
  • the small part of the entry surface is accounted for by the outer channel, through which the supersonic gap flow and the flow influenced by the gap flow are taken up by the turbine and meridionally deflected and shielded from the majority of the flow to the exhaust steam housing. This shielding avoids flow interferences between most of the flow and the high energy gap flow which would affect the diffuser effect.
  • the minimum distance between the last row of blades and the leading edges of the baffles further contributes to optimum shielding of the slit flow and to avoid flow interference and streamline convergence.
  • the ratio of length to channel height of each partial diffuser of 2.5 and more allows a gentle deflection from the axial, or diagonal, to the radial flow direction, which prevents the separation of the delayed flow, even with a ratio of the exit surface to inlet surface of 1.6.
  • the design of the inventive diffuser is based on an inverse Design process, where initially the prevailing flow fields be determined. After that, the ideal ones are made of them Flow fields are calculated and the geometry of the diffuser due to this ideal flow fields is determined.
  • this three-channel diffuser designed for limit load conditions. At limit load was a Flow field for which a three-channel diffuser with an orientation of the Beginning tangent of his baffles according to the invention the highest Achieved pressure recovery.
  • This interpretation also provides the advantage that a higher turbine power at the same Condenser pressure is achieved or that the same turbine performance at higher Condenser pressure is achieved and thereby a smaller, cheaper Cooling system for the steam turbine is required.
  • the blocksstangenten the baffles are in an angular range around the first break points of the baffles and a Referenzusingstangente, at least approximately through the first break point of the baffle and through the intersection of the rectilinear approximated boundaries of the blade channel.
  • Partial diffuser In a further particular embodiment of the invention is attributable to the outer Partial diffuser accounts for the total flow inlet area of the diffuser Range of 10-12%. The remaining entrance area is 55-60% on the inner Partial diffuser and distributed to 30-35% on the middle part of the diffuser.
  • the distance between the leading edges of the baffles and the trailing edge of the last blade is 4% of the total height of the row of tracks.
  • the leading edges of the baffles are formed profiled at the flow inlet of the diffuser, whereby a gentle acceleration when entering the partial diffusers is effected.
  • the diffusion zone of the diffuser is characterized as follows.
  • the baffles are each supported by struts or struts extending from the inner and outer diffuser rings to the two baffles.
  • the middle part of the diffuser remains free of supports and thus has minimal flow disturbances and losses.
  • exhaust steam zone of the diffuser is on End baffle between the inner and middle part diffuser in a radial Extension arranged a Abdampfleitblech.
  • This Abdampfleitblechblech causes a better flow distribution in the exhaust steam housing, whereby the Minimized flow losses and the capacitor applied uniformly becomes.
  • FIG. 1 shows a three-channel diffuser as part of a low-pressure steam turbine. It leads the blading outflow into an exhaust steam housing 20. From the low-pressure steam turbine, the rotor 1 with rotor axis 2 and a rotor blade 3 of the last blade row are shown.
  • the three-channel diffuser is limited by an inner diffuser ring 4 and an outer diffuser ring 5.
  • the outer diffuser ring 4 is connected to the blade carrier 7.
  • the inner and outer diffuser ring 4 and 5 have in the region of the trailing edge of the blade 3 bending angle ⁇ N or ⁇ Z, whereby, as shown in Figures 1a and 1b, the angle ⁇ N by the first section 4 'of the inner diffuser ring 4 and an extension of the hub 6 and the angle ⁇ Z by the extension of the last section 7 'of the blade carrier 7 and the first portion 5' of the outer diffuser ring 5 are formed.
  • These buckling angles are for example 10-20 ° and contribute to the fact that the most homogeneous possible total pressure profile is achieved at the outlet of the last blade row.
  • the diffuser has in its interior two baffles 8 and 9, which divide the diffuser into three sub-channels, an inner partial diffuser 10, a central partial diffuser 11 and an outer partial diffuser 12.
  • the baffles are supported by supports 13 which extend from the inner and outer diffuser rings 4 and 5 to the baffles. For reasons of strength, the first supports 13 in the direction of flow are thicker than the second supports and each of round cross-section.
  • the middle partial diffuser 10 is in particular free of supports.
  • the baffles are distributed over the channel height of the diffuser with respect to the total pressure profile so that a flow-mechanically optimal surface distribution is achieved on the three sub-channels.
  • the first baffle 8 is arranged so that the inner partial diffuser 10 has a flow inlet surface which is, for example, approximately 60% of the flow inlet area of the entire diffuser.
  • the second baffle 9 is further arranged so that the central part of the diffuser 11, for example, has a flow inlet area of about 30% of the total flow inlet area.
  • the outer partial diffuser 12 has a flow inlet area of, for example, approximately 10% of the total flow inlet area.
  • the diffuser exit surface is designed so that the ratio of the exit surface to the entry surface of the entire diffuser, ie its upper and lower half, is approximately 2. In the case of the individual partial diffusers, the geometric relationships from outlet to inlet surface behave as follows. For example, for the inner partial diffuser 10, the ratio of the exit surface S12 in the upper half of the diffuser to the entrance surface S11 is approximately 1.3.
  • the ratio of exit surface S13 in the lower half of the diffuser is greater to the entrance surface S11 and is approximately 1.6.
  • the exit surface S13 of the inner partial diffuser 10 is therefore located in the lower half of the diffuser more outward than in the upper half. (Although it is actually located in the lower half of the diffuser, it is also marked S13 in this figure and in FIG. 4.)
  • the ratio of the exit surface S22 to the entry surface S21 is approximately 2.1.
  • the ratio of the exit surface S32 to the entry surface S31 is approximately 3.3. Such area ratios are the prerequisite for the efficiency of the turbine can be significantly increased.
  • the diffuser is with a view to a gentle flow of the flow low curvature in relation to the channel height designed.
  • the three Partial diffusers have a large length-to-channel height ratio for this purpose.
  • the inner partial diffuser 10 is larger than 2.7 in the lower half of the diffuser.
  • the Ratios in the example shown are greater than 4.4 or greater than twelve.
  • the inner and outer diffuser ring and the two baffles have in their Cross section for manufacturing reasons, several straight sections, due to the large length-to-channel height ratios in gentle Tilt angles to each other. These gentle angles of inclination allow an improved guidance of the blading outflow. It will be through especially flow interference and flow separation avoided. Due to the relatively large radial extent of the diffuser and the Partial diffusers also become a natural removal of tangential velocities without the help of additional flow ribs or other measures to Reductions in tangential velocities achieved.
  • the three partial diffusers have a gentle deflection due to their radial extent.
  • the total deflection of each partial diffuser is designated by the angles ⁇ 1 , ⁇ 2 and ⁇ 3 in the center line 15 of the individual partial diffusers 10, 11 and 12, respectively. These angles are for example about 70 °, 36 °, and 47 °.
  • the baffles 8 and 9 are approximately formed so that the extension of their initial tangent form the intersection A.
  • the straight-line approximated hub-side and housing-side boundary of the blade channel passes through this intersection A.
  • the starting tangents of the baffles 8 and 9 are aligned in the embodiment shown with respect to the rotor axis 2 in angles ⁇ 1 and ⁇ 2 .
  • the intersection point A between the straight-line approximated hub-side and housing-side boundaries of the blading channel via the turbine end stage and the beginning tangents of the guide plates 8 and 9 form an at least approximately common point of intersection.
  • the initial tangent of the baffle 8 with the straight-line approximated hub-side boundary forms an angle in the range of ⁇ 1 + 8 °.
  • the beginning tangent of the guide plate 9 forms an angle in the range of ⁇ 2 ⁇ 4 °.
  • This geometric design of the baffles with respect to the boundaries of the blading channel also applies to other housing contours and blade types, such as completely conical rectilinear housing contours, for housing contours where the section extends cylindrically or nearly cylindrically over the last row of blades.
  • this geometry is not only applicable to blades with tip seal but also with blades with Deckbändem. In this case, the housing-side boundary of the blade channel passes through the intersection of the trailing edge of the last blade and the shroud.
  • the initial members of the Baffles 8, 9 in an angular range around the first points of intersection B and C of the Baffles 8 and 9 and the reference tangents by the Intersections B and C and lead through the intersection A.
  • the diffuser rings 4 and 5 and baffles 8 and 9 are made in the example shown from several straight sections, at small angles of inclination to each other standing joined together. Instead of sections are also continuous curved baffles and diffuser rings feasible.
  • the partial diffusers 10 and 11 are arranged so that a major part of the flow from the blading through these two partial diffusers flows into the exhaust steam housing 20.
  • a stable guidance of the main part of the flow in the region of the middle part of the diffuser is the most sensitive due to the prevailing Mach numbers on obstructions.
  • the pillar-free central partial diffuser 11 thereby carries that part of the main flow without further disturbances.
  • the high-energy, supersonic gap flow from the last blade row enters the outer partial diffuser 12, the channel height of which is determined in relation to the prevailing gap flow.
  • the gap flow is guided by the outer partial diffuser 12 separately from the main part of the flow in the exhaust steam housing 20.
  • the large length-to-channel height ratio cause a stabilization of the Diffuser flow and a homogenization and lowering of the Total pressure profile at the height of the last row of blades. This will be the Increased pressure recovery of the diffuser and an increase in efficiency of reached all the low-pressure steam turbine.
  • the baffles 8 and 9 extend at the entrance to the diffuser to near the blade row. They are preferably arranged as close as allow the axial, thermal movements of the blade row and a necessary for the various operating conditions safety distance without causing a scratch.
  • the distance a between the leading edges of the baffles 8 and 9 and the trailing edge of the last blades 3 is 4% of the total height h w of the last blade row.
  • the leading edges of the baffles 8 and 9 are formed profiled to allow a smooth flow entry with the least possible overspeeding in the partial diffusers.
  • the leading edges for example, as shown in Figure 2, formed gently pointed, for example according to the form NACA 65, wherein the profiling length e is three times the thickness ⁇ .
  • the baffles are made as thin as possible, so that the Mach numbers rise as slightly as possible. For this purpose, their thickness is for example about 5% of the channel height of the middle part of the diffuser eleventh
  • This Abdampfleitblech 8 ' causes an improvement in the flow in the exhaust steam housing 20 and a homogenization of the flow in the condenser.
  • the Abdampfleitblech 8 ' has a gentle total deflection ⁇ L of about 50 °. This deflection is realized in this embodiment by two sections, the total length of the channel height in the exit plane is in a ratio of about 0.7.
  • FIG. 3 shows a cross section through the exhaust steam housing 20 with an upper one Half 21 and a lower half 22, separated by a dividing plane 23 from each other are separated.
  • the turbine steam passing through the exit surface of the upper half the diffuser enters the upper half 21 of the exhaust steam housing 20, flows then down through the parting plane 23 in the lower half 22 and from there through the exit surface 24 of the exhaust steam housing in the connected there Capacitor.
  • the exhaust steam housing is designed in coordination with the diffuser so that the Exit surface 24 of the exhaust steam housing 20 about 15% larger than that Total exit surface of the diffuser is. This grants a reserve area in the Dividing level for possible obstructions in the outflow.
  • the sum of the exit surfaces of the partial diffusers 11 and 12 the upper half of the diffuser is approximately equal to the surface 25 in the parting plane 23, which between the exhaust steam housing and the Abdampfleitblech 8 'of the Guide plate 8 is formed and hatched in the figure with solid lines is.
  • half of the exit surface S12 of the inner partial diffuser 10 over the entire Rotation of the diffuser equal to the hatched area 26 with dashed lines.
  • the approximation of these surfaces causes the diffuser outflow of the Partial diffusers 11 and 12 at the exit from the diffuser in the exhaust steam housing experiences as equal a large flow area and no bottlenecks. This in turn has a positive effect on the pressure recovery.
  • FIG. 5 shows a variant of the three-channel diffuser with exhaust steam housing according to the invention, which is optimized in comparison with the configuration of FIG.
  • the optimized diffuser with exhaust steam housing is designed, in particular with regard to the inner partial diffuser, so that the outlet surface S12 'of the inner partial diffuser 10 is defined further outside in comparison to the configuration of FIG. If the exit surface S12 'lies further outside as indicated by the dashed line, the ratio of the exit surface to the entry surface of that partial diffuser increases and the efficiency of the turbine is correspondingly increased.
  • the exit surface S12 ' is defined such that the ratio of its area to the entrance surface S11 increases to approximately 1.8, which is a significant increase over the ratio of approximately 1.3 in the variant of FIG.
  • the wall 21 'or hood of the upper half of the exhaust steam housing in comparison to the wall 21 of the exhaust steam housing of Figure 1 is placed radially further outside.
  • the baffle 27 'of the exhaust steam housing is placed axially further out. Accordingly, the deflection angle ⁇ 1 decreases compared to the deflection angle in Figure 1 to about 60 °.
  • Figure 6 shows this variant in the parting plane 23 between the upper and lower half of the diffuser. It also shows how the coordination of the dimensions of the exhaust steam housing and the sizes of the outlet surfaces of the partial diffusers are coordinated.
  • the diffuser is designed so that half of the exit surface S12 'of the inner partial diffuser 10 over the entire rotation of the diffuser is approximately equal to the dashed hatched area 28 in the parting plane 23 between upper and lower half of the diffuser.
  • the surface 28 is formed by the axially further outwardly disposed baffle 27 ', the radially further outside placed hood 21', a turbine-facing wall 31 and the Abdampfleitblech 8 '.
  • the surface 28 is finally closed by a fictitious axially extending line 30 between the Abdampfleitblech 8 'and the wall 31. Further, the sum of the exit surfaces S22 and S32 of the other two partial diffusers is approximately equal to the solidified hatched area 29 in the parting plane. This surface 29, the Abdampfleitblech 8 ', through the line 30, the wall 31 is formed. Further, in this case, the exit surface S13 'in the lower half of the diffuser falls in the same place as the exit surface S12' for the upper half of the diffuser.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Technisches Gebiet
Die Erfindung betrifft eine axial durchströmte Niederdruckdampfturbine mit einem axial/radialen Mehrkanal-Diffusor und Abdampfgehäuse zur verlustarmen Führung des Beschaufelungsabdampfs.
Stand der Technik
Ein Diffusor dieser Art ist in der DE 44 22 700 beschrieben. Der dort offenbarte Diffusor weist im Anschluss an die letzte Laufschaufelreihe einer Niederdruckdampfturbine einen axialen Strömungseintritt und einen radialen Strömungsaustritt auf. Der Diffusor ist im Hinblick auf eine Optimierung der Turbinenleistung durch einen grösstmöglichen Druckrückgewinn ausgelegt. Hierzu sind die ersten Teilstücke des inneren und äusseren Diffusorringes jeweils bezüglich der Nabe beziehungsweise dem Schaufelträger in einem Knickwinkel ausgerichtet. Diese Massnahme dient einer Vergleichmässigung des Totaldruckprofils über der Kanalhöhe des Diffusors im Bereich der letzten Laufschaufelreihe. Weiter weist der Diffusor ein radial nach aussen gekrümmtes Leitblech auf, das ihn in einen inneren und einen äusseren Kanal aufteilt. Im äusseren und inneren Kanal sind dabei Strömungsrippen angeordnet, die radial beziehungsweise diagonal angeströmt werden. Das Leitblech dient der Umlenkung sowie auch der Führung der Abströmung. Die Strömungsrippen bezwecken die Abstützung des Leitblechs und insbesondere eine Reduzierung des Dralls in der Verzögerungszone, wodurch auch sie der Optimierung des Druckrückgewinns beitragen. Realisierte Strömungsrippen können jedoch nur bei einer bestimmten Betriebslast eine optimale Drallreduzierung herbeiführen. Bei einer unterschiedlichen Betriebslast ist die Drallreduzierung nicht unbedingt optimal. Ein Diffusor mit dieser Massnahme erzielt deshalb nur bei einer bestimmten Betriebslast einen optimalen Druckrückgewinn. Ferner sind die Strömungsrippen und ihre Befestigung an den Leitblechen mit einem relativ grossen konstruktiven Aufwand verbunden. Zudem interferiert die supersonische Spaltströmung mit der restlichen, subsonischen Strömung.
In der EP 581 978, insbesondere in der Figur 4 jener Schrift, ist ein Mehrkanal-Abgasdiffusor für eine axial durchstömte Gasturbine mit axialem Strömungseintritt und radialem Strömungsaustritt offenbart. Dieser Mehrkanal-Diffusor weist entlang seiner Länge drei Zonen auf. Die erste Zone ist in der Art eines Glockendiffusors ausgebildet und erstreckt sich einkanalig von der letzten Laufschaufelreihe bis zur Austrittsebene mehrerer Strömungsrippen. Die Diffusorringe weisen auch hier Knickwinkel auf, die so festgelegt sind, dass eine Homogenisierung des Totaldruckprofils erreicht wird. Die zweite Zone weist stromabwärts von den Strömungsrippen strömungsführende Leitringe auf, welche mehrere Kanäle bilden. Die dritte Zone dient der starken Umlenkung der Abgasströmung in radiale Richtung und mündet anschliessend in den Kamin der Gasturbine. Zu diesem Zweck sind die Leitringe der zweiten Zone über die Länge der dritten Zone weitergeführt, wobei sie dort gekrümmt sind. Die zweite Zone weist geringe Umlenkung, jedoch hohe Difffusorwirkung auf, die dritte Zone grosse Umlenkung, jedoch nur sehr bescheidene Diffusorwirkung auf.
Darstellung der Erfindung
Es ist die Aufgabe der vorliegenden Erfindung für eine Niederdruckdampfturbine einen axial/radialen Mehrkanal-Diffusor mit Abdampfgehäuse zu schaffen, der im Vergleich zu den Diffusoren des Standes der Technik einen verbesserten Druckrückgewinn erzielt, wodurch der Wirkungsgrad der Niederdruckdampfturbine erhöht wird. Ferner soll der Mehrkanal-Diffusor für möglichst viele Betriebsbedingungen der Dampfturbine gleichsam optimiert sein und mit einem reduzierten konstruktiven Aufwand verbunden sein. Schliesslich soll das Abdampfgehäuse im Hinblick auf die Turbinenleistung auf den Diffusor abgestimmt sein.
Diese Aufgabe ist durch einen axial/radialen Dreikanal-Diffusor mit Abdampfgehäuse gemäss Anspruch 1 gelöst. Der Dreikanal-Diffusor weist drei Teildiffusoren auf, einen inneren, mittleren und äusseren Teildiffusor, die durch einen inneren Diffusorring, einen äusseren Diffusorring und zwei zwischen den Diffusorringen angeordneten Leitbleche gebildet sind. Ein erstes Teilstück des inneren Diffusorrings ist dabei bezüglich der Nabe in einem nach innen, zur Rotorachse hin gerichteten Knickwinkel und ein erstes Teilstück des äusseren Diffusorrings ist in einem bezüglich dem Schaufelkanal auf der Höhe der letzten Laufschaufelreihe nach aussen, von der Rotorachse weg gerichteten Knickwinkel angeordnet.
In dem erfindungsgemässen axial/radialen Dreikanal-Diffusor erstrecken sich insbesondere die zwei Leitbleche über die gesamte Länge des Diffusors. Sie sind zwischen dem inneren und äusseren Diffusorring ungleichmässig verteilt, sodass die Flächenverteilung auf die drei Teildiffusoren in der Eintrittsfläche des Diffusors ungleichmässig ist. Dabei entfällt in der Eintrittsebene der Grossteil der Eintrittsfläche auf den inneren und mittleren Teildiffusor und ein Kleinteil der Eintrittsfläche auf den äusseren Teildiffusor. Weiter bilden die Anfangstangenten der beiden Leitbleche zusammen mit den geradlinig approximierten nabenseitigen und gehäuseseitigen Grenzen des Beschaufelungskanals über der Endstufe der Niederdruckdampfturbine zumindest näherungsweise einen gemeinsamen Schnittpunkt in der Meridianebene. Schliesslich sind die Leitbleche möglichst nahe der letzten Laufschaufelreihe angeordnet, wobei der Abstand zwischen der letzten Laufschaufelreihe und den Vorderkanten der Leitbleche durch den für alle Betriebsbedingungen zulässigen Mindestabstand bestimmt ist.
Hiermit sind die Merkmale des Diffusors in seiner Interaktionszone mit der letzten Stufe dargelegt.
Die Diffusionszone des Diffusors ist durch folgende Merkmale gekennzeichnet. Das Verhältnis der Austrittsfläche zur Eintrittsfläche der einzelnen Teildiffusoren ist grösser zwei für den mittleren Teildiffusor und grösser drei für den äusseren Teildiffusor. Für den inneren Teildiffusor ist das entsprechende geometrische Flächenverhältnis in einem Bereich von 1.5 bis 1.8.
Weiter ist für den mittleren Teildiffusor das Verhältnis seiner Länge zu seiner Kanalhöhe in der Eintrittsfläche mindestens gleich vier. Für den äusseren Teildiffusor ist das Verhältnis von Länge zu Kanalhöhe in der Eintrittsfläche mindestens gleich 10 und für den inneren Teildiffusor ist das entsprechende Verhältnis mindestens gleich 2.5. Aufgrund dieser relativ grossen Längen-zu-Kanalhöhen-Verhältnisse sind die Umlenkungen der Teildiffusoren entsprechend relativ sachte.
Das Verhältnis der Austrittsfläche zur Eintrittsfläche des gesamten Diffusors beträgt circa zwei.
Schliesslich ist das Abdampfgehäuse des Diffusors so ausgelegt, dass die Grösse der Fläche der Trennebene zwischen der oberen und unteren Hälfte des Abdampfgehäuses auf die Grösse der Austrittsflächen der Teildiffusoren abgestimmt ist.
Die zwei Leitbleche dienen der Trennung des Diffusorkanals in drei Teildiffusoren, in denen die Beschaufelungsabströmung geführt wird. Die bewirkte Strömungsführung ist dabei je besser je mehr Teildiffusoren bei gleichem Gesamtdiffusor vorhanden sind. Hingegen entstehen mehr Reibungsverluste und höhere Versperrungen je mehr Leitbleche angeordnet sind. Die hier gewählte Anzahl, drei Teildiffusoren und zwei Leitbleche, hat den Vorteil, dass eine optimierte Strömungsführung bei vertretbaren Reibungsverlusten an den Oberflächen der Leitbleche sowie Versperrungen bewirkt wird.
Die Leitbleche und Teildiffusoren bewirken eine Führung und Stabilisierung der Beschaufelungsabströmung sowie eine Umlenkung in eine radiale Richtung. Da die Leitbleche sich über die gesamte Länge des Diffusors erstrecken, wird diese Führung weiter unterstützt.
Die radiale Erstreckung der Teildiffusoren dient weiter der Reduktion der Tangentialgeschwindigkeit auf natürliche Weise. Die Teildiffusoren sind dadurch für alle Betriebsbedingungen bezüglich der Reduktion der Tangentialgeschwindigkeit optimal. Ferner ist der konstruktive Aufwand für die Leitbleche relativ klein und für die Reduktion der Tangentialgeschwindigkeit sind keine weiteren konstruktiven Massnahmen wie Umlenkungs- und Strömungsrippen notwendig.
Die Strömungsführung und -stabilisierung wird weiter insbesondere durch die Verteilung der Diffusoreintrittsfläche auf die drei Teildiffusoren herbeigeführt. Ein Grossteil der Eintrittsfläche entfällt auf den inneren und mittleren Kanal, wodurch der Grossteil der Strömung von der Beschaufelung zum Abdampfgehäuse geführt wird. Der Kleinteil der Eintrittsfläche entfällt auf den äusseren Kanal, durch den die supersonische Spaltströmung sowie die von der Spaltströmung beeinflusste Strömung aus der Turbine aufgenommen wird und meridional umgelenkt und vom Grossteil der Strömung abgeschirmt zum Abdampfgehäuse geführt wird. Durch diese Abschirmung werden Strömungsinterferenzen zwischen dem Grossteil der Strömung und der hochenergetischen Spaltströmung vermieden, welche die Diffusorwirkung beeinträchtigen würden.
Der minimale Abstand zwischen der letzten Schaufelreihe und den Vorderkanten der Leitbleche trägt weiter zur optimalen Abschirmung der Spaltströmung und zur Vermeidung von Strömungsinterferenzen und Stromlinienkonvergenzen bei.
Das Verhältnis von Länge zu Kanalhöhe jedes Teildiffusors von 2.5 und mehr ermöglicht eine sachte Umlenkung von der axialen, oder diagonalen, zur radialen Strömungsrichtung, was die Ablösung der verzögerten Strömung, selbst bei einem Verhältnis der Austrittsfläche zu Eintrittsfläche von 1.6, verhindert.
Die Führung und Stabilisierung der Beschaufelungsabströmung durch die drei Teildiffusoren, die Abschirmung der hochenergetischen Spaltströmung sowie die sachte Umlenkung aufgrund der Länge der Kanäle im Verhältnis zu ihren Kanalhöhen bewirken insgesamt eine Vergleichmässigung und Absenkung des Totaldruckprofils auf der Höhe der letzten Laufschaufelreihe. Die dadurch bewirkte Mehrleistung führt zu einer Erhöhung des Wirkungsgrades der Niederdruckdampfturbine.
Die Auslegung des erfindungsgemässen Diffusors basiert auf einem inversen Designverfahren, bei dem zunächst die vorherrschenden Strömungsfelder ermittelt werden. Daran anschliessend werden daraus die jeweils idealen Strömungsfelder errechnet und die Geometrie des Diffusors aufgrund dieser idealen Strömungsfelder bestimmt wird. Insbesondere wurde dieser Dreikanal-Diffusor bei Grenzlastbedingungen ausgelegt. Bei Grenzlast wurde ein Strömungsfeld ermittelt, für das ein Dreikanal-Diffusor mit einer Ausrichtung der Anfangstangente seiner Leitbleche gemäss der Erfindung den höchsten Druckrückgewinn erzielt. Durch experimentelle Beweisführung ist die aus dieser Auslegung resultierende Geometrie im gesamten Betriebsbereich der Turbine den Diffusoren des Standes der Technik überlegen. Diese Auslegung erbringt ferner den Vorteil, dass eine höhere Turbinenleistung bei einem gleichem Kondensatordruck erzielt wird oder dass die gleicheTurbinenleistung bei höherem Kondensatordruck erzielt wird und dadurch ein kleineres, preisgünstigeres Kühlsystem für die Dampfturbine erforderlich ist.
In besonderen Ausführungen der Erfindung sind nachfolgend weitere besondere Merkmale der Interaktionszone des Diffusors offenbart.
In einer ersten besonderen Ausführung der Erfindung liegen die Anfangstangenten der Leitbleche in einem Winkelbereich um die ersten Knickpunkte der Leitbleche und um eine Referenzanfangstangente, die zumindest näherungsweise durch den ersten Knickpunkt des Leitblechs und durch den Schnittpunkt der geradlinigen approximierten Grenzen des Schaufelkanals führen.
In einer weiteren besonderen Ausführung der Erfindung entfällt auf den äusseren Teildiffusor ein Anteil der gesamten Strömungseintrittsfläche des Diffusors im Bereich von 10-12 %. Die restliche Eintrittsfläche ist zu 55-60% auf den inneren Teildiffusor und zu 30-35% auf den mittleren Teildiffusor verteilt.
In einer weiteren Ausführung beträgt der Abstand zwischen den Vorderkanten der Leitbleche und der Hinterkante der letzten Laufschaufel 4% der gesamten Höhe der Laufreihe.
In einer weiteren Ausführung sind die Vorderkanten der Leitbleche am Strömungseintritt des Diffusors profiliert ausgebildet, wodurch eine sanfte Beschleunigung beim Eintritt in die Teildiffusoren bewirkt wird.
In weiteren Ausführungen zeichnet sich die Diffusionszone des Diffusors wie folgt aus.
Die Leitbleche sind jeweils durch Streben oder Stützen getragen, die sich vom inneren und äusseren Diffusorring zu den beiden Leitblechen erstrecken. Der mittlere Teildiffusor bleibt dabei frei von Stützen und weist dadurch minimale Strömungsstörungen und Verluste auf.
In einer weiteren, besonderen Ausführung der Abdampfzone des Diffusors ist am Ende Leitblech zwischen dem inneren und mittleren Teildiffusor in einer radialen Verlängerung ein Abdampfleitblech angeordnet. Dieses Abdampfleitblechblech bewirkt eine bessere Strömungsverteilung im Abdampfgehäuse, wodurch die Strömungsverluste minimiert sowie der Kondensator gleichmässiger beaufschlagt wird.
Kurze Beschreibung der Zeichnungen
Es zeigen:
  • Figur 1 einen vertikalen Schnitt eines erfindungsgemässen Diffusors mit Abdampfgehäuse,
  • Figur 1a ein Detail der zylinderseitigen Interaktionszone des Diffusors,
  • Figur 1b ein Detail der nabenseitigen Interaktionszone des Diffusors,
  • Figur 2 ein Detail der profilierten Vorderkanten der Leitbleche am Diffusoreintritt,
  • Figur 3 ein Querschnitt durch ein Abdampfgehäuse des Diffusors,
  • Figur 4 eine Sicht auf die Trennebene zwischen der oberen und unteren Hälfte des Diffusors.
  • Figur 5 einen vertikalen Schnitt einer weiteren Variante des erfindungsgemässen Diffusors mit Abdampfgehäuse,
  • Figur 6 eine Sicht auf die Trennebene zwischen der oberen und unteren Hälfte der weiteren Variante von Figur 5.
  • Weg der Ausführung der Erfindung
    Figur 1 zeigt einen Dreikanal-Diffusor als Teil einer Niederdruckdampfturbine. Er führt die Beschaufelungsabströmung in ein Abdampfgehäuse 20. Von der Niederdruckdampfturbine ist der Rotor 1 mit Rotorachse 2 und eine Laufschaufel 3 der letzten Laufschaufelreihe gezeigt. Der Dreikanal-Diffusor ist von einem inneren Diffusorring 4 und einem äusseren Diffusorring 5 begrenzt. Der äussere Diffusorring 4 ist mit dem Schaufelträger 7 verbunden. Der innere und äussere Diffusorring 4 und 5 weisen im Bereich der Hinterkante der Laufschaufel 3 Knickwinkel N beziehungsweise Z auf, wobei, wie in den Figuren 1a und 1b dargestellt, der Winkel N durch das erste Teilstück 4' des inneren Diffusorrings 4 und einer Verlängerung der Nabe 6 und der Winkel Z durch die Verlängerung des letzten Teilstückes 7' des Schaufelträgers 7 und dem ersten Teilstück 5' des äusseren Diffusorrings 5 gebildet werden. Diese Knickwinkel betragen beispielsweise 10-20° und tragen dazu bei, dass ein möglichst homogenes Totaldruckprofil am Austritt der letzten Laufschaufelreihe erzielt wird.
    Der Diffusor weist in seinem Innern zwei Leitbleche 8 und 9 auf, die den Diffusor in drei Teilkanäle, einen inneren Teildiffusor 10, einen mittleren Teildiffusor 11 und einen äusseren Teildiffusor 12 aufteilen. Die Leitbleche sind dabei durch Stützen 13 getragen, die sich von dem inneren und äusseren Diffusorring 4 und 5 zu den Leitblechen erstrecken. Aus Festigkeitsgründen sind die in Strömungsrichtung ersten Stützen 13 dicker als die zweiten Stützen und jeweils mit rundem Querschnitt ausgebildet. Der mittlere Teildiffusor 10 ist insbesondere frei von Stützen.
    Die Leitbleche sind über der Kanalhöhe des Diffusors mit Rücksicht auf das Totaldruckprofil so verteilt, dass eine strömungsmechanisch optimale Flächenverteilung auf die drei Teilkanäle erzielt wird. Das erste Leitblech 8 ist so angeordnet, dass der innere Teildiffusor 10 eine Strömungseintrittsfläche besitzt, die beispielsweise circa 60% der Strömungseintrittsfläche des gesamten Diffusors ist. Das zweite Leitblech 9 ist weiter so angeordnet, dass der mittlere Teildiffusor 11 beispielsweise eine Strömungseintrittsfläche von circa 30% der gesamten Strömungseintrittsfläche besitzt. Hierdurch entfällt der Grossteil der Gesamteintrittsfläche auf die beiden ersten Kanäle 10 und 11. Der äussere Teildiffusor 12 besitzt hingegen eine Strömungseintrittsfläche von beispielsweise circa 10% der gesamten Strömungseintrittsfläche.
    Die Diffusoraustrittsfläche ist so ausgelegt, dass das Verhältnis der Austrittsfläche zur Eintrittsfläche des gesamten Diffusors, also seiner oberen und unteren Hälfte, circa 2 beträgt.
    Bei den einzelnen Teildiffusoren verhalten sich die geometrischen Verhältnisse von Austritts- zu Eintrittsfläche wie folgt.
    Für den inneren Teildiffusor 10 beispielsweise beträgt das Verhältnis der Austrittsfläche S12 in der oberen Hälfte des Diffusors zur Eintrittsfläche S11 circa 1.3.
    Das Verhältnis von Austrittsfläche S13 in der unteren Hälfte des Diffusors ist zur Eintrittsfläche S11 grösser und beträgt circa 1.6. Die Austrittsfläche S13 des inneren Teildiffusors 10 liegt deshalb in der unteren Hälfte des Diffusors weiter aussen als in der oberen Hälfte. (Sie ist, obwohl sie eigentlich in der unteren Hälfte des Diffusors liegt, auch in dieser Figur sowie in Figur 4 mit S13 eingezeichnet.)
    Für den mittleren Teildiffusor 11 baträgt das Verhältnis der Austrittsfläche S22 zur Eintrittsfläche S21 circa 2.1.
    Für den äusseren Teildiffusor beträgt das Verhältnis von Austrittsfläche S32 zur Eintrittsfläche S31 circa 3.3 . Solche Flächenverhältnisse sind die Voraussetzung dafür, dass der Wirkungsgrad der Turbine wesentlich gesteigert werden kann.
    Der Diffusor ist im Hinblick auf eine sanfte Führung der Strömung mit einer geringen Krümmung im Verhältnis zur Kanalhöhe ausgelegt. Die drei Teildiffusoren weisen hierzu ein grosses Längen-zu-Kanalhöhen-Verhältnis. Dies ist für den inneren Teildiffusor 10 beispielsweise grösser 2.7 in der unteren Hälfte des Diffusors. Für den mittleren und äusseren Teildiffusor 11 und 12 sind die Verhältnisse im gezeigten Beispiel grösser 4.4 beziehungsweise grösser zwölf. Der innere und äussere Diffusorring sowie die beiden Leitbleche weisen in ihrem Querschnitt aus fertigungstechnischen Gründen mehrere gerade Teilstücke auf, die aufgrund der grossen Längen-zu-Kanalhöheverhältnisse in sanften Neigungswinkeln zueinander stehen. Diese sanften Neigungswinkel ermöglichen eine verbesserte Führung der Beschaufelungsabströmung. Es werden dadurch insbesondere Strömungsinterferenzen und Strömungsablösungen vermieden. Durch die verhältnismässig grosse radiale Erstreckung des Diffusors und der Teildiffusoren wird auch ein natürlicher Abbau der Tangentialgeschwindigkeiten ohne die Hilfe von zusätzlichen Strömungsrippen oder anderen Massnahmen zur Verminderungen der Tangentialgeschwindigkeiten erzielt.
    Die drei Teildiffusoren weisen aufgrund ihrer radialen Erstreckung eine sanfte Umlenkung auf. Die Gesamtumlenkung jedes Teildiffusors ist durch die Winkel 1, 2 und 3 in der Mittellinie 15 der einzelnen Teildiffusoren 10, 11 beziehungsweise12 bezeichnet. Diese Winkel betragen beispielsweise circa 70°, 36°, beziehungsweise 47°.
    Die Leitbleche 8 und 9 sind näherungsweise so ausgebildet, dass die Verlängerung ihrer Anfangstangenten den Schnittpunkt A bilden. Dabei verläuft auch die geradlinig approximierte nabenseitige und gehäuseseitige Grenze des Schaufelkanals durch diesen Schnittpunkt A. Die Anfangstangenten der Leitbleche 8 und 9 sind in dem gezeigten Ausführungsbeispiel bezüglich der Rotorachse 2 in Winkeln ε1 beziehungsweise ε2 ausgerichtet. In Varianten der Erfindung bilden der Schnittpunkt A zwischen den geradlinig approximierten nabenseitigen und gehäuseseitigen Grenzen des Beschaufelungskanals über Endstufe der Turbine und die Anfangstangenten der Leitbleche 8 und 9 einen zumindest näherungsweise gemeinsamen Schnittpunkt. In den Varianten bildet die Anfangstangente des Leitblechs 8 mit der geradlinig approximierten nabenseitigen Grenze einen Winkel im Bereich von ε1+8°. Die Anfangstangente des Leitblechs 9 bildet entsprechend einen Winkel im Bereich von ε2 ±4°.
    Diese geometrische Auslegung der Leitbleche in Bezug auf die Grenzen des Beschaufelungskanals gilt auch für weitere Gehäusekonturen und Schaufeltypen, wie zum Beispiel für vollständig konisch geradlinige Gehäusekonturen, für Gehäusekonturen, bei denen das Teilstück über der letzten Laufschaufelreihe zylindrisch oder nahezu zylindrisch verläuft. Weiter ist diese Geometrie nicht nur bei Laufschaufeln mit Spitzendichtung sondern auch bei Laufschaufeln mit Deckbändem anwendbar. In diesem Fall verläuft die gehäuseseitige Grenze des Schaufelkanals durch den Schnittpunkt von Hinterkante der letzten Laufschaufel und dem Deckband.
    In einer realen Auslegung der Erfindung liegen die Anfangstangenten der Leitbleche 8, 9 in einem Winkelbereich um die ersten Schnittpunkte B und C der Leitbleche 8 beziehungsweise 9 und um die Referenztangenten, die durch die Schnittpunkte B beziehungsweise C und durch den Schnittpunkt A führen.
    Die Diffusorringe 4 und 5 und Leitbleche 8 und 9 bestehen im gezeigten Beispiel aus mehreren geraden Teilstücke, die in kleinen Neigungswinkeln zueinander stehend zusammengefügt sind. Anstelle von Teilstücken sind auch kontinuierlich gekrümmte Leitbleche und Diffusorringe realisierbar.
    Die Teildiffusoren 10 und 11 sind so angeordnet, dass ein Hauptteil der Strömung von der Beschaufelung durch diese beiden Teildiffusoren in das Abdampfgehäuse 20 abströmt. Dabei ist eine stabile Führung des Hauptteils der Strömung im Bereich des mittleren Teildiffusors aufgrund der dort vorherrschenden Machzahlen auf Versperrungen am empfindlichsten. Der von Stützen freie mittlere Teildiffusor 11 führt dadurch jenen Teil der Hauptströmung ohne weitere Störungen.
    Die hochenergetische, supersonische Spaltströmung aus der letzten Laufschaufelreihe hingegen gelangt in den äusseren Teildiffusor 12, wobei dessen Kanalhöhe in Relation zur vorherrschenden Spaltströmung bestimmt ist. Die Spaltströmung wird durch den äusseren Teildiffusor 12 separat vom Hauptteil der Strömung in das Abdampfgehäuse 20 geführt.
    Die grossen Längen-zu-Kanalhöhen-Verhältnis bewirken eine Stabilisierung der Diffusorströmung und eine Homogenisierung sowie Absenkung des Totaldruckprofils auf der Höhe der letzten Laufschaufelreihe. Dadurch wird der Druckrückgewinn des Diffusors erhöht und eine Wirkungsgradsteigerung der ganzen Niederdruckdampfturbine erreicht.
    Die Leitbleche 8 und 9 erstrecken sich am Eintritt zum Diffusor bis nahe an die Laufschaufelreihe. Sie sind vorzugsweise so nahe angeordnet, wie es die axialen, thermischen Bewegungen der Laufschaufelreihe sowie einen für die verschiedenen Betriebsbedingungen notwendigen Sicherheitsabstand erlauben ohne dass ein Anstreifen verursacht wird. Beispielsweise beträgt der Abstand a zwischen den Vorderkanten der Leitbleche 8 und 9 und der Hinterkante der letzten Laufschaufeln 3 4% der Gesamthöhe hw der letzten Laufschaufelreihe. Ferner sind die Vorderkanten der Leitbleche 8 und 9 profiliert ausgebildet, um einen sanften Strömungseintritt mit möglichst geringen Übergeschwindigkeiten in die Teildiffusoren zu ermöglichen. Die Vorderkanten sind beispielsweise, wie in Figur 2 gezeigt, sanft zugespitzt geformt, beispielsweise gemäss der Form NACA 65, wobei die Profilierungslänge e das dreifache der Dicke δ beträgt. Weiter sind die Leitbleche möglichst dünn ausgebildet, sodass die Machzahlen möglichst geringfügig steigen. Hierfür beträgt ihre Dicke beispielsweise circa 5% der Kanalhöhe des mittleren Teildiffusors 11.
    Der möglichst geringe Abstand der Vorderkanten der Leitbleche 8 und 9 von der Laufschaufelreihe 3 und die sanfte Profilierung der Vorderkanten tragen massgebend zur Erhöhung des Druckrückgewinns bei. Sind Leitbleche weiter entfernt angeordnet, können sich Schallfelder und Strömungsinterferenzen ergeben, welche einen Druckrückgewinn in diesem Bereich verunmöglichen würden.
    Am Leitblech 8 zwischen dem inneren und mittleren Teildiffusor ist in der gezeigten Ausführung in einer radialen Verlängerung ein Abdampfleitblech 8' angeordnet. Dieses Abdampfleitblech 8' bewirkt eine Verbesserung der Strömung im Abdampfgehäuse 20 und eine Vergleichmässigung der Strömung im Kondensator. Das Abdampfleitblech 8' besitzt eine sanfte Gesamtumlenkung L von circa 50°. Diese Umlenkung ist in diesem Ausführungsbeispiel durch zwei Teilstücke realisiert, deren Gesamtlänge zur Kanalhöhe in der Austrittsebene in einem Verhältnis von circa 0.7 steht.
    Figur 3 zeigt einen Querschnitt durch das Abdampfgehäuse 20 mit einer oberen Hälfte 21 und einer unteren Hälfte 22, die durch eine Trennebene 23 voneinander getrennt sind. Der Turbinendampf, der durch die Austrittsfläche der oberen Hälfte des Diffusors in die obere Hälfte 21 des Abdampfgehäuses 20 gelangt, strömt sodann hinab durch die Trennebene 23 in die untere Hälfte 22 und von dort durch die Austrittsfläche 24 des Abdampfgehäuses in den dort angeschlossenen Kondensator.
    Das Abdampfgehäuse ist in Abstimmung mit dem Diffusor so ausgelegt, dass die Austrittsfläche 24 des Abdampfgehäuses 20 etwa 15% grösser als die Gesamtaustrittsfläche des Diffusors ist. Dies gewährt eine Flächenreserve in der Trennebene für allfällige Versperrungen in der Abströmung.
    Gemäss Figur 4 ist die Summe der Austrittsflächen der Teildiffusoren 11 und 12 der oberen Hälfte des Diffusors ungefähr gleich der Fläche 25 in der Trennebene 23, welche zwischen dem Abdampfgehäuse und dem Abdampfleitblech 8' des Leitblechs 8 gebildet wird und in der Figur mit durchgezogenen Linien schraffiert ist. Dies bedeutet, dass die Hälfte der Summe der Austrittsflächen S22 und S32 der Teildiffusoren 11 beziehungsweise 12 über die gesamte Rotation des Diffusors gleich der in der Figur schraffierten Trennebenenfläche 25 ist. Ferner ist die Hälfte der Austrittsfläche S12 des inneren Teildiffusors 10 über die gesamte Rotation des Diffusors gleich der mit gestrichelten Linien schraffierten Fläche 26. Die Angleichung dieser Flächen bewirkt, dass die Diffusorabströmung der Teildiffusoren 11 und 12 beim Austritt aus dem Diffusor in das Abdampfgehäuse eine möglichst gleich grosse Durchströmfläche und keine Engpässe erfährt. Dies wirkt sich wiederum positiv auf den Druckrückgewinn aus.
    In Figur 5 ist eine Variante des erfindungsgemässen Dreikanal-Diffusors mit Abdampfgehäuse, gezeigt, die im Vergleich zur Konfiguration von Figur 1 optimiert ist. Der optimierte Diffusor mit Abdampfgehäuse ist insbesondere mit Rücksicht auf den inneren Teildiffusor so ausgelegt, dass die Austrittsfläche S12' des inneren Teildiffusors 10 im Vergleich zur Konfiguration von Figur 1 weiter aussen definiert ist. Liegt die Austrittsfläche S12' weiter aussen wie mit der gestrichelten Linie angedeutet, so erhöht sich das Verhältnis von Austrittsfläche zu Eintrittsfläche jenes Teildiffusors und der Wirkungsgrad der Turbine wird entsprechend gesteigert. Hierzu ist die Austrittsfläche S12' so definiert, dass das Verhältnis seiner Fläche zur Eintrittsfläche S11 bis auf circa 1.8 steigt, was eine bedeutende Vergrösserung gegenüber dem Verhältnis von circa 1.3 in der Variante von Figur 1 ist. Um nun weiterhin eine möglichst gleich grosse Durchströmfläche vom Diffusor in das Abdampfgehäuse zu gewährleisten, ist die Wand 21' oder Haube der oberen Hälfte des Abdampfgehäuses im Vergleich zur Wand 21 des Abdampfgehäuses von Figur 1 radial weiter aussen platziert. Zugleich ist auch die Prallwand 27' des Abdampfgehäuses axial weiter aussen platziert. Entsprechend verkleinert sich der Umlenkwinkel 1 im Vergleich zum Umlenkwinkel in Figur 1 auf circa 60°.
    Figur 6 zeigt diese Variante in der Trennebene 23 zwischen oberer und unterer Hälfte des Diffusors. Die zeigt auch, wie die Abstimmung der Dimensionen des Abdampfgehäuses und die Grössen der Austrittsfächen der Teildiffusoren aufeinander abgestimmt sind. Der Diffusor ist so ausgelegt, dass die Hälfte der Austrittsfläche S12' des inneren Teildiffusors 10 über die gesamte Rotation des Diffusors ungefähr gleich der gestrichelt schraffierten Fläche 28 in der Trennebene 23 zwischen oberer und unterer Hälfte des Diffusors ist. Die Fläche 28 wird durch die axial weiter aussen angeordnete Prallwand 27', die radial weiter aussen platzierte Haube 21', eine der Turbine zugewandten Wand 31 und das Abdampfleitblech 8' gebildet. Die Fläche 28 wird schliesslich durch eine fiktive axial verlaufende Linie 30 zwischen dem Abdampfleitblech 8' und der Wand 31 geschlossen.
    Weiter ist die Summe der Austrittsflächen S22 und S32 der beiden anderen Teildiffusoren ungefähr gleich der durchzogen schraffierten Fläche 29 in der Trennebene. Diese Fläche 29 wird das Abdampfleitblech 8', durch die Linie 30, die Wand 31 gebildet.
    Ferner fällt die Austrittsfläche S13' in der unteren Hälfte des Diffusors in diesem Fall auf die gleiche Stelle wie die Austrittsfläche S12' für die obere Hälfte des Diffusors.
    Bezugszeichenliste
    1
    Rotor
    2
    Rotorachse
    3
    Laufschaufel
    4, 4'
    innerer Diffusorring, erstes Teilstück des inneren Diffusorrings
    5
    äusserer Diffusorring
    5'
    erstes Teilstück des äusseren Diffusorrings
    6
    Nabe
    7
    Schaufelträger
    7'
    letztesTeilstück des Schaufelträgers
    8
    erstes Leitblech
    8'
    Abdampfleitblech
    9
    zweites Leitblech
    10
    innerer Teildiffusor
    11
    mittlerer Teildiffusor
    12
    äusserer Teildiffusor
    13
    Stützen oder Streben
    15
    geometrische Mittellinie der Teildiffusoren
    ε1 , ε2
    Neigungswinkel der Anfangstangente der Leitbleche bezüglich Rotorachse
    1,2,3
    Umlenkungswinkel der Teildiffusoren
    N
    Knickwinkel des inneren Diffusorrings
    Z
    Knickwinkel des äusseren Diffusorrings
    L
    Umlenkwinkel des Abdampfleitblechs
    a
    Abstand Laufschaufel-Vorderkante Leitblech
    hw
    Länge der letzten Laufschaufelreihe
    e
    Profilierungslänge der Leitblechvorderkanten
    δ
    Dicke der Leitbleche
    20
    Abdampfgehäuse
    21,21'
    obere Hälfte des Abdampfgehäuses, Haube oder Wand
    22
    untere Hälfte des Abdampfgehäuses
    23
    Trennebene
    24
    Austrittsfläche aus dem Abdampfgehäuse
    25
    Durchströmfläche der Trennebene für Teildiffusoren 11 und 12
    26
    Durchströmfläche der Trennebene für Teildiffusor 10
    27,27'
    Prallwand
    28
    Durchströmfläche der Trennebene für Teildiffusor 10 in weiterer Variante
    29
    Durchströmfläche der Trennebene für Teildiffusoren 11 und 12 in weiterer Variante
    30
    Hilfstrennlinie
    31
    der Turbine zugewandte wand des Abdampfgehäuses
    S11
    Eintrittsfläche in inneren Teildiffusor 10
    S12
    Austrittsfläche aus dem inneren Teildiffusor 10 in der oberen Hälfte des Diffusors
    S12'
    Austrittsfläche aus dem inneren Teildiffusor 10 in der oberen Hälfte des Diffusors in der weiteren Variante
    S13
    Austrittsfläche aus dem inneren Teildiffusor 10 in der unteren Hälfte des Diffusors
    S13'
    Austrittsfläche aus dem inneren Teildiffusor 10 in der unteren Hälfte des Diffusors in der weiteren Variante
    S21
    Eintrittsfläche in den mittleren Teildiffusor 11
    S22
    Austrittsfläche aus dem mittleren Teildiffusor 11
    S31
    Eintrittsfläche in den äusseren Teildiffusor 12
    S32
    Austrittsfläche aus dem äusseren Teildiffusor 12

    Claims (15)

    1. Axial/radialer Dreikanal-Diffusor mit Abdampfgehäuse für Niederdruckdampfturbine, welcher den Beschaufelungsabdampf in das Abdampfgehäuse (20) führt, mit einem inneren Diffusorring (4), einem äusseren Diffusorring (5) und zwei Leitblechen (8, 9), welche den Diffusor in drei Teildiffusoren, einen inneren Teildiffusor (10), einen mittleren Teildiffusor (11) und einen äusseren Teildiffusor (12) aufteilen,
      wobei der innere Diffusorring (4) bezüglich der Nabe der Niederdruckdampfturbine in einem Knickwinkel (N) und der äussere Diffusorring (5) bezüglich dem letzten Teilstück (7') des Schaufelträgers (7) der Niederdruckdampfturbine in einem Knickwinkel (Z) angeordnet sind,
      dadurch gekennzeichnet, dass
      die zwei Leitbleche (8, 9) sich über die gesamte Länge des Diffusors erstrecken, und die zwei Leitbleche (8,9) zwischen dem inneren Diffusorring (4) und dem äusseren Diffusorring (5) so verteilt sind, dass auf den inneren und mittleren Teildiffusor (10, 12) 88-90% der Eintrittsfläche des Diffusors und 10-12% der Eintrittsfläche auf den äusseren Teildiffusor (12) entfällt,
      und die Anfangstangenten der Leitbleche (8,9) und die gehäuseseitige Grenze des Schaufelkanals der letzten Stufe die geradlinig approximierte nabenseitige Grenze des Schaufelkanals näherungsweise in einem gemeinsamen Punkt schneiden.
    2. Axial/radialer Dreikanal-Diffusor nach Anspruch 1
      dadurch gekennzeichnet, dass
      das Verhältnis der Austrittsfläche (S22) zur Eintrittsfläche (S21) des mittleren Teildiffusors (11) mindestens zwei, das Verhältnis der Austrittsfläche (S32) zur Eintrittsfläche (S31) des äusseren Teildiffusors (12) mindestens drei und das Verhältnis der Austrittsfläche (S12) zur Eintrittsfläche (S11) des inneren Teildiffusors (10) zumindest in der unteren Hälfte des Diffusors im Bereich von 1.5 bis 1.8 liegt.
    3. Axial/radialer Dreikanal-Diffusor nach Anspruch 2
      dadurch gekennzeichnet, dass
      für jeden Teildiffusor (10, 11, 12) zumindest in der unteren Hälfte des Diffusors das Verhältnis seiner Länge zu seiner Kanalhöhe in der Eintrittsebene mindestens gleich 2.5 ist.
    4. Axial/radialer Dreikanal-Diffusor nach Anspruch 3
      dadurch gekennzeichnet, dass
      das Verhältnis der Gesamtaustrittsfläche zur Gesamteintrittsfläche des Dreikanal-Diffusors circa zwei beträgt.
    5. Axial/radialer Dreikanal-Diffusor nach Anspruch 4
      dadurch gekennzeichnet, dass
      die Eintrittsfläche (S11) des inneren Teildiffusors (10) 55-60%, die Eintrittsfläche (S21) des mittleren Teildiffusors (11) 30-35% und die Eintrittsfläche (S31) des äusseren Teildiffusors (12) 10-12% der Gesamteintrittsfläche des Diffusors beträgt.
    6. Axial/radialer Dreikanal-Diffusor nach Anspruch 5,
      dadurch gekennzeichnet, dass
      die Anfangstangenten der Leitbleche (8, 9) jeweils in einem Winkelbereich von 8° um die ersten Knickpunkte (B, C) der Leitbleche (8,9) und um eine Referenzanfangstangente liegen, die durch die ersten Knickpunkte (B,C) der Leitbleche (8,9) und durch den Schnittpunkt (A) der geradlinig approximierten naben- und gehäuseseitigen Grenzen des Schaufelkanals der Endstufe führen.
    7. Axial/radialer Dreikanal-Diffusor nach Anspruch 6
      dadurch gekennzeichnet, dass
      der Abstand (a) zwischen den Vorderkanten der Leitbleche (8, 9) und der Hinterkante der letzten Laufschaufel circa 4% der gesamten Höhe (hw) der Laufreihe beträgt.
    8. Axial/radialer Dreikanal-Diffusor nach Anspruch 7
      dadurch gekennzeichnet, dass
      die Vorderkanten der Leitbleche (8, 9) profiliert ausgebildet sind.
    9. Axial/radialer Dreikanal-Diffusor nach Anspruch 8
      dadurch gekennzeichnet, dass
      die Leitbleche (8, 9) durch Stützen (13) getragen sind, die sich vom inneren Diffusorring (4) und äusseren Diffusorring (5) zu den Leitblechen (8, 9) erstrecken und stromabwärts einen zunehmenden Durchmesser aufweisen, und der mittlere Teildiffusor (11) frei von Stützen ist.
    10. Axial/radialer Dreikanal-Diffusor nach Anspruch 9
      dadurch gekennzeichnet, dass
      an dem Leitblech (8), das zwischen dem inneren Teildiffusor (10) und dem mittleren Teildiffusor (11) angeordnet ist, in einer radialen Verlängerung ein Abdampfleitblech (8') angeordnet ist.
    11. Axial/radialer Dreikanal-Diffusor nach Anspruch 10
      dadurch gekennzeichnet, dass
      die Leitbleche (8, 9) eine Dicke (δ) aufweisen, die circa 5% der Kanalhöhe des mittleren Teildiffusors (11) beträgt.
    12. Axial/radialer Dreikanal-Diffusor nach einem der vorangehenden Ansprüche 1-11
      dadurch gekennzeichnet, dass
      die Summe der Austrittsfläche (S22) des mittleren Teildiffusors (11) und der Austrittsfläche (S32) des äusseren Teildiffusors (12) ungefähr gleich jener Fläche (25) in der Trennebene (23) zwischen der oberen und unteren Hälfte des Diffusors ist, welche zwischen der Haube (21) des Abdampfgehäuses (20) und dem Abdampfleitblech (8') zwischen dem inneren Teildiffusor (10) und mittleren Teildiffusor (11) gebildet wird.
    13. Axial/radialer Dreikanal-Diffusor nach Anspruch 12
      dadurch gekennzeichnet, dass
      die Austrittsfläche (S12) des inneren Teildiffusors (10) in der oberen Hälfte des Diffusors in einem Verhältnis von circa 1.3 zur Eintrittsfläche (S11) des inneren Teildiffusors (10) steht und die Austrittsfläche (S12) des inneren Teildiffusors (10) über die gesamte Rotation des Dreikanal-Diffusors gleich der Hälfte der Fläche (26) in der Trennebene (23) zwischen der oberen Hälfte (21) und der unteren Hälfte (22) des Abdampfgehäuses (20) ist, die von der Prallwand (27), der Haube (21) des Abdampfgehäuses (20) und dem Leitblech (8) zwischen dem inneren und mittleren Teildiffusor (11,12) und dem Abdampfleitblech (8') gebildet wird.
    14. Axial/radialer Dreikanal-Diffusor nach einem der vorangehenden Ansprüche 1-11
      dadurch gekennzeichnet, dass
      die Austrittsfläche (S12') des inneren Teildiffusors (10) in der oberen Hälfte des Diffusors in einem Verhältnis von circa 1.8 zur Eintrittsfläche (S11) des inneren Teildiffusors (10) steht und die Austrittsfläche (S12') des inneren Teildiffusors (10) in der oberen Hälfte des Diffusors über die gesamte Rotation des Dreikanal-Diffusors ungefähr gleich der Hälfte der Fläche (28) in der Trennebene (23) zwischen der oberen Hälfte (21) und der unteren Hälfte (22) des Abdampfgehäuses (20) ist, die von der Prallwand (27') und der Haube (21') des Abdampfgehäuses (20), vom Abdampfleitblech (8') sowie einer axialen Linie (30), die vom Abdampfleitblech (8') zu einer zur Turbine gewandten Wand (31) des Abdampfgehäuses (20) führt, gebildet wird
      und die Summe der Austrittsfläche (S22) des mittleren Teildiffusors (11) und der Austrittsfläche (S32) des äusseren Teildiffusors (12) über die gesamte Rotation ungefähr gleich der Hälfte der Fläche (29) in der Trennebenen (23) zwischen der unteren und oberen Hälfte des Abdampfgehäuses (20) ist, die durch das Abdampfleitblech (8'), durch die der Turbine zugewandten Wand (31) des Abdampfgehäuses (20) und durch die axiale Linie (30) von dem Abdampfleitblech (8') zur der Turbine zugewandten Wand (31) gebildet wird.
    15. Axial/radialer Dreikanal-Diffusor nach einem der vorangehenden Ansprüche 11-14
      dadurch gekennzeichnet, dass
      die Gesamtaustrittsfläche des Dreikanal-Diffusors etwa 15% kleiner ist als die Austrittsfläche (24) des Abdampfgehäuses (20).
    EP01117519A 2000-07-31 2001-07-20 Niederdruckdampfturbine mit Mehrkanal-Diffusor Expired - Lifetime EP1178183B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10037684 2000-07-31
    DE10037684A DE10037684A1 (de) 2000-07-31 2000-07-31 Niederdruckdampfturbine mit Mehrkanal-Diffusor

    Publications (3)

    Publication Number Publication Date
    EP1178183A2 EP1178183A2 (de) 2002-02-06
    EP1178183A3 EP1178183A3 (de) 2003-07-23
    EP1178183B1 true EP1178183B1 (de) 2005-05-11

    Family

    ID=7651095

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01117519A Expired - Lifetime EP1178183B1 (de) 2000-07-31 2001-07-20 Niederdruckdampfturbine mit Mehrkanal-Diffusor

    Country Status (4)

    Country Link
    US (1) US6533546B2 (de)
    EP (1) EP1178183B1 (de)
    JP (1) JP4791658B2 (de)
    DE (2) DE10037684A1 (de)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN102373960A (zh) * 2010-08-20 2012-03-14 通用电气公司 毂部流道轮廓
    DE102010044819B4 (de) 2009-09-14 2022-12-15 General Electric Technology Gmbh Axialturbine und ein Verfahren zum Abführen eines Stroms von einer Axialturbine

    Families Citing this family (32)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10255389A1 (de) * 2002-11-28 2004-06-09 Alstom Technology Ltd Niederdruckdampfturbine mit Mehrkanal-Diffusor
    JP4619849B2 (ja) * 2005-03-31 2011-01-26 株式会社日立製作所 タービン排気装置
    US20070017947A1 (en) * 2005-07-19 2007-01-25 Tumi, Inc. Backpack with expandable area
    EP1892384A1 (de) * 2006-08-25 2008-02-27 Siemens Aktiengesellschaft Diffusor für eine Dampfturbine
    EP1970539A1 (de) * 2007-03-13 2008-09-17 Siemens Aktiengesellschaft Diffusoranordnung
    JP5331715B2 (ja) * 2010-01-07 2013-10-30 株式会社日立製作所 ガスタービン,排気ディフューザおよびガスタービンプラントの改造方法
    US8475125B2 (en) 2010-04-13 2013-07-02 General Electric Company Shroud vortex remover
    US20120034064A1 (en) * 2010-08-06 2012-02-09 General Electric Company Contoured axial-radial exhaust diffuser
    US8870532B2 (en) * 2010-11-15 2014-10-28 General Electric Company Exhaust hood diffuser
    US8591185B2 (en) 2010-11-16 2013-11-26 General Electric Company Low pressure exhaust gas diffuser for a steam turbine
    WO2012089837A1 (de) * 2010-12-30 2012-07-05 Duerr Cyplan Ltd. Strömungsmaschine
    RU111580U1 (ru) * 2011-02-11 2011-12-20 Альстом Текнолоджи Лтд Выпускное устройство для модуля паровой турбины
    US20130022444A1 (en) * 2011-07-19 2013-01-24 Sudhakar Neeli Low pressure turbine exhaust diffuser with turbulators
    US20130243564A1 (en) * 2012-03-14 2013-09-19 Prakash Bavanjibhai Dalsania Exhaust diffuser for turbine
    US20140037439A1 (en) * 2012-08-02 2014-02-06 General Electric Company Turbomachine exhaust diffuser
    US9388710B2 (en) 2012-10-01 2016-07-12 General Electric Company Exhaust diffuser arrangement for a turbine system and method of redirecting a flow
    US9644496B2 (en) * 2013-03-13 2017-05-09 General Electric Company Radial diffuser exhaust system
    US9784283B2 (en) * 2014-06-06 2017-10-10 Baker Hughes Incorporated Diffuser vanes with pockets for submersible well pump
    US20170143105A1 (en) * 2014-07-21 2017-05-25 Exxel Outdoors, Llc Backpack having horizontal expansion
    EP3054086B1 (de) * 2015-02-05 2017-09-13 General Electric Technology GmbH Dampfturbinendiffusorkonfiguration
    US10036267B2 (en) 2015-11-24 2018-07-31 General Electric Company System of supporting turbine diffuser outlet
    US10287920B2 (en) * 2015-11-24 2019-05-14 General Electric Company System of supporting turbine diffuser
    US10041365B2 (en) 2015-11-24 2018-08-07 General Electric Company System of supporting turbine diffuser
    US10036283B2 (en) 2015-11-24 2018-07-31 General Electric Company System and method for diffuser AFT plate assembly
    US10041377B2 (en) 2015-11-24 2018-08-07 General Electric Company System and method for turbine diffuser
    JP6731359B2 (ja) * 2017-02-14 2020-07-29 三菱日立パワーシステムズ株式会社 排気ケーシング、及びこれを備える蒸気タービン
    JP6745233B2 (ja) * 2017-02-28 2020-08-26 三菱重工業株式会社 タービン及びガスタービン
    DE102017121337A1 (de) 2017-09-14 2019-03-14 Abb Turbo Systems Ag Diffusor einer abgasturbine
    JP7184638B2 (ja) 2018-12-28 2022-12-06 三菱重工業株式会社 蒸気タービン、及びその排気室
    CN110685756B (zh) * 2019-10-10 2022-03-15 中国船舶重工集团公司第七0五研究所 一种低流动压力损失异形渐变排气结构
    JP7368260B2 (ja) 2020-01-31 2023-10-24 三菱重工業株式会社 タービン
    US11753997B2 (en) * 2020-03-26 2023-09-12 Hamilton Sundstrand Corporation Exhaust baffle component for an air turbine assembly

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1768637U (de) * 1953-10-23 1958-06-19 Licentia Gmbh Ringfoermiger diffusor vor dem abdampf- oder abgasraum einer dampf- oder gasturbine.
    CH484358A (de) * 1968-02-15 1970-01-15 Escher Wyss Ag Abströmgehäuse einer axialen Turbomaschine
    US4013378A (en) * 1976-03-26 1977-03-22 General Electric Company Axial flow turbine exhaust hood
    FR2401311A1 (fr) * 1977-08-25 1979-03-23 Europ Turb Vapeur Dispositif d'echappement pour turbine axiale a fluide condensable
    US4157013A (en) * 1977-09-08 1979-06-05 General Motors Corporation Water cooled automotive gas turbine engine
    SU857516A1 (ru) * 1978-11-27 1981-08-23 Харьковский Ордена Ленина Политехнический Институт Им. В.И.Ленина Выхлопной патрубок осевой турбины
    JPS5763902U (de) * 1980-10-03 1982-04-16
    SU943412A1 (ru) * 1980-12-01 1982-07-15 Предприятие П/Я А-3513 Паротурбинна установка
    JPS61135906A (ja) * 1984-12-05 1986-06-23 Toshiba Corp 蒸気タ−ビン
    CH672004A5 (de) * 1986-09-26 1989-10-13 Bbc Brown Boveri & Cie
    EP0581978B1 (de) * 1992-08-03 1996-01-03 Asea Brown Boveri Ag Mehrzoniger Diffusor für Turbomaschine
    DE4422700A1 (de) 1994-06-29 1996-01-04 Abb Management Ag Diffusor für Turbomaschine

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102010044819B4 (de) 2009-09-14 2022-12-15 General Electric Technology Gmbh Axialturbine und ein Verfahren zum Abführen eines Stroms von einer Axialturbine
    CN102373960A (zh) * 2010-08-20 2012-03-14 通用电气公司 毂部流道轮廓
    CN102373960B (zh) * 2010-08-20 2016-03-02 通用电气公司 涡轮设备

    Also Published As

    Publication number Publication date
    DE10037684A1 (de) 2002-02-14
    US6533546B2 (en) 2003-03-18
    EP1178183A3 (de) 2003-07-23
    DE50106175D1 (de) 2005-06-16
    EP1178183A2 (de) 2002-02-06
    JP2002081301A (ja) 2002-03-22
    US20020127100A1 (en) 2002-09-12
    JP4791658B2 (ja) 2011-10-12

    Similar Documents

    Publication Publication Date Title
    EP1178183B1 (de) Niederdruckdampfturbine mit Mehrkanal-Diffusor
    EP1318272B1 (de) Kühlluftwirbelgleichrichter im Hochdruckverdichterrotor einer Gasturbine
    EP0690206A2 (de) Diffusor für Turbomaschine
    EP2245275B1 (de) Leitschaufel einer variablen turbinengeometrie eines turboladers
    EP2669474B1 (de) Übergangskanal für eine Strömungsmaschine und Strömungsmaschine
    DE60124572T2 (de) Halbaxial- und kreiselverdichter für ein gasturbinentriebwerk
    EP0581978B1 (de) Mehrzoniger Diffusor für Turbomaschine
    DE60016937T2 (de) Antiwirbelsystem für kreiselverdichter
    EP0802305B1 (de) Abgasturbolader für eine Brennkraftmaschine
    EP1789653B1 (de) Rotor für ein triebwerk
    DE4228879A1 (de) Axialdurchströmte Turbine
    DE69105837T2 (de) Gekühlte Turbinenschaufel.
    DE112007002564T5 (de) Diffusor und Auslasssystem für Turbine
    EP2495425A2 (de) Strahltriebwerksvorrichtung mit einem Nebenstromkanal
    DE102015219556A1 (de) Diffusor für Radialverdichter, Radialverdichter und Turbomaschine mit Radialverdichter
    EP2478186B1 (de) Rotor einer Turbomaschine
    CH704212A1 (de) Axialkompressor.
    EP0638732A1 (de) Diffusor
    EP3431708B1 (de) Umströmungsanordnung, zugehörige strömungsmaschine und verwendung
    DE112009001754T5 (de) Abgasdiffusor für Gasturbine
    EP3568597B1 (de) Rückführstufe und radialturbofluidenergiemaschine
    EP3032032A1 (de) Austrittsleitgitter und Mantelstromtriebwerk mit einem Austrittsleitgitter
    EP1288435B1 (de) Turbinenschaufel mit zumindest einer Kühlungsöffnung
    EP0345700B1 (de) Auslassgehäuse einer Strömungsmaschine
    DE3515441C2 (de)

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM (SWITZERLAND) LTD

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM TECHNOLOGY LTD

    17P Request for examination filed

    Effective date: 20031208

    17Q First examination report despatched

    Effective date: 20040129

    AKX Designation fees paid

    Designated state(s): DE IT

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE IT

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50106175

    Country of ref document: DE

    Date of ref document: 20050616

    Kind code of ref document: P

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060214

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20100723

    Year of fee payment: 10

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110720

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50106175

    Country of ref document: DE

    Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50106175

    Country of ref document: DE

    Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50106175

    Country of ref document: DE

    Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50106175

    Country of ref document: DE

    Representative=s name: RUEGER, BARTHELT & ABEL, DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50106175

    Country of ref document: DE

    Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50106175

    Country of ref document: DE

    Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50106175

    Country of ref document: DE

    Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50106175

    Country of ref document: DE

    Representative=s name: RUEGER, BARTHELT & ABEL, DE

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50106175

    Country of ref document: DE

    Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

    Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20190620

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50106175

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20210202