EP1017967B1 - Digital relative position sensor - Google Patents

Digital relative position sensor Download PDF

Info

Publication number
EP1017967B1
EP1017967B1 EP98945377A EP98945377A EP1017967B1 EP 1017967 B1 EP1017967 B1 EP 1017967B1 EP 98945377 A EP98945377 A EP 98945377A EP 98945377 A EP98945377 A EP 98945377A EP 1017967 B1 EP1017967 B1 EP 1017967B1
Authority
EP
European Patent Office
Prior art keywords
signal
magnetic
ring
digital
analogue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98945377A
Other languages
German (de)
French (fr)
Other versions
EP1017967A1 (en
Inventor
Francis Travostino
A. John Santos
Mark E. Lacroix
Stephen J. Lyle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN SNR Roulements SA
Original Assignee
Societe Nouvelle de Roulements SNR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nouvelle de Roulements SNR SA filed Critical Societe Nouvelle de Roulements SNR SA
Publication of EP1017967A1 publication Critical patent/EP1017967A1/en
Application granted granted Critical
Publication of EP1017967B1 publication Critical patent/EP1017967B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2455Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
    • G01D5/2457Incremental encoders having reference marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the invention relates to a relative digital position sensor, of magnetic type, delivering a reference pulse per revolution, more particularly used in sensor bearings for automotive or industrial applications.
  • a sensor can be mounted in wheel bearings or in motor vehicle steering column bearings to inform the navigation systems or to control the trajectory of the vehicle, or even in control and position control systems.
  • a robot or an electric motor for example.
  • a relative position sensor that additionally delivers an output signal, called “top tower”, consisting of a single pulse per revolution, whose length or duration may vary depending on the devices, is very interesting because this signal can be used as a reference for performing resets of the processing systems connected downstream to the sensor, and to know by counting / down-counting the position of a rotor with respect to this reference position.
  • optical encoder type relative position sensors which output digital signals, each having a number of pulses determined per revolution and phase shifted by 90 ° electrical relative to each other in order to discriminate the sense of rotation.
  • signals are represented in FIG. 1, where they are referenced A and B and a reference signal C "top tower", consisting of a single pulse per revolution, the rising edge of which corresponds to any edge of one of the two signals A or B, but whose falling edge corresponds to the next edge of the other signal.
  • optical type sensors For reasons of reliability, the use of these optical type sensors is limited to applications performed in mild environments, with a low level of pollution and an ambient temperature of less than 100 ° C.
  • magnetic type sensors that can operate under harsher industrial conditions and are economically advantageous. They may consist on the one hand of a multipolar magnetic ring, on which is printed a succession of North and South poles and which is connected to the movable part of the rotating member whose relative position is sought, and of secondly, one or more magnetic sensors connected to the fixed part of said member. These magnetic sensors are for example Hall effect probes or magnetoresistive probes that can be integrated in bearings.
  • the aim of the invention is to overcome these drawbacks by proposing a relative position sensor capable of generating a "top tower” reference signal, of reduced dimensions and able to overcome the various assembly tolerances of the magnetic sensor elements facing the magnetic rings. multipolar solidarity in rotation of the rotating members.
  • the object of the invention is a relative positional digital sensor, comprising on the one hand a circular multipolar magnetic ring, on which are magnetized a plurality of pairs of North and South poles, equidistant, constant angular width constant movable in rotation opposite a fixed magnetic sensor composed of at least two sensitive elements, located on the same radius of the ring and distant by a length d, respectively positioned opposite the main track and the track reference "top tower”, and secondly a device for processing the output signals emitted by the sensitive elements, intended to give a reference pulse per revolution of a rotating member integral with the multipole ring, characterized in that, on the multipole ring, a magnetic pattern is formed from a pair of North and South poles whose transition is different from the transition between each North and South pole of the ring, and whose angular width of the North Pole is equal to that of the South Pole at the main runway and other different part of the reference track "top tour".
  • the magnetic sensor is composed of three sensitive elements, the first of which is situated opposite the reference track "top tower", and the other two of which are situated opposite the main magnetic strip of such that one of them is located on the same radius of the magnetic ring as the sensitive element of the reference track at a distance d, and that they are offset with respect to each other. along the main track to deliver respective signals in quadrature.
  • the magnetic sensor is composed of two bars of sensitive magnetic elements, situated opposite the two main magnetic and reference tracks "top tower", are parallel and distant by a length d, and are composed of a plurality of sensitive elements, preferably in even and equal numbers for the two bars, each sensitive element of a bar being located, facing a sensitive element of the other bar.
  • the invention will be advantageously used in sensor bearings for automotive applications such as navigation and trajectory control, through the wheel bearings or steering column, or for industrial applications when it is necessary to control and control the position of an organ, an electric motor for example.
  • the relative position digital sensor is made from a circular multipolar magnetic ring, integral with the mobile part of an organ whose relative angular position is measured, so that it is rotated at the same time as it.
  • this magnetic ring 1 comprises, on one of its faces, a plurality of North and South poles, equidistant, succeeding each other so that a North pole, respectively South, is always surrounded by two poles. South, respectively North.
  • the average angular width of the North and South poles remains constant.
  • the digital sensor also comprises at least two sensitive elements 6 and 7, distant by a length d along a radius r, and respectively positioned opposite the main track 4 and the reference track "top tower" 5.
  • the element 6 of the magnetic sensor device 11 reads the magnetic field emitted by the main magnetic strip 4, while simultaneously the sensitive element 7 reads the magnetic field emitted by the reference track 5.
  • the magnetic ring 1 comprises a specific magnetic pattern 10, consisting of two adjacent poles, North and South, separated by a magnetic transition of particular shape, different from the theoretical radial transition between the other poles. of the ring, so that the angular width of the north and south poles of the angular pattern, at the level of the reference track "top tour" 5, is different from those of the other poles.
  • the magnetic transition 3 between the two north and south poles of the specific pattern 10 is along a line segment, inclined by an angle ⁇ by relation to the direction of the transitions between the North and South poles of the other pairs of the ring, here confused with a radius r of the ring, in dashed lines, the center R of the rotation of angle ⁇ being on the main track 4.
  • the second sensitive element 7 of the magnetic sensor device 11 is located on a circle of different diameter, in this case greater than that of the main track 4, so that the magnetic field that it reads on this reference track has a feature at the magnetic pattern 10 whose two North and South poles are of different widths.
  • the pattern has an inclined transition of an angle ⁇ compared to the transition between the other poles.
  • Figures 3 and 3b show a typical record of the magnetic field B provided in a direction y by passing a beam of the multipolar magnetic ring 1, preferably in the center of a pole, respectively in the case of a ring, one of the faces is magnetized and in the case of a linear ring.
  • the two curves each have a plate 18 above magnetic magnetic material, between the inner diameter ⁇ INT and outer diameter ⁇ EXT , and decreases 19 as soon as we get closer to the edge of the magnetized part.
  • d be the distance between the sensitive elements, placed above the two magnetic tracks 4 and 5, and let 2T be the mechanical positioning tolerances in the direction of a radius y of the sensor 11 with respect to the tracks 4 and 5, to overcome the mounting tolerances according to this radius y, it is necessary that the length of the plate 18 is equal to at least d + 2T so as to obtain a constant useful magnetic field and a good operation of the specific treatment "top tower".
  • Figures 4 a and 4 b show a magnetic pattern 10 formed on a multipolar ring 1, the main track is not centered in the middle but shifted to the inside diameter to the outside diameter respectively.
  • the transition is like that of FIG. 2, that is to say along a line segment obtained by rotation of a radius r of angle ⁇ and of center R located on the main track 4.
  • This design makes it possible to optimize the width of the magnetic ring, reducing its width for example.
  • FIGS. 4c and 4d show a second embodiment of a magnetic pattern, whose specific transition 3 is composed of two line segments, a first segment 31 along a radius r of the magnetic ring 1 which divides the pattern in two equal parts to maintain a constant angular pole width at the main track 4 and at the adjacent diameters of ⁇ 2T, and a second segment 32 inclined by an angle ⁇ relative to the first segment at the level of the main track 4 of the reference track 5.
  • the magnetic transition 3 between the two north and south poles of the pattern 10 is composed of a first line segment 33, which coincides with a radius r of the magnetic ring 1 dividing the pattern 10 in two equal parts, according to the conventional transition at the main track 4 and the diameters adjacent to ⁇ 2T, and a second line segment 34, which coincides with a radius r ', shifted by an angle 6 relative to the radius r.
  • This second straight segment divides the pattern 10 into two unequal parts but keeps a constant angular pole width at the reference track 5 and diameters adjacent to ⁇ 2T, during the electronic processing of the reference signal "top tower", that the multipolar magnetic ring 1 is magnetized on a flat face or on its outer cylindrical ring.
  • FIGS. 4 g and 4 h A variant of the preceding transition is shown in FIGS. 4 g and 4 h , for which the line segments 33 and 34, located at the two magnetic tracks 4 and 5, are connected at the level of the middle of the multipole ring by a loop 35 for attenuating the magnetic influences between the tracks.
  • the two sensitive elements 6 and 7 of the magnetic sensor device 11 respectively deliver the electrical signals S 6 and S 7 , whose electronic processing by a specific device 12 allows to obtain a reference signal "top turn” C, shown in Figure 5.
  • This device 12 for generating a reference pulse is constituted firstly by a differentiating circuit 8, making the analog difference between the signals d input S 6 and S 7 , for outputting a reference signal "top turn” S TT .
  • the device 12 is then constituted by a comparator circuit 9, for comparing said reference analog signal S TT with a fixed reference threshold S SE , which is chosen between the upper and lower limits of the signal S TT , whatever the Operating temperature.
  • the amplitude of the analog reference signal S TT is weighted firstly by a first operating factor at high temperatures, which decreases it at the transition between the north and south poles of the magnetic pattern 10, and secondly, by a second operating factor at low temperatures, which increases it outside the pattern.
  • a reference digital signal C "top tower” which serves as a reference pulse
  • the electrical signals S 6 , S 7 , S TT and S SE are voltages or currents.
  • the invention proposes an electronic processing of the signals emitted by the sensitive elements of the sensor 11 which is ratiometric compared to another signal whose amplitude varies parallel to theirs.
  • the magnetic field as well as the sensitivity of the magnetic sensors decreases significantly when the temperature increases, just as the magnetic field also decreases when the air gap increases. It is therefore interesting to take into account the conjunction of these two physical phenomena.
  • this magnetic sensor 11 is composed of three sensitive elements, the first 7 of which is situated opposite the reference track 5 as previously and the other two 61 and 62 are located opposite the main magnetic strip 4 to read the magnetic field emitted by the multipole magnetic ring 1.
  • These sensitive elements 61 and 62 are offset with respect to each other along the the main track 4 so that, when one of these elements, 61 for example, is located opposite a magnetic transition between two North and South poles, the other element, 62 in this case, is located in the middle of a magnetic pole, in other words that they are in quadrature.
  • the two sensitive elements 61 and 62 of the main track 4 appear above the same South pole, but the ring being in rotation, they can be above two distinct poles.
  • the electronic processing of the signals S 61 , S 62 and S 7 , output from the magnetic sensor 11, is performed by a device 120 for generating a reference pulse C, which comprises, as shown in FIG. firstly, a differentiating circuit 80 intended to effect the analog difference between the signal S 61 emitted by the sensor element of the main track 4 and the signal S 7 emitted by the sensor element 7 of the reference track 5 located on the same radius of ring 1 as him. This results in an analog signal S TT reference "top turn".
  • the device 120 then comprises two comparator circuits 91 and 92.
  • the first comparator 91 compares the signal S 62 of the sensitive element 62 in quadrature with the element 61, with the analog signal "top turn" S TT , to deliver a signal digital D 1 which is in the logic state 1 when the signal S 62 is greater than the signal S TT and in the 0 state inversely
  • the second comparator 92 compares the same signal S 62 with the signal S 61 emitted by the another sensitive element 61, for outputting a digital signal D 2 , which is in the logic state 1 when the signal S 62 is greater than the signal S 61 and in the 0 state inversely.
  • the comparator 92 is connected to a falling edge detector 13 whose output signal D 3 generates a pulse on each falling edge of the logic signal D 2 . Then, the digital signals D 1 and D 3 enter an AND logic gate 14, to generate a digital signal D 4 consisting of a single pulse 16 per revolution of the multipole magnetic ring 1.
  • This single pulse 16 which appears only once per revolution and always at the same position with respect to the magnetic ring 1, serves as rising edge to the reference pulse 17 of the binary signal c "top turn", whose duration of the high state is adjusted with respect to the desired output signal by a synchronization circuit 15, receiving as input the digital signal D 4 as well as the signals A and B.
  • This embodiment of the generation device 120 is a non-limiting example.
  • the relative position digital sensor comprises two bars of sensitive magnetic elements 20 and 21, intended to free it on the one hand from a precise positioning between two consecutive elements. located opposite the main magnetic strip 4, and on the other hand taking into account the different angular widths possible North and South poles.
  • the bars 20 and 21, located opposite the two main magnetic tracks 4 and "top tower" 5, are parallel and distant by a length d, and are composed of a plurality of sensitive elements 20 i and 21 i respective, i being a positive integer, preferably even and equal for the two bars, each sensitive element of a bar being located opposite a sensitive element of the other bar.
  • the device 121 for generating a "top-turn" reference signal C comprises, according to FIG. 11, analogue summation means 22 of the first half of the signals coming from the bar 20, referenced. S 20 (1) to S 20 (n) for delivering an analog signal E 1 , then analog summing means 23 of the second half of the signals from this same strip 20, referenced S 20 (n + 1) to S 20 (2n) to deliver another analog signal E 2 , and finally analog summing means 24 of the signals from the second bar 21 which deliver a third analog signal E 3 .
  • the device 121 then comprises an analog summation circuit 25 of the signals E 1 and E 2 , originating from the summers 22 and 23, which delivers an analog signal S SIN , then two analog differentiating circuits 81 and 82, one of which 81 carries out the difference of the signals E 1 and E 2 from the summators 22 and 23 to deliver an analog signal S COS and the other 82 makes the difference between the signal S SIN and the signal E 3 respectively from the summers 25 and 24.
  • the signal the output of the differentiating circuit 82 is the analogue signal S TT reference "top turn".
  • the generation device 121 then comprises two comparators, one of which compares the signal S COS coming from the differentiator with the analog signal "top tower" S TT to deliver a digital signal D 1 which is in the logic state 1 when the signal S COS is greater than S TT and the state 0 inversely, and the other 94 compares the same signal S COS with the signal S SIN from the summator 25 to deliver a digital signal D 2 , equal to 1 when the signal S COS is greater than S SIN and equal to 0 inversely.
  • the comparator 94 is connected to a falling edge detector 13 whose output signal D 3 generates a pulse on each falling edge of the logic signal D 2 .
  • An AND logic gate 14, receiving the digital signals D 1 and D 3 generates a digital signal D 4 in the form of a single pulse 16 per revolution of the magnetic ring 1.
  • a synchronization circuit 15 receives this single pulse per revolution, as well as the signals A and B, to adjust the length of the high state of the reference pulse 17 of the "top turn" output signal C with respect to the signal of desired exit.
  • FIG. 12 is a graphical representation of the various signals obtained during the electronic processing of the signals coming from the arrays of magnetic sensor elements.
  • FIGS. 13, 14 and 15 are the graphical representations of the electrical signals E 3 , S SIN and the reference signal "top tower" S TT , previously described, and their equivalents on the diameters at + or - 2T, relating to FIGS. at 4b, 4c to 4d and 4th to 4d.
  • the sensitive elements of the sensor 6, 7, 61 and 62, such as the bars 20 and 21, may be of the Hall effect probe type, or amorphous magneto-resistive probe or giant magnetoresistive probe.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

L'invention se rapporte à un capteur numérique de position relative, de type magnétique, délivrant une impulsion de référence par tour, plus particulièrement utilisé dans les roulements capteurs pour des applications automobiles ou industrielles. Un tel capteur peut être monté dans des roulements de roue ou dans des roulements de colonne de direction de véhicules automobiles pour renseigner les systèmes de navigation ou pour contrôler la trajectoire du véhicule, ou bien encore dans des systèmes de contrôle et de pilotage de la position d'un robot ou d'un moteur électrique par exemple.The invention relates to a relative digital position sensor, of magnetic type, delivering a reference pulse per revolution, more particularly used in sensor bearings for automotive or industrial applications. Such a sensor can be mounted in wheel bearings or in motor vehicle steering column bearings to inform the navigation systems or to control the trajectory of the vehicle, or even in control and position control systems. a robot or an electric motor for example.

Un capteur de position relative qui délivre en plus un signal de sortie, dit "top tour", constitué par une seule impulsion par tour, dont la longueur ou la durée peut varier en fonction des dispositifs, est très intéressant car ce signal peut être utilisé comme référence pour effectuer des réinitialisations des systèmes de traitement connectés en aval au capteur, et connaître par comptage/décomptage la position d'un rotor par rapport à cette position de référence.A relative position sensor that additionally delivers an output signal, called "top tower", consisting of a single pulse per revolution, whose length or duration may vary depending on the devices, is very interesting because this signal can be used as a reference for performing resets of the processing systems connected downstream to the sensor, and to know by counting / down-counting the position of a rotor with respect to this reference position.

Il existe actuellement des capteurs de position relative de type codeur optique, qui délivrent en sortie des signaux digitaux, possédant chacun un nombre d'impulsions déterminé par tour et déphasés de 90° électrique l'un par rapport à l'autre afin de discriminer le sens de rotation. De tels signaux sont représentés sur la figure 1, où ils sont référencés A et B ainsi qu'un signal C de référence "top tour", constitué d'une seule impulsion par tour, dont le front montant correspond à un front quelconque d'un des deux signaux A ou B, mais dont le front descendant correspond au front suivant de l'autre signal.There are currently optical encoder type relative position sensors, which output digital signals, each having a number of pulses determined per revolution and phase shifted by 90 ° electrical relative to each other in order to discriminate the sense of rotation. Such signals are represented in FIG. 1, where they are referenced A and B and a reference signal C "top tower", consisting of a single pulse per revolution, the rising edge of which corresponds to any edge of one of the two signals A or B, but whose falling edge corresponds to the next edge of the other signal.

Pour des raisons de fiabilité, l'utilisation de ces capteurs de type optique est limitée à des applications réalisées dans des ambiances peu sévères, présentant un faible niveau de pollution et une température ambiante inférieure à 100°C.For reasons of reliability, the use of these optical type sensors is limited to applications performed in mild environments, with a low level of pollution and an ambient temperature of less than 100 ° C.

Il existe également des capteurs de type magnétique qui peuvent fonctionner dans des conditions industrielles plus sévères et qui sont économiquement avantageux. Ils peuvent être constitués d'une part d'un anneau magnétique multipolaire, sur lequel est imprimée une succession de pôles Nord et Sud et qui est lié à la partie mobile de l'organe en rotation dont on cherche la position relative, et d'autre part d'un ou plusieurs capteurs magnétiques liés à la partie fixe dudit organe. Ces capteurs magnétiques sont par exemple des sondes à effet Hall ou des sondes magnétorésistives qui peuvent être intégrées dans des roulements.There are also magnetic type sensors that can operate under harsher industrial conditions and are economically advantageous. They may consist on the one hand of a multipolar magnetic ring, on which is printed a succession of North and South poles and which is connected to the movable part of the rotating member whose relative position is sought, and of secondly, one or more magnetic sensors connected to the fixed part of said member. These magnetic sensors are for example Hall effect probes or magnetoresistive probes that can be integrated in bearings.

Par contre, dans le cas où un tel capteur de position relative, de type magnétique, doit délivrer une information de référence "top tour", les pistes magnétiques, principale et "top tour", doivent être suffisamment écartées l'une de l'autre en raison des fortes influences magnétiques s'exerçant entre elles, ce qui provoque un important encombrement. Ce qui est particulièrement vrai si on souhaite utiliser les signaux issus de la piste principale pour augmenter électroniquement la résolution des signaux de sortie par des procédés d'interpolation connus. Cet inconvénient peut empêcher le montage d'un tel capteur dans certains organes, où la place est réduite.On the other hand, in the case where such a relative position sensor, of magnetic type, must deliver reference information "top tour", the magnetic tracks, main and "top tower", must be sufficiently separated from one of the other because of the strong magnetic influences exerted between them, which causes a large congestion. This is particularly true if you want to use the signals from the main track to electronically increase the resolution of the output signals by known interpolation methods. This disadvantage can prevent the mounting of such a sensor in some organs, where the place is reduced.

L'invention vise à pallier ces inconvénients en proposant un capteur de position relative capable de générer un signal de référence "top tour", de dimensions réduites et capables de s'affranchir des diverses tolérances d'assemblage des éléments capteurs magnétiques face aux anneaux magnétiques multipolaires solidaires en rotation des organes tournants.The aim of the invention is to overcome these drawbacks by proposing a relative position sensor capable of generating a "top tower" reference signal, of reduced dimensions and able to overcome the various assembly tolerances of the magnetic sensor elements facing the magnetic rings. multipolar solidarity in rotation of the rotating members.

Pour cela, l'objet de l'invention est un capteur numérique de position relative, comprenant d'une part un anneau magnétique multipolaire circulaire, sur lequel sont aimantées une pluralité de paires de pôles Nord et Sud, équirépartis, de largeur angulaire déterminée constante, mobile en rotation en face d'un capteur magnétique fixe composé d'au moins deux éléments sensibles, situés sur un même rayon de l'anneau et distants d'une longueur d, respectivement positionnés en regard de la piste principale et de la piste de référence "top tour", et d'autre part d'un dispositif de traitement des signaux de sortie émis par les éléments sensibles, destiné à donner une impulsion de référence par tour d'un organe en rotation solidaire de l'anneau multipolaire, caractérisé en ce que, sur l'anneau multipolaire, est réalisé un motif magnétique à partir d'une paire de pôles Nord et Sud dont la transition est différente de la transition entre chaque pôle Nord et Sud de l'anneau, et dont la largeur angulaire du pôle Nord est d'une part égale à celle du pôle Sud au niveau de la piste principale et d'autre part différente au niveau de la piste de référence "top tour".For this, the object of the invention is a relative positional digital sensor, comprising on the one hand a circular multipolar magnetic ring, on which are magnetized a plurality of pairs of North and South poles, equidistant, constant angular width constant movable in rotation opposite a fixed magnetic sensor composed of at least two sensitive elements, located on the same radius of the ring and distant by a length d, respectively positioned opposite the main track and the track reference "top tower", and secondly a device for processing the output signals emitted by the sensitive elements, intended to give a reference pulse per revolution of a rotating member integral with the multipole ring, characterized in that, on the multipole ring, a magnetic pattern is formed from a pair of North and South poles whose transition is different from the transition between each North and South pole of the ring, and whose angular width of the North Pole is equal to that of the South Pole at the main runway and other different part of the reference track "top tour".

Selon une autre caractéristique de l'invention, le capteur magnétique est composé de trois éléments sensibles dont le premier est situé en regard de la piste de référence "top tour", et dont les deux autres sont situés en regard de la piste magnétique principale de telle sorte que l'un des deux est situé sur le même rayon de l'anneau magnétique que l'élément sensible de la piste de référence à une distance d, et qu'ils sont décalés l'un par rapport à l'autre le long de la piste principale afin de délivrer des signaux respectifs en quadrature.According to another characteristic of the invention, the magnetic sensor is composed of three sensitive elements, the first of which is situated opposite the reference track "top tower", and the other two of which are situated opposite the main magnetic strip of such that one of them is located on the same radius of the magnetic ring as the sensitive element of the reference track at a distance d, and that they are offset with respect to each other. along the main track to deliver respective signals in quadrature.

Selon une autre caractéristique de l'invention, le capteur magnétique est composé de deux barrettes d'éléments magnétiques sensibles, situées en regard des deux pistes magnétiques principale et de référence "top tour", sont parallèles et distantes d'une longueur d, et sont composées d'une pluralité d'éléments sensibles, de préférence en nombre pair et égal pour les deux barrettes, chaque élément sensible d'une barrette étant situé, en regard d'un élément sensible de l'autre barrette.According to another characteristic of the invention, the magnetic sensor is composed of two bars of sensitive magnetic elements, situated opposite the two main magnetic and reference tracks "top tower", are parallel and distant by a length d, and are composed of a plurality of sensitive elements, preferably in even and equal numbers for the two bars, each sensitive element of a bar being located, facing a sensitive element of the other bar.

L'invention sera avantageusement utilisée dans des roulements capteurs pour des applications automobiles telles que la navigation et le contrôle de trajectoire, par l'intermédiaire des roulements de roue ou de colonne de direction, ou pour des applications industrielles lorsqu'il faut contrôler et piloter la position d'un organe, un moteur électrique par exemple.The invention will be advantageously used in sensor bearings for automotive applications such as navigation and trajectory control, through the wheel bearings or steering column, or for industrial applications when it is necessary to control and control the position of an organ, an electric motor for example.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, de plusieurs exemples de réalisation non limitatifs, illustrée par les figures suivantes qui sont :

  • la figure 1 : une représentation graphique des signaux de sortie d'un capteur numérique de position relative avec impulsion de référence "top tour" ;
  • les figures 2, 7, 10 : une portion d'un capteur numérique selon l'invention, suivant une vue de face de différents modes de réalisation;
  • les figures 3a et 3b : une représentation graphique des profils de champ magnétique observés le long d'un rayon d'un codeur magnétique multipolaire ;
  • les figures 4a à 4j : différents motifs magnétiques d'un capteur numérique selon l'invention ;
  • les figures 5, 8, 11 : un schéma électronique de différents modes de réalisation du dispositif de traitement des signaux du capteur numérique selon l'invention ;
  • les figures 6, 9, 12 : une représentation graphique des signaux électriques disponibles dans le dispositif de traitement du capteur numérique selon l'invention ;
  • les figures 13 à 15 : différents signaux électriques analogiques caractéristiques du dispositif de traitement des différents capteurs digitaux selon l'invention.
Les éléments portant les mêmes références, sur les différentes figures, remplissent les mêmes fonctions en vue des mêmes résultats.Other features and advantages of the invention will appear on reading the following description of several nonlimiting exemplary embodiments, illustrated by the following figures which are:
  • FIG. 1: a graphical representation of the output signals of a relative position digital sensor with reference pulse "top tour";
  • Figures 2, 7, 10: a portion of a digital sensor according to the invention, according to a front view of different embodiments;
  • Figures 3 and 3b: a graphic representation of magnetic field patterns observed along a radius of a multipolar magnetic encoder;
  • Figures 4 a to 4 j: different magnetic patterns of a digital sensor according to the invention;
  • FIGS. 5, 8, 11: an electronic diagram of different embodiments of the signal processing device of the digital sensor according to the invention;
  • FIGS. 6, 9, 12: a graphical representation of the electrical signals available in the digital sensor processing device according to the invention;
  • Figures 13 to 15: various analog electrical signals characteristic of the processing device of the different digital sensors according to the invention.
The elements bearing the same references, in the different figures, perform the same functions in view of the same results.

Le capteur numérique de position relative, objet de l'invention, est réalisé à partir d'un anneau magnétique multipolaire, circulaire, solidaire de la partie mobile d'un organe dont on mesure la position angulaire relative, de telle sorte qu'il soit entraîné en rotation en même temps que lui.
Comme le montre la figure 2, cet anneau magnétique 1. comporte, sur une de ses faces, une pluralité de pôles Nord et Sud, équirépartis, se succédant de telle sorte qu'un pôle Nord, respectivement Sud, soit toujours entouré de deux pôles Sud, respectivement Nord. La largeur angulaire moyenne des pôles Nord et Sud reste constante.
The relative position digital sensor, object of the invention, is made from a circular multipolar magnetic ring, integral with the mobile part of an organ whose relative angular position is measured, so that it is rotated at the same time as it.
As shown in FIG. 2, this magnetic ring 1 comprises, on one of its faces, a plurality of North and South poles, equidistant, succeeding each other so that a North pole, respectively South, is always surrounded by two poles. South, respectively North. The average angular width of the North and South poles remains constant.

Le capteur numérique comprend également au moins deux éléments 6 et 7 sensibles, distants d'une longueur d suivant un rayon r, et respectivement positionnés en regard de la piste principale 4 et de la piste de référence "top tour" 5. L'élément sensible 6 du dispositif capteur magnétique 11 lit le champ magnétique émis par la piste magnétique principale 4, tandis que, simultanément, l'élément sensible 7 lit le champ magnétique émis par la piste de référence 5.The digital sensor also comprises at least two sensitive elements 6 and 7, distant by a length d along a radius r, and respectively positioned opposite the main track 4 and the reference track "top tower" 5. The element 6 of the magnetic sensor device 11 reads the magnetic field emitted by the main magnetic strip 4, while simultaneously the sensitive element 7 reads the magnetic field emitted by the reference track 5.

Selon une caractéristique fondamentale de l'invention, l'anneau magnétique 1 comporte un motif magnétique spécifique 10, constitué de deux pôles adjacents, Nord et Sud, séparés par une transition magnétique de forme particulière, différente de la transition radiale théorique entre les autres pôles de l'anneau, de telle sorte que la largeur angulaire des pôles Nord et Sud du motif angulaire, au niveau de la piste de référence "top tour" 5, soit différente de celles des autres pôles.According to a fundamental characteristic of the invention, the magnetic ring 1 comprises a specific magnetic pattern 10, consisting of two adjacent poles, North and South, separated by a magnetic transition of particular shape, different from the theoretical radial transition between the other poles. of the ring, so that the angular width of the north and south poles of the angular pattern, at the level of the reference track "top tour" 5, is different from those of the other poles.

Dans un premier mode de réalisation, correspondant au cas particulier de la figure 2, où la piste magnétique principale 4 est un cercle divisant l'anneau magnétique 1 en deux parties d'égales largeurs, la transition magnétique 3 entre les deux pôles Nord et Sud du motif spécifique 10, se fait suivant un segment de droite, incliné d'un angle α par rapport à la direction des transitions entre les pôles Nord et Sud des autres paires de l'anneau, ici confondue avec un rayon r de l'anneau, en pointillés, le centre R de la rotation d'angle α se trouvant sur la piste principale 4. Le second élément sensible 7 du dispositif capteur magnétique 11 est situé sur un cercle de diamètre différent, en l'occurrence supérieur à celui de la piste principale 4, de sorte que le champ magnétique qu'il lit sur cette piste de référence présente une particularité au niveau du motif magnétique 10 dont les deux pôles Nord et Sud sont de largeurs différentes.In a first embodiment, corresponding to the particular case of FIG. 2, where the magnetic stripe main 4 is a circle dividing the magnetic ring 1 into two parts of equal widths, the magnetic transition 3 between the two north and south poles of the specific pattern 10, is along a line segment, inclined by an angle α by relation to the direction of the transitions between the North and South poles of the other pairs of the ring, here confused with a radius r of the ring, in dashed lines, the center R of the rotation of angle α being on the main track 4. The second sensitive element 7 of the magnetic sensor device 11 is located on a circle of different diameter, in this case greater than that of the main track 4, so that the magnetic field that it reads on this reference track has a feature at the magnetic pattern 10 whose two North and South poles are of different widths.

Dans le cas d'un anneau dont la surface cylindrique extérieure est aimantée réalisant un codeur magnétique multipolaire linéaire, sur lequel les transitions entre les pôles sont confondues avec des directrices de la couronne cylindrique extérieure, le motif présente une transition inclinée d'un angle α par rapport à la transition entre les autres pôles.In the case of a ring whose outer cylindrical surface is magnetized producing a linear multipolar magnetic encoder, on which the transitions between the poles coincide with the directions of the outer cylindrical ring, the pattern has an inclined transition of an angle α compared to the transition between the other poles.

Les figures 3a et 3b montrent un relevé typique du champ magnétique B disponible suivant une direction y passant par un rayon de l'anneau magnétique multipolaire 1, de préférence au centre d'un pôle, respectivement dans le cas d'un anneau dont une des faces est aimantée et dans le cas d'un anneau linéaire. Les deux courbes présentent chacune un plateau 18 au-dessus du matériau magnétique aimanté, entre les diamètres intérieur ΦINT et extérieur ΦEXT, et des décroissances 19 dès que l'on se rapproche du bord de la partie aimantée. Soit d, la distance entre les éléments sensibles, placés au-dessus des deux pistes magnétiques 4 et 5, et soit 2T, les tolérances mécaniques de positionnement suivant la direction d'un rayon y du capteur 11 par rapport aux pistes 4 et 5, pour s'affranchir des tolérances de montage suivant ce rayon y, il faut que la longueur du plateau 18 soit égale au moins à d+2T de façon à obtenir un champ magnétique utile constant et un bon fonctionnement du traitement spécifique "top tour".Figures 3 and 3b show a typical record of the magnetic field B provided in a direction y by passing a beam of the multipolar magnetic ring 1, preferably in the center of a pole, respectively in the case of a ring, one of the faces is magnetized and in the case of a linear ring. The two curves each have a plate 18 above magnetic magnetic material, between the inner diameter Φ INT and outer diameter Φ EXT , and decreases 19 as soon as we get closer to the edge of the magnetized part. Let d be the distance between the sensitive elements, placed above the two magnetic tracks 4 and 5, and let 2T be the mechanical positioning tolerances in the direction of a radius y of the sensor 11 with respect to the tracks 4 and 5, to overcome the mounting tolerances according to this radius y, it is necessary that the length of the plate 18 is equal to at least d + 2T so as to obtain a constant useful magnetic field and a good operation of the specific treatment "top tower".

Les figures 4a et 4b représentent un motif magnétique 10 réalisé sur un anneau multipolaire 1, dont la piste principale n'est pas centrée au milieu mais décalée vers le diamètre intérieur et vers le diamètre extérieur respectivement. La transition se fait comme celle de la figure 2, c'est-à-dire suivant un segment de droite obtenu par rotation d'un rayon r d'angle α et de centre R situé sur la piste principale 4. Cette conception permet d'optimiser la largeur de l'anneau magnétique, en réduisant sa largeur par exemple.Figures 4 a and 4 b show a magnetic pattern 10 formed on a multipolar ring 1, the main track is not centered in the middle but shifted to the inside diameter to the outside diameter respectively. The transition is like that of FIG. 2, that is to say along a line segment obtained by rotation of a radius r of angle α and of center R located on the main track 4. This design makes it possible to optimize the width of the magnetic ring, reducing its width for example.

Les figures 4c et 4d représentent un deuxième mode de réalisation d'un motif magnétique, dont la transition spécifique 3 est composée de deux segments de droite, un premier segment 31 selon un rayon r de l'anneau magnétique 1 qui divise le motif en deux parties égales pour conserver une largeur de pôle angulaire constante au niveau de la piste principale 4 ainsi qu'au niveau des diamètres adjacents situés à ± 2T, et un second segment 32 incliné d'un angle β par rapport au premier segment au niveau de la piste de référence 5.FIGS. 4c and 4d show a second embodiment of a magnetic pattern, whose specific transition 3 is composed of two line segments, a first segment 31 along a radius r of the magnetic ring 1 which divides the pattern in two equal parts to maintain a constant angular pole width at the main track 4 and at the adjacent diameters of ± 2T, and a second segment 32 inclined by an angle β relative to the first segment at the level of the main track 4 of the reference track 5.

Sur les figures 4e et 4f, la transition magnétique 3 entre les deux pôles Nord et Sud du motif 10 est composée d'un premier segment de droite 33, qui est confondu avec un rayon r de l'anneau magnétique 1 divisant le motif 10 en deux parties égales, selon la transition classique au niveau de la piste principale 4 et des diamètres adjacents à ±2T, et d'un second segment de droite 34, qui est confondu avec un rayon r', décalé d'un angle 6 par rapport au rayon r. Ce second segment de droite divise le motif 10 en deux parties inégales mais conserve une largeur de pôle angulaire constante au niveau de la piste de référence 5 et des diamètres adjacents à ±2T, lors du traitement électronique du signal de référence "top tour", que l'anneau magnétique multipolaire 1 soit aimanté sur une face plane ou sur sa couronne cylindrique extérieure.In FIGS. 4 e and 4 f , the magnetic transition 3 between the two north and south poles of the pattern 10 is composed of a first line segment 33, which coincides with a radius r of the magnetic ring 1 dividing the pattern 10 in two equal parts, according to the conventional transition at the main track 4 and the diameters adjacent to ± 2T, and a second line segment 34, which coincides with a radius r ', shifted by an angle 6 relative to the radius r. This second straight segment divides the pattern 10 into two unequal parts but keeps a constant angular pole width at the reference track 5 and diameters adjacent to ± 2T, during the electronic processing of the reference signal "top tower", that the multipolar magnetic ring 1 is magnetized on a flat face or on its outer cylindrical ring.

Une variante de la transition précédente est représentée sur les figures 4g et 4h, pour lesquelles les segments de droite 33 et 34, situés au niveau des deux pistes magnétiques 4 et 5, sont reliées au niveau du milieu de l'anneau multipolaire par une boucle 35 destinée à atténuer les influences magnétiques entre les pistes.A variant of the preceding transition is shown in FIGS. 4 g and 4 h , for which the line segments 33 and 34, located at the two magnetic tracks 4 and 5, are connected at the level of the middle of the multipole ring by a loop 35 for attenuating the magnetic influences between the tracks.

Une autre variante du même type de transition est représentée sur les figures 4i et 4j, pour lesquels les segments de droite 33 et 34 sont reliés par une boucle 36 en forme de S au niveau du milieu de l'anneau.Another variant of the same type of transition is shown in Figures 4 i and 4 j , for which the line segments 33 and 34 are connected by an S-shaped loop 36 at the middle of the ring.

Les deux éléments sensibles 6 et 7 du dispositif capteur magnétique 11 délivrent respectivement les signaux électriques S6 et S7, dont le traitement électronique par un dispositif spécifique 12 permet d'obtenir un signal de référence "top tour" C, représenté sur la figure 5. Ce dispositif 12 de génération d'une impulsion de référence est constitué tout d'abord par un circuit différentiateur 8, effectuant la différence analogique entre les signaux d'entrée S6 et S7, pour délivrer un signal analogique de référence "top tour" STT. Le dispositif 12 est ensuite constitué par un circuit comparateur 9, destiné à comparer ledit signal analogique de référence STT à un seuil fixe de référence SSE, qui est choisi compris entre les limites supérieure et inférieure du signal STT, quelle que soit la température de fonctionnement. Ainsi, l'amplitude du signal analogique de référence STT est pondérée d'une part par un premier facteur de fonctionnement aux hautes températures, qui la diminue au niveau de la transition entre les pôles Nord et Sud du motif magnétique 10, et d'autre part par un second facteur de fonctionnement aux basses températures, qui l'augmente en dehors du motif. En sortie du comparateur 9, est généré un signal numérique C de référence "top tour", qui sert d'impulsion de référence, que les signaux électriques S6, S7, STT et SSE soient des tensions ou des courants.
Ces différents signaux sont représentés graphiquement sur la figure 6, pour la portion de l'anneau magnétique multipolaire 1 considérée sur la figure 2.
The two sensitive elements 6 and 7 of the magnetic sensor device 11 respectively deliver the electrical signals S 6 and S 7 , whose electronic processing by a specific device 12 allows to obtain a reference signal "top turn" C, shown in Figure 5. This device 12 for generating a reference pulse is constituted firstly by a differentiating circuit 8, making the analog difference between the signals d input S 6 and S 7 , for outputting a reference signal "top turn" S TT . The device 12 is then constituted by a comparator circuit 9, for comparing said reference analog signal S TT with a fixed reference threshold S SE , which is chosen between the upper and lower limits of the signal S TT , whatever the Operating temperature. Thus, the amplitude of the analog reference signal S TT is weighted firstly by a first operating factor at high temperatures, which decreases it at the transition between the north and south poles of the magnetic pattern 10, and secondly, by a second operating factor at low temperatures, which increases it outside the pattern. At the output of the comparator 9 is generated a reference digital signal C "top tower", which serves as a reference pulse, the electrical signals S 6 , S 7 , S TT and S SE are voltages or currents.
These different signals are represented graphically in FIG. 6, for the portion of the multipole magnetic ring 1 considered in FIG.

Pour s'affranchir de l'influence des variations de température d'une part et d'entrefer d'autre part, l'entrefer étant la distance entre la surface de l'anneau magnétique multipolaire 1 et les éléments sensibles du capteur magnétique 11, l'invention propose un traitement électronique des signaux émis par les éléments sensibles du capteur 11 qui soit ratiométrique par rapport à un autre signal dont l'amplitude varie parallèlement à la leur. En effet, le champ magnétique ainsi que la sensibilité des capteurs magnétiques décroissent notablement lorsque la température augmente, de même que le champ magnétique décroît également quand l'entrefer croit. Aussi est-il intéressant de prendre en compte la conjonction de ces deux phénomènes physiques.To overcome the influence of temperature variations on the one hand and air gap on the other hand, the gap being the distance between the surface of the multipole magnetic ring 1 and the sensitive elements of the magnetic sensor 11, the invention proposes an electronic processing of the signals emitted by the sensitive elements of the sensor 11 which is ratiometric compared to another signal whose amplitude varies parallel to theirs. Indeed, the magnetic field as well as the sensitivity of the magnetic sensors decreases significantly when the temperature increases, just as the magnetic field also decreases when the air gap increases. It is therefore interesting to take into account the conjunction of these two physical phenomena.

Selon une première variante de réalisation du capteur magnétique 11, faisant partie du capteur numérique de position relative selon l'invention, ce capteur magnétique 11 est composé de trois éléments sensibles, dont le premier 7 est situé en regard de la piste de référence 5 comme précédemment et dont les deux autres 61 et 62 sont situés en regard de la piste magnétique principale 4 pour lire le champ magnétique émis par l'anneau magnétique multipolaire 1.According to a first variant embodiment of the magnetic sensor 11, forming part of the relative position digital sensor according to the invention, this magnetic sensor 11 is composed of three sensitive elements, the first 7 of which is situated opposite the reference track 5 as previously and the other two 61 and 62 are located opposite the main magnetic strip 4 to read the magnetic field emitted by the multipole magnetic ring 1.

Ces éléments sensibles 61 et 62, dont l'un d'eux est situé sur le même rayon de l'anneau magnétique que l'élément sensible de la piste de référence, sont décalés l'un par rapport à l'autre le long de la piste principale 4 de telle sorte que, lorsqu'un de ces éléments, 61 par exemple, est situé en face d'une transition magnétique entre deux pôles Nord et Sud, l'autre élément, 62 dans ce cas, est situé au milieu d'un pôle magnétique, autrement dit qu'ils soient en quadrature.These sensitive elements 61 and 62, one of which is located on the same radius of the magnetic ring as the sensitive element of the reference track, are offset with respect to each other along the the main track 4 so that, when one of these elements, 61 for example, is located opposite a magnetic transition between two North and South poles, the other element, 62 in this case, is located in the middle of a magnetic pole, in other words that they are in quadrature.

Dans le cas de la figure 7, les deux éléments sensibles 61 et 62 de la piste principale 4 apparaissent au-dessus du même pôle Sud, mais l'anneau étant en rotation, ils peuvent se trouver au-dessus de deux pôles distincts.In the case of FIG. 7, the two sensitive elements 61 and 62 of the main track 4 appear above the same South pole, but the ring being in rotation, they can be above two distinct poles.

Le traitement électronique des signaux S61, S62 et S7, émis en sortie du capteur magnétique 11, est réalisé par un dispositif 120 de génération d'une impulsion de référence C, qui comprend, comme le montre la figure 8, tout d'abord un circuit différentiateur 80, destiné à effectuer la différence analogique entre le signal S61 émis par l'élément capteur de la piste principale 4 et le signal S7 émis par l'élément capteur 7 de la piste de référence 5 situé sur le même rayon de l'anneau 1 que lui. Il en résulte un signal analogique STT de référence "top tour". Le dispositif 120 comprend ensuite deux circuits comparateurs 91 et 92. Le premier comparateur 91 compare le signal S62 de l'élément sensible 62 en quadrature avec l'élément 61, avec le signal analogique "top tour" STT, pour délivrer un signal numérique D1 qui est à l'état logique 1 quand le signal S62 est supérieur au signal STT et à l'état 0 inversement, et le second comparateur 92 compare ce même signal S62 avec le signal S61 émis par l'autre élément sensible 61, pour délivrer un signal numérique D2, qui est à l'état logique 1 quand le signal S62 est supérieur au signal S61 et à l'état 0 inversement. Le comparateur 92 est relié à un détecteur de front descendant 13, dont le signal D3 de sortie génère une impulsion à chaque front descendant de signal logique D2. Puis, les signaux binaires D1 et D3 entrent dans une porte logique ET 14, pour générer un signal numérique D4 constitué d'une impulsion unique 16 par tour de l'anneau magnétique multipolaire 1.The electronic processing of the signals S 61 , S 62 and S 7 , output from the magnetic sensor 11, is performed by a device 120 for generating a reference pulse C, which comprises, as shown in FIG. firstly, a differentiating circuit 80 intended to effect the analog difference between the signal S 61 emitted by the sensor element of the main track 4 and the signal S 7 emitted by the sensor element 7 of the reference track 5 located on the same radius of ring 1 as him. This results in an analog signal S TT reference "top turn". The device 120 then comprises two comparator circuits 91 and 92. The first comparator 91 compares the signal S 62 of the sensitive element 62 in quadrature with the element 61, with the analog signal "top turn" S TT , to deliver a signal digital D 1 which is in the logic state 1 when the signal S 62 is greater than the signal S TT and in the 0 state inversely, and the second comparator 92 compares the same signal S 62 with the signal S 61 emitted by the another sensitive element 61, for outputting a digital signal D 2 , which is in the logic state 1 when the signal S 62 is greater than the signal S 61 and in the 0 state inversely. The comparator 92 is connected to a falling edge detector 13 whose output signal D 3 generates a pulse on each falling edge of the logic signal D 2 . Then, the digital signals D 1 and D 3 enter an AND logic gate 14, to generate a digital signal D 4 consisting of a single pulse 16 per revolution of the multipole magnetic ring 1.

L'ensemble de ces signaux décrits est représenté graphiquement sur la figure 9.All of these signals described are represented graphically in FIG. 9.

Cette impulsion unique 16, qui n'apparaît qu'une fois par tour et toujours à la même position par rapport à l'anneau magnétique 1, sert de front montant à l'impulsion de référence 17 du signal binaire c "top tour", dont la durée de l'état haut est ajustée par rapport au signal de sortie désiré par un circuit de synchronisation 15, recevant en entrée le signal numérique D4 ainsi que les signaux A et B. Ce mode de réalisation du dispositif 120 de génération est un exemple non limitatif.This single pulse 16, which appears only once per revolution and always at the same position with respect to the magnetic ring 1, serves as rising edge to the reference pulse 17 of the binary signal c "top turn", whose duration of the high state is adjusted with respect to the desired output signal by a synchronization circuit 15, receiving as input the digital signal D 4 as well as the signals A and B. This embodiment of the generation device 120 is a non-limiting example.

Selon une deuxième variante de réalisation des éléments sensibles de l'invention, le capteur numérique de position relative comprend deux barrettes d'éléments magnétiques sensibles 20 et 21, destinées à l'affranchir d'une part d'un positionnement précis entre deux éléments consécutifs situés en regard de la piste magnétique principale 4, et d'autre part d'une prise en compte des différentes largeurs angulaires possibles des pôles Nord et Sud.According to a second variant embodiment of the sensitive elements of the invention, the relative position digital sensor comprises two bars of sensitive magnetic elements 20 and 21, intended to free it on the one hand from a precise positioning between two consecutive elements. located opposite the main magnetic strip 4, and on the other hand taking into account the different angular widths possible North and South poles.

Comme le montre la figure 10, les barrettes 20 et 21, situées en regard des deux pistes magnétiques principale 4 et "top tour" 5, sont parallèles et distantes d'une longueur d, et sont composées d'une pluralité d'éléments sensibles 20i et 21i respectifs, i étant un nombre entier positif, de préférence pair et égal pour les deux barrettes, chaque élément sensible d'une barrette étant situé en regard d'un élément sensible de l'autre barrette.As shown in FIG. 10, the bars 20 and 21, located opposite the two main magnetic tracks 4 and "top tower" 5, are parallel and distant by a length d, and are composed of a plurality of sensitive elements 20 i and 21 i respective, i being a positive integer, preferably even and equal for the two bars, each sensitive element of a bar being located opposite a sensitive element of the other bar.

Le dispositif 121 de génération d'un signal de référence "top tour" C comporte, selon la figure 11, des moyens de sommation analogique 22 de la première moitié des signaux issus de la barrette 20, référencés. S20(1) à S20(n) pour délivrer un signal analogique E1, puis des moyens de sommation analogique 23 de la seconde moitié des signaux issus de cette même barrette 20, référencés S20(n+1) à S20(2n) pour délivrer un autre signal analogique E2, et enfin des moyens de sommation analogique 24 des signaux issus de la seconde barrette 21 qui délivrent un troisième signal analogique E3. Le dispositif 121 comporte ensuite un circuit de sommation analogique 25 des signaux E1 et E2, issus des sommateurs 22 et 23, qui délivre un signal analogique SSIN, puis deux circuits différentiateurs analogiques 81 et 82, dont l'un 81 effectue la différence des signaux E1 et E2 issus des sommateurs 22 et 23 pour délivrer un signal analogique SCOS et dont l'autre 82 effectue la différence entre le signal SSIN et le signal E3 issus respectivement des sommateurs 25 et 24. Le signal de sortie du circuit différentiateur 82 est le signal analogique STT de référence "top tour".The device 121 for generating a "top-turn" reference signal C comprises, according to FIG. 11, analogue summation means 22 of the first half of the signals coming from the bar 20, referenced. S 20 (1) to S 20 (n) for delivering an analog signal E 1 , then analog summing means 23 of the second half of the signals from this same strip 20, referenced S 20 (n + 1) to S 20 (2n) to deliver another analog signal E 2 , and finally analog summing means 24 of the signals from the second bar 21 which deliver a third analog signal E 3 . The device 121 then comprises an analog summation circuit 25 of the signals E 1 and E 2 , originating from the summers 22 and 23, which delivers an analog signal S SIN , then two analog differentiating circuits 81 and 82, one of which 81 carries out the difference of the signals E 1 and E 2 from the summators 22 and 23 to deliver an analog signal S COS and the other 82 makes the difference between the signal S SIN and the signal E 3 respectively from the summers 25 and 24. The signal the output of the differentiating circuit 82 is the analogue signal S TT reference "top turn".

Comme pour la variante de réalisation précédente, le dispositif 121 de génération comprend ensuite deux comparateurs, dont l'un 93 compare le signal SCOS issu du différentiateur avec le signal analogique "top tour" STT pour délivrer un signal numérique D1 qui est à l'état logique 1 quand le signal SCOS est supérieur à STT et à l'état 0 inversement, et dont l'autre 94 compare ce même signal SCOS avec le signal SSIN issu du sommateur 25 pour délivrer un signal numérique D2, égal à 1 quand le signal SCOS est supérieur à SSIN et égal à 0 inversement. Le comparateur 94 est relié à un détecteur de front descendant 13, dont le signal de sortie D3 génère une impulsion à chaque front descendant du signal logique D2. Une porte logique ET 14, recevant les signaux binaires D1 et D3, génère un signal numérique D4 sous forme d'une impulsion unique 16 par tour de l'anneau magnétique 1.As for the previous variant embodiment, the generation device 121 then comprises two comparators, one of which compares the signal S COS coming from the differentiator with the analog signal "top tower" S TT to deliver a digital signal D 1 which is in the logic state 1 when the signal S COS is greater than S TT and the state 0 inversely, and the other 94 compares the same signal S COS with the signal S SIN from the summator 25 to deliver a digital signal D 2 , equal to 1 when the signal S COS is greater than S SIN and equal to 0 inversely. The comparator 94 is connected to a falling edge detector 13 whose output signal D 3 generates a pulse on each falling edge of the logic signal D 2 . An AND logic gate 14, receiving the digital signals D 1 and D 3 , generates a digital signal D 4 in the form of a single pulse 16 per revolution of the magnetic ring 1.

Un circuit de synchronisation 15 reçoit cette impulsion unique par tour, ainsi que les signaux A et B, pour ajuster la longueur de l'état haut de l'impulsion de référence 17 du signal de sortie "top tour" C par rapport au signal de sortie désiré. La figure 12 est une représentation graphique des différents signaux obtenus au cours du traitement électronique des signaux issus des barrettes d'éléments capteurs magnétiques.A synchronization circuit 15 receives this single pulse per revolution, as well as the signals A and B, to adjust the length of the high state of the reference pulse 17 of the "top turn" output signal C with respect to the signal of desired exit. FIG. 12 is a graphical representation of the various signals obtained during the electronic processing of the signals coming from the arrays of magnetic sensor elements.

Les figures 13, 14 et 15 sont les représentations graphiques des signaux électriques E3, SSIN et du signal de référence "top tour" STT, précédemment décrits, et leurs équivalents sur les diamètres à + ou - 2T, relatifs aux figures 4a à 4b, 4c à 4d et 4e à 4j.FIGS. 13, 14 and 15 are the graphical representations of the electrical signals E 3 , S SIN and the reference signal "top tower" S TT , previously described, and their equivalents on the diameters at + or - 2T, relating to FIGS. at 4b, 4c to 4d and 4th to 4d.

Les éléments sensibles du capteur 6, 7, 61 et 62 comme les barrettes 20 et 21 peuvent être du type sonde à effet Hall, ou sonde magnétorésistive amorphe ou sonde magnétorésistive géante.The sensitive elements of the sensor 6, 7, 61 and 62, such as the bars 20 and 21, may be of the Hall effect probe type, or amorphous magneto-resistive probe or giant magnetoresistive probe.

Claims (16)

  1. A digital relative position sensor comprising on the one hand a circular multipolar magnetic ring on which are magnetized a plurality of pairs of north and south poles, equally distributed, of constant determined angular width, mobile in rotation opposite a stationary magnetic sensor comprised of at least two sensing elements, which are situated on the same radius of the ring and a length (d) apart, respectively positioned facing a main track and a "revolution pulse" reference track, and on the other hand a device for processing output signals emitted by the sensing elements, intended to provide one reference pulse per revolution of a component in rotation attached to the multipolar ring, characterized in that, on the multipolar ring (1), a magnetic pattern (10) is produced from a pair of north and south poles whose transition is different from the transition between each north and south pole of the ring (1), and of which the angular width of the north pole is on the one hand equal to that of the south pole at the main track (4), and on the other hand, different at the "revolution pulse" reference track (5), the two tracks (4) and (5) themselves being situated on the multipolar ring (1).
  2. A digital sensor according to claim 1, characterized in that the transition (3) between the north and south poles of the magnetic pattern (10) is a line segment, inclined at an angle (α) with respect to the direction of the transitions between the north and south poles of the other pairs of the multipolar ring (1), the centre (R) of the rotation of angle (α) being situated on the main track (4).
  3. A digital sensor according to claim 1, characterized in that the transition (3) between the north and south poles of the magnetic pattern (10) is composed of two line segments, a first segment (31) directed along a radius of the magnetic ring (1) which divides the pattern into two equal parts in order to maintain a constant angular pole width at the main track (4), and a second segment (32) inclined at an angle (β) with respect to the first segment at the reference track (5).
  4. A digital sensor according to claim 1, characterized in that the transition (3) between the north and south poles of the magnetic pattern (10) is composed of two line segments (33 and 34), one of which (33) is directed along a radius (r) of the magnetic ring (1), dividing the pattern (10) into two equal parts, and the other of which (34) is directed along a radius (r'), offset by an angle (δ) with respect to the radius (r), dividing the pattern (10) into two unequal parts.
  5. A digital sensor according to claim 4, characterized in that these two line segments (33 and 34) are connected by an arc of a circle.
  6. A digital sensor according to claim 4, characterized in that the line segments (33 and 34), situated at the two magnetic tracks (4 and 5), are connected at the middle of the multipolar ring (1) by a curved line segment (35) intended to attenuate magnetic influences between the tracks.
  7. A digital sensor according to claim 4, characterized in that the line segments (33 and 34), situated at the two magnetic tracks (4 and 5), are connected at the middle of the multipolar ring (1) by a curved line segment (36) in the shape of an S at the middle of the ring.
  8. A digital sensor according to one of claims 1 to 7, characterized in that the magnetization profile of the multipolar magnetic ring (1) having, along a radius at the centre of a pole, a plateau region (18) and two regions (19) which decrease towards the interior and exterior diameters of the ring, the length of the plateau region must be at least equal to the sum of the distance (d), between the sensing elements of the sensor respectively facing the main track and the reference track, and the positioning tolerance (2T) on a radius of the ring, with respect to the two magnetic tracks.
  9. A digital sensor according to one of claims 1 to 8, characterized in that the magnetic sensor (11) is composed of three sensing elements, the first of which (7) faces the reference track (5) and the two others (61 and 62) face the main magnetic track (4) in such a way that one (61) of the two is on the same radius of the magnetic ring as the sensitive element (7) of the reference track at a distance (d), and they are offset in relation to one another along the main track (4) so as to deliver respective signals in quadrature, namely, when one of these elements faces a magnetic transition between two north and south poles, the other element is situated in the middle of a magnetic pole.
  10. A digital sensor according to one of claims 1 to 8, the magnetic sensor (11) is composed of two bars of sensitive magnetic elements (20 and 21), facing the two main (4) and "revolution pulse" reference (5) magnetic tracks, are parallel and a length (d) apart, and are composed of a plurality of respective sensing elements (20i and 21i), i being a positive whole number, preferably even and equal for the two bars, each sensitive element of one bar facing a sensitive element of the other bar.
  11. A digital sensor according to claim 1, characterized in that the device for the electronic processing of the signals (S6 and S7) coming from the two sensing elements of the magnetic sensor (11) includes:
    - a differentiating circuit (8), which executes the analogue difference between input signals (S6 and S7) in order to deliver an analogue "revolution pulse" reference signal (STT);
    - a comparator circuit (9) intended to compare said analogue reference signal (STT) with a set reference threshold (SSE), comprised between the upper and lower limits of the signal (STT) and which generates a digital "revolution pulse" reference signal (C), which is used as a reference pulse.
  12. A digital sensor according to claims 1 and 9, characterized in that the device for the electronic processing of the signals coming from the three sensing elements (7, 61, 62) of the magnetic sensor (11) comprises:
    - a differentiating circuit (80), intended to execute the analogue difference between the signal (S61) emitted by the sensor element (6) of the main track (4) and the signal (S7) emitted by the sensor element (7) of the reference track (5) and situated on the same radius of the ring (1) as it, and delivering an analogue "revolution pulse" reference signal (STT);
    - a first comparator circuit (91), which compares the signal (S62) of the sensitive element (62) in quadrature with the element (61), with the analogue "revolution pulse" signal (STT), in order to deliver a digital signal (D1) which is in logic state 1 when the signal (S62) is greater than the signal (STT) and in state 0 when the opposite is true;
    - a second comparator circuit (92) which compares this same signal (S62) with the signal (S61) emitted by the other sensitive element (61), in order to deliver a digital signal (D2), which is in logic state 1 when the signal (S62) is greater than the signal (S61) and in state 0 when the opposite is true;
    - a descending front detector (13) connected to the comparator (92) whose output signal (D3) generates a pulse with each descending front of logic signal (D2);
    - a logic gate ET (14), which receives, as input, the binary signals (D1 and D3) in order to generate a digital signal (D4) consisting of a single pulse (16) per revolution of the multipolar magnetic ring (1), always appearing in the same position with respect to the ring;
    - a synchronization circuit (15), which receives, as input, the digital signal (D4) as well as the signals (A and B) and generating the digital "revolution pulse" reference signal (C).
  13. A digital sensor according to claims 1 to 10, characterized in that the device for the electronic processing of the signals coming from the two bars of sensing elements (20 and 21) comprises:
    - means (22) for the analogue summing of the first half of the signals coming from the bar (20), which are referenced [S20(1) to S20(n)], delivering an analogue signal (E1);
    - means (23) for the analogue summing of the second half of the signals coming from this same bar (20), which are referenced [S20(n+1) to S20(2n)], delivering another analogue signal (E2);
    - means (24) for the analogue summing of the signals coming from the second bar (21) which deliver third analogue signal (E3);
    - an analogue circuit (25) for summing the signals (E1 and E2) coming from the summing means (22 and 23), which delivers an analogue signal (SSIN);
    - a first analogue differentiating circuit (81), which executes the difference between signals (E1 and E2) coming from the summing means (22 and 23) in order to deliver an analogue signal (SCOS);
    - a second differentiating circuit (82), which executes the difference between the signal (SSIN) and the signal (E3) respectively coming from the summing means (25 and 24) in order to deliver the analogue "revolution pulse" reference signal (STT);
    - a first comparator (93), comparing the signal (SCOS) coming from the differentiator (81) with the analogue "revolution pulse" signal (STT) in order to deliver a digital signal (D1) which is in the logic state 1 when the signal (SCOS) is greater than (STT) and in the state 0 when the opposite is true;
    - a second comparator (94), comparing this same signal (SCOS) with the signal (SSIN) coming from the summing means (25), in order to deliver a digital signal (D2), equal to 1 when the signal (SCOS) is greater than (SSIN) and equal to 0 when the opposite is true;
    - a descending front detector (13), connected to the second comparator, generating a pulse (D3) with each descending front of the logic signal (D2);
    - a logic gate ET (14), which receives the binary signals (D1 and D3), generating a digital signal (D4) in the form of a single pulse (16) per revolution of the magnetic ring 1;
    - a synchronization circuit (15) receiving this single pulse (16) per revolution, as well as the signals (A and B), in order to generate the "revolution pulse" output signal (C).
  14. A digital sensor according to claims 1 and 10, characterized in that the sensing elements of the sensor (6, 7, 61 and 62) and the bars (20 and 21) of sensing elements are of the Hall-effect probe type.
  15. A digital sensor according to claims 1 and 10, characterized in that the sensing elements of the sensor (6, 7, 61 and 62) and the bars (20 and 21) of sensing elements are of the amorphous magneto-resistant probe type.
  16. A digital sensor according to claims 1 and 10, characterized in that the sensing elements of the sensor (6, 7, 61 and 62) and the bars (20 and 21) of sensing elements are of the giant magneto-resistant probe type.
EP98945377A 1997-09-26 1998-09-25 Digital relative position sensor Expired - Lifetime EP1017967B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9712034 1997-09-26
FR9712034A FR2769088B1 (en) 1997-09-26 1997-09-26 RELATIVE POSITION DIGITAL SENSOR
PCT/FR1998/002061 WO1999017082A1 (en) 1997-09-26 1998-09-25 Digital relative position sensor

Publications (2)

Publication Number Publication Date
EP1017967A1 EP1017967A1 (en) 2000-07-12
EP1017967B1 true EP1017967B1 (en) 2006-03-01

Family

ID=9511537

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98945377A Expired - Lifetime EP1017967B1 (en) 1997-09-26 1998-09-25 Digital relative position sensor

Country Status (6)

Country Link
US (1) US6400143B1 (en)
EP (1) EP1017967B1 (en)
JP (1) JP4052798B2 (en)
DE (1) DE69833668T2 (en)
FR (1) FR2769088B1 (en)
WO (1) WO1999017082A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP679598A0 (en) * 1998-10-27 1998-11-19 Agsystems Pty Ltd A vehicle navigation apparatus
FR2792403B1 (en) * 1999-04-14 2001-05-25 Roulements Soc Nouvelle POSITION AND / OR DISPLACEMENT SENSOR COMPRISING A PLURALITY OF ALIGNED SENSITIVE ELEMENTS
FR2792380B1 (en) * 1999-04-14 2001-05-25 Roulements Soc Nouvelle BEARING PROVIDED WITH A DEVICE FOR DETECTING MAGNETIC PULSES FROM AN ENCODER, SUCH DEVICE COMPRISING SEVERAL ALIGNED SENSITIVE ELEMENTS
US6356076B1 (en) * 1999-07-15 2002-03-12 Optek Technology, Inc. System for outputting a plurality of signals as a collective representation of incremental movements of an object
FR2811077B1 (en) * 2000-06-30 2002-09-13 Roulements Soc Nouvelle DEVICE FOR DETERMINING THE ABSOLUTE ANGULAR POSITION OF A ROTATING MEMBER
FR2816051B1 (en) 2000-10-31 2003-02-14 Roulements Soc Nouvelle DEVICE FOR MEASURING TORQUE TORQUE AND MODULE COMPRISING SAME
FR2830139B1 (en) * 2001-09-26 2004-08-27 Roulements Soc Nouvelle PULSE CONTROLLED ELECTRONICALLY SWITCHED DEVICE
FR2830140B1 (en) * 2001-09-26 2004-08-27 Roulements Soc Nouvelle CONTROL DEVICE OF AN ELECTRONICALLY SWITCHED MOTOR
FR2829986B1 (en) 2001-09-26 2003-12-26 Roulements Soc Nouvelle ELECTRIC POWER ASSISTED STEERING SYSTEM
FR2833663B1 (en) * 2001-12-19 2004-02-27 Roulements Soc Nouvelle BEARING COMPRISING A WIRELESS INFORMATION TRANSMISSION ASSEMBLY
FR2845213B1 (en) 2002-09-27 2005-03-18 Roulements Soc Nouvelle DEVICE FOR CONTROLLING AN ELECTRONICALLY SWITCHED MOTOR COMPRISING ANGULARLY DISTRIBUTED SINGULARITIES
FR2848358B1 (en) * 2002-12-04 2005-03-18 Roulements Soc Nouvelle ACTUATION SYSTEM COMPRISING A DIGITAL POSITION SENSOR
FR2862382B1 (en) * 2003-11-18 2006-06-02 Roulements Soc Nouvelle ABSOLUTE TORSION TORQUE SENSOR SYSTEM AND MODULE COMPRISING SAME
FR2862751B1 (en) * 2003-11-21 2006-03-03 Roulements Soc Nouvelle SYSTEM AND METHOD FOR DETERMINING AT LEAST ONE PARAMETER OF AT LEAST ONE ROTATING ORGAN BY MEANS OF REFERENCE AND SPEED SIGNALS
FR2875297B1 (en) * 2004-09-13 2007-02-09 Sc2N Sa INTELLIGENT ANGLE SENSOR FOR AUTOMATIC DIRECTION CHANGE INDICATOR RETURN SYSTEM
FR2876972B1 (en) 2004-10-25 2006-12-29 Koyo Steering Europ K S E Soc METHOD FOR DETERMINING THE ANGULAR POSITION OF THE STEERING WHEEL OF AN ELECTRIC POWER STEERING OF A MOTOR VEHICLE
EP1817541B8 (en) * 2004-11-09 2019-09-18 PerkinElmer Health Sciences, Inc. Methods and systems for determining a position of a probe
FR2882140B1 (en) * 2005-02-11 2007-05-11 Electricfil Automotive Soc Par POSITION SENSOR WITH COMPENSATED MAGNETIC POLES
FR2886077B1 (en) * 2005-05-19 2007-08-03 Snr Roulements Sa METHOD OF DISCRIMINATION OF REFERENCE PULSE
WO2007084349A1 (en) * 2006-01-12 2007-07-26 Timken Us Corporation Magnetic sensor with high and low resolution tracks
FR2896310B1 (en) * 2006-01-19 2008-04-18 Snr Roulements Sa CODING METHOD AND DEVICE FOR DETERMINING ABSOLUTE ANGULAR POSITION
US8058868B2 (en) * 2006-04-10 2011-11-15 Timken Us Corporation Turning device position sensing system and method
FR2904412B1 (en) * 2006-07-27 2008-10-17 Snr Roulements Sa METHOD FOR DETERMINING TWO QUADRATURE SIGNALS
JP2011501156A (en) 2007-10-22 2011-01-06 ザ・ティムケン・カンパニー Absolute position magnetic encoder with binary and decimal outputs
US8587297B2 (en) * 2007-12-04 2013-11-19 Infineon Technologies Ag Integrated circuit including sensor having injection molded magnetic material
US7915888B2 (en) * 2008-04-02 2011-03-29 Continental Automotive Systems, Inc. Systems and methods for detecting angular position
US20110187359A1 (en) * 2008-05-30 2011-08-04 Tobias Werth Bias field generation for a magneto sensor
US8058870B2 (en) * 2008-05-30 2011-11-15 Infineon Technologies Ag Methods and systems for magnetic sensing
US8610430B2 (en) 2008-05-30 2013-12-17 Infineon Technologies Ag Bias field generation for a magneto sensor
WO2010117891A2 (en) * 2009-04-06 2010-10-14 The Timken Company Sensor assembly
KR101705957B1 (en) * 2012-04-20 2017-02-10 더 팀켄 컴퍼니 Magnetic encoder for producing an index signal
JP6382503B2 (en) * 2013-11-12 2018-08-29 内山工業株式会社 Magnetizing apparatus and magnetizing method for magnet for magnetic encoder
DE112016003691T5 (en) * 2015-08-13 2018-04-26 Iee International Electronics & Engineering S.A. A method of operating a capacitive sensor system for a vehicle trunk opener and a robust capacitive sensor system
DE102015116554A1 (en) 2015-09-30 2017-03-30 Ic-Haus Gmbh Method for detecting an index marking of a position measuring device
DE102015226666A1 (en) * 2015-12-23 2017-06-29 Frankl & Kirchner GmbH & Co KG Fabrik für Elektromotoren u. elektrische Apparate Magnetic encoder system for a servomotor of a sewing machine
US10802074B2 (en) 2018-01-02 2020-10-13 Jitterlabs Llc Method and apparatus for analyzing phase noise in a signal from an electronic device
US10931175B2 (en) * 2018-10-31 2021-02-23 Waymo Llc Magnet ring with jittered poles
US11016150B2 (en) * 2019-06-03 2021-05-25 Honeywell International Inc. Method, apparatus and system for detecting stray magnetic field

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0871014A1 (en) * 1997-04-10 1998-10-14 Snr Roulements Magnetic encoder with an index pulse

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262526A (en) * 1978-07-21 1981-04-21 Nippondenso Co., Ltd. Rotational position detecting apparatus
JPS595914A (en) * 1982-07-02 1984-01-12 Hitachi Ltd Rotary sensor
DE3231990A1 (en) 1982-08-27 1984-03-01 Siemens AG, 1000 Berlin und 8000 München EVALUATION DEVICE FOR A DIGITAL INCREMENTAL ENCODER
DE3737721A1 (en) 1987-11-06 1989-05-18 Wilms Kraus Dorothea Adele Liquid-crystal drawing board
DE4024703A1 (en) * 1990-08-03 1992-02-06 Bosch Gmbh Robert CLAMPING DEVICE FOR MACHINE TOOL
DE4408078A1 (en) 1994-03-10 1995-09-14 Philips Patentverwaltung Angle sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0871014A1 (en) * 1997-04-10 1998-10-14 Snr Roulements Magnetic encoder with an index pulse

Also Published As

Publication number Publication date
EP1017967A1 (en) 2000-07-12
JP4052798B2 (en) 2008-02-27
FR2769088A1 (en) 1999-04-02
DE69833668T2 (en) 2006-11-16
US6400143B1 (en) 2002-06-04
WO1999017082A1 (en) 1999-04-08
DE69833668D1 (en) 2006-04-27
FR2769088B1 (en) 1999-12-03
JP2001518609A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
EP1017967B1 (en) Digital relative position sensor
EP1989505B1 (en) Position sensor with variable direction of magnetization and method of production
EP0514530B1 (en) Magnetic position and speed sensor having a hall probe
EP2338030B2 (en) Magnetic position sensor with field direction measurement and flux collector
FR2947902A1 (en) ABSOLUTE AND MULTI-PERIODIC POSITION SENSOR
EP2163852B1 (en) System and method for measuring the axial movement of a rotating mobile element
EP1403622B1 (en) Absolute angle sensor
EP0927872A1 (en) Speed and position sensors for rotating shafts
EP1017966B1 (en) Digital position sensor
EP1857783B1 (en) Position sensor encoder, with stabilising effect for resetting the magnetic induction to zero
EP0320322A2 (en) Bearing with a magnetic field detector
EP2163850B1 (en) Magnetic encoding device
EP0800055A1 (en) Linear and angular position sensor
EP1403621B1 (en) Absolute angle sensor
WO1999046565A1 (en) Device for measuring angular position using a magnetic sensor
EP3708963B1 (en) System for determining at least one rotation parameter of a rotating member
CA3203870A1 (en) Contactless position sensor comprising a permanent magnet
EP1655581B1 (en) Device for detecting the position of at least one mobile target
WO2010018336A2 (en) Multipolar encoder for position sensors, and detection device including such an encoder combined with at least one position sensor
EP0554184B1 (en) Rotations counter devices having a magnetic bubble micro-circuit
EP3708964B1 (en) System for determining at least one rotation parameter of a rotating member

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT SE

17P Request for examination filed

Effective date: 20000218

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LYLE, STEPHEN, J.

Inventor name: LACROIX, MARK, E.

Inventor name: SANTOS, A., JOHN

Inventor name: TRAVOSTINO, FRANCIS

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 01D 5/245 A

Ipc: 7G 01D 5/245 A

17Q First examination report despatched

Effective date: 20030522

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: DIGITAL RELATIVE POSITION SENSOR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060301

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69833668

Country of ref document: DE

Date of ref document: 20060427

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060612

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060301

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110923

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69833668

Country of ref document: DE

Effective date: 20130403