EP0943798B1 - Machine axiale à pistons avec compensation hydrostatique des alésages des cylindres - Google Patents

Machine axiale à pistons avec compensation hydrostatique des alésages des cylindres Download PDF

Info

Publication number
EP0943798B1
EP0943798B1 EP19990105278 EP99105278A EP0943798B1 EP 0943798 B1 EP0943798 B1 EP 0943798B1 EP 19990105278 EP19990105278 EP 19990105278 EP 99105278 A EP99105278 A EP 99105278A EP 0943798 B1 EP0943798 B1 EP 0943798B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
load relief
piston machine
axial piston
machine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19990105278
Other languages
German (de)
English (en)
Other versions
EP0943798A2 (fr
EP0943798A3 (fr
Inventor
Rudi Hildebrandt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brueninghaus Hydromatik GmbH
Original Assignee
Brueninghaus Hydromatik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19815614A external-priority patent/DE19815614B4/de
Application filed by Brueninghaus Hydromatik GmbH filed Critical Brueninghaus Hydromatik GmbH
Publication of EP0943798A2 publication Critical patent/EP0943798A2/fr
Publication of EP0943798A3 publication Critical patent/EP0943798A3/fr
Application granted granted Critical
Publication of EP0943798B1 publication Critical patent/EP0943798B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2007Arrangements for pressing the cylinder barrel against the valve plate, e.g. by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/0032Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F01B3/0041Arrangements for pressing the cylinder barrel against the valve plate, e.g. fluid pressure

Definitions

  • the invention relates to an axial piston machine according to the preamble of the claim 1 and claim 15.
  • Axial piston machines are known in a variety of configurations. In practice occurs the problem that the sliding movement of the pistons in the cylinder bores to one increased wear or increased heat. This is because that the pistons supported on the swash plate with a normal force be acted upon, which has a radial component that the pistons in the Cylinder bore tilted. If there is a metallic contact between the piston and Cylinder wall there is therefore, in addition to increased heat, the risk of Eating the pistons.
  • DE-OS 14 03 754 has therefore already been proposed for hydrostatic Relief of the sliding movement of the pistons in the walls of the cylinder bores Provide recesses to which pressurized fluid is applied.
  • these recesses are in the form of pressure pockets radially over the Distributed circumference of the cylinder wall.
  • the pressure pockets are supplied via a non-return valve with pressure fluid supplied from the high-pressure cylinder rooms.
  • hydrostatic relief of the sliding movement of the pistons is therefore relatively high Manufacturing costs, since the chokes and connecting lines for feeding the Pressure fluids to the pressure pockets are relatively expensive.
  • the pocket-like Training of the recesses for the hydrostatic relief of the sliding movement of the Piston has proven to be less than optimal as the hydrostatic relief is not takes place evenly over the entire circumference or partial circumference of the piston, but the pistons are loaded on one side. Especially if the supply chokes of the individual pressure pockets due to contamination of the pressure fluid close, is a radially even action on the piston and thus one safe guidance of the piston in the cylinder bore is not guaranteed.
  • An axial piston machine according to the preamble of Claim 1 and claim 14 is from JP 07 189889 A known.
  • DE 25 34 001 A1 describes a high-pressure plunger pump with a non-contact slidably mounted in a sleeve Plunger and centrally arranged pressure and suction valves out.
  • the sleeve is at least one of the expansion forces resulting from the pumping process Bias inserted in the pump head and the lifting forces are in the plunger via one in the longitudinal axis the sleeve arranged plunger can be introduced, the Movable ends in the plunger and crosshead are stored.
  • the invention has for its object to provide an axial piston machine which the hydrostatic relief of the sliding movement of the pistons in the Cylinder bores of the cylinder drum is improved.
  • the task is characterized by the characterizing features of claim 1 or Claim 14 each solved in connection with the generic features.
  • the invention is based on the knowledge that that the hydrostatic relief of the sliding movement of the pistons with an elongated trained and spiral or zigzag-shaped relief groove that winding axially in the cylinder bore, can be significantly improved.
  • Through the spiral or zigzag relief groove ensures that the piston is uniform at least in the critical areas is relieved hydrostatically.
  • the relieving pressure fluid is in the relief groove guided. If the relief groove is continuously flushed with pressurized fluid, occurs at the same time a cooling effect and one caused by the friction of the pistons Heat is generated by the pressure fluid flowing through the relief groove dissipated.
  • the present application can be used not only for hollow pistons but without difficulty can also be used with solid pistons because of the hydrostatic relief With the relief groove, even pistons with a larger mass can be safely relieved.
  • Solid pistons have the advantage over hollow pistons that they are easier to manufacture are and they have no dead volume, which with each piston stroke in addition must be composed.
  • the invention is also based on the finding that that there is a particularly advantageous hydrostatic relief of the sliding movement of the Piston results when the cylinder bores have an oval cross section and the pistons have a circular cross section.
  • the between the wall of the Cylinder bores and the gaps formed in the piston then form in axial Recesses for the hydrostatic relief of the Pistons slide. In this embodiment, too, a Cooling the sliding zones.
  • the relief grooves can advantageously in accordance with claim 2 in one Liner can be formed, which can be inserted axially into the respective cylinder bore is.
  • the relief grooves open into the leakage space of the axial piston machine preferably from a choke-like constriction. there forms a dynamic pressure in the relief grooves, which is the effective pressure for the hydrostatic discharge increased. Due to the throttle-like narrowing is a continuous exchange of the pressure fluid in the relief grooves guaranteed, which results in the cooling effect already described.
  • the relief grooves preferably open into the leakage space of the axial piston machine each at an exit point that according to claim 4 on the Axis of rotation of the cylinder drum radially peripheral peripheral point of the respective Cylinder wall is positioned.
  • the relief grooves advantageously open each via a sliding surface in the leakage space of the axial piston machine from which runs a short distance from the associated piston.
  • the pressure fluid is throttled out of the Relief grooves and thus a sufficient for hydrostatic relief Back pressure ensured in the relief grooves.
  • the piston on the Lubricated sliding surface over the entire circumference.
  • For even distribution of the Pressure fluids on the sliding surface can provide an annular groove according to claim 6 his.
  • To increase the flow rate of the pressure fluid from the relief groove can a discharge throttle in particular on the sliding surface Form of a groove provided with a cross section narrowed with respect to the relief groove his.
  • the pitch of the relief groove changes over the axial extent of the cylinder bore. This can increase the pitch the relief groove and thus the hydrostatic relief caused to the Stress zones are adjusted. Experience shows that special stress zones occur in the area of the upper and lower ends of the liners. Further can the pitch of the relief grooves on the by the piston locked cylinder space adjacent end larger than at the opposite end. This measure also increases the dynamic pressure in the Relief.
  • the relief grooves can also be one have a continuously narrowing cross-section. This also causes the dynamic pressure in the Relief grooves increased. Furthermore, the Relief grooves an inlet throttle can be provided.
  • At least one can also be used with the relief grooves Pressure pocket connected, which in addition in the wall of the cylinder bore is trained. This can result in further selective hydrostatic relief on the Interface between the piston and cylinder bores are effected.
  • the relief grooves can be zigzag only in each case a radially inner or radial with respect to the axis of rotation of the cylinder drum outside area be formed. Also both radially inner area as well as a radially outer area be provided, which are connected via a connecting region of the relief groove.
  • the oval cross section is preferably in each case in the Inserted cylinder bores insertable liner.
  • the axial piston machine shown in FIG. 1 is of swash plate construction adjustable displacement and a current direction executed and includes in a hollow cylindrical housing 1 with a known as essential components front open end (upper end in Fig. 1) one attached to the housing 1, the open end closing connection block 2, a lifting or swash plate 3, one Control body 4, a drive shaft 5 and a cylinder drum 6.
  • the swash plate 3 is a so-called swivel cradle with a semi-cylindrical one Cross-section formed and supported with two, at a mutual distance parallel to Bearing surfaces running in two directions under hydrostatic relief correspondingly shaped bearing shells 8, which on the inner surface of the Terminal block 2 opposite housing end wall 9 are attached.
  • the hydrostatic discharge takes place in a known manner via pressure pockets 10, which in the Bearing shells 8 are formed and supplied with pressure medium via connections 11 become.
  • One in a bulge in the cylindrical housing wall 12 accommodated actuating device 13 engages in the direction of Terminal block 2 extending arm 14 of the swash plate 3 and is used for Swiveling the same about a swivel axis perpendicular to the swivel direction.
  • the control body 4 is on the inner surface of the housing interior facing the Terminal blocks 2 attached and with two through openings 15 in the form of kidney-shaped control slots which are connected via a pressure channel 16D or Suction channel 16S in the connection block 2 to a pressure and suction line, not shown are connected.
  • the pressure channel 16D has a smaller flow cross section than the suction channel 16S.
  • Spherical facing the interior of the housing Trained control surface of the control body 4 serves as a bearing surface for the Cylinder drum 6.
  • the drive shaft 5 protrudes through a through hole in the housing end wall 9 in the housing 1 and is in this through hole by means of a bearing 17 and by means of a further bearing 18 in a narrower bore section Expanded blind bore 19 at the end in the connection block 2 and one closer to it Bore section adjacent region of a central through bore 20 in Control body 4 rotatably mounted.
  • the drive shaft 5 penetrates inside the housing 1 also has a central through hole 21 in the swash plate 3, the Diameter corresponding to the largest swash deflection of the swash plate 3 is dimensioned, as well as a central through bore in the cylinder drum 6 two hole sections.
  • One of these bore sections is formed in a, on the cylinder drum 6, projecting beyond the end face 22 facing the swash plate 3 sleeve-shaped extension 23, via which the cylinder drum 6 by means of a keyway connection 24 is rotatably connected to the drive shaft 5.
  • the remaining bore section is conical; it tapers based on its cross section of largest diameter close to the first Bore section up to its cross-section of the smallest diameter near the Control body 4 adjacent end face or bearing surface of the cylinder drum 6.
  • the of the Drive shaft 5 and this conical bore section is defined annular space designated by the reference numeral 25.
  • the cylinder drum 6 has generally axially extending, stepped Cylinder bores 26 which are even on a coaxial to the drive shaft axis Pitch are arranged and directly on the cylinder drum end face 22 and on the the cylinder body bearing surface facing the control body 4 via outlet channels 27 open out on the same pitch circle as the control slots.
  • a sleeve 28 is used in the on the Cylinder drum face 22 directly opening cylinder bore sections a larger diameter.
  • the cylinder bores 26 including the bushings 28 are referred to here as cylinders.
  • Cylinders 26, 28 are displaceably arranged pistons 29 on their swash plate 3 facing ends with ball heads 30 which are mounted in sliding shoes 31 and via this to an annular slide disk 32 fastened to the swash plate 5 are mounted hydrostatically.
  • Each slide shoe 31 is on its slide plate 32 facing sliding surface with a pressure pocket, not shown, which over a through hole 33 in the shoe 31 to a stepped axial Through channel 34 connected in the piston 29 and in this way with the Piston 29 in the cylinder bore 26 delimited working space of the cylinder connected is.
  • In each axial through channel 34 is in the area of the associated Ball head 30 formed a throttle.
  • One by means of the keyway connection 24 axially slidably arranged on the drive shaft 5 and by a spring 35 in the direction the swash plate 3 pressurized hold-down 36 stops the sliding shoes 31 in contact the sliding washer 32.
  • the space taken up serves as a leakage space 37, which is used in the operation of the Axial piston machine through all columns, such as between the Cylinders 26, 28 and the piston 29, the control body 4 and the cylinder drum 6, the swash plate 3 and the sliding plate 32 and the bearing shells 8, etc. emerging Leakage fluid picks up.
  • the axial piston machine is preferably for operation with oil as the pressure fluid intended.
  • the cylinder drum 6 together with the piston 29 is driven by the drive shaft 5 set in rotation. If the swashplate is actuated by actuating device 13 3 is pivoted into an inclined position relative to the cylinder drum 6, so all pistons perform 29 strokes; when rotating the cylinder drum 6 360 ° each piston 29 passes through a suction and a compression stroke, whereby corresponding oil flows are generated, their supply and discharge via the Mouth channels 27, the control slots 15 and the pressure and suction channel 16D, 16S respectively.
  • the relief groove 40 formed spirally and winds axially in the cylinder bore 26 or Bushing 28 along.
  • the relief groove 40 extends over the entire axial length of the liner 28. The relief groove 40 can during the Manufacturing of the liner 28 are introduced, with the liner subsequently 28 is inserted axially into the cylinder bores 26, which is essential for production facilitated.
  • pistons 29 shown in FIG. 1 are designed as hollow pistons, they are suitable the present invention also in solid pistons.
  • Relief groove 40 also become solid pistons with a larger mass in the liner 28 securely supported and guided.
  • Solid pistons have open pistons compared to hollow pistons Design the advantage that they have no dead volume, which with each piston stroke must also be compressed. Furthermore, solid pistons are opposed to hollow pistons easier to manufacture.
  • FIG. 2 shows a sectional, enlarged illustration of a cylinder drum 6, which, apart from minor deviations, is essentially identical in construction to that in 1 is shown cylinder drum 6.
  • 2 are in the cylinder bores 26 inserted bushings 28 recognizable on their inner surface 41 with the Relief grooves 40 according to the invention are formed by milling or pressing.
  • Each relief groove 40 extends over the entire axial length of the bushing 28 and opens into the leakage space 37 at a first end 42.
  • the opposite, The end 43 facing the control body 4 opens when the piston 29 is retracted the cylinder space 44, which is closed by the piston 29 and during the Compression hubs are under working pressure. This causes pressure fluid through the spiral relief groove 40 pressed.
  • Fig. 3 shows a section through the cylinder drum 6 according to a second Embodiment of the invention, elements already described with matching reference numerals are provided.
  • the difference from that in Fig. 2nd The embodiment shown is that on the control body 4 and the End 42 opposite cylinder chamber 44 is a throttle-like constriction 45 is formed, which increases the dynamic pressure effective for hydrostatic relief.
  • the dynamic pressure acting in the relief grooves 40 for the hydrostatic relief can be set by the opening cross section of the throttle-like constriction 45 become.
  • Fig. 4 shows a section through the cylinder drum 6 according to a third Embodiment of the invention, elements already described with matching reference numerals are provided.
  • the difference to that in the Fig. 2 and 3 illustrated embodiments is that the pitch of the spiral relief grooves 40 over the axial extent of the Cylinder bore 26 or the liner 28 changes.
  • the exemplary embodiment is the pitch at the cylinder space 44 or Control body 4 facing end 43 larger than at the opposite end 42. This makes sense because the radial component acting on the piston 29 causes the Piston at the upper end of the liner 28 with a particularly high radial force is present and the radial relief there must be correspondingly large.
  • 5A shows a section through the cylinder drum 6 corresponding to a fourth Embodiment of the invention.
  • 5B shows the corresponding front view of FIG Cylinder drum 6 with a view of the cylinder bores 26.
  • Exit point 46 of the end 42 opposite the cylinder space 44 Relief groove 40 on the radial with respect to the axis of rotation 47 of the cylinder drum 6 peripheral circumferential point of the cylinder wall or the liner 28 positioned is. It has been shown that this offers advantages for the hydrostatic relief since in particular, effectively avoiding the piston 29 radially outward is counteracted.
  • Fig. 6 shows a section through the cylinder drum 6 corresponding to a fifth Embodiment according to the invention, wherein also already described here Elements are provided with the same reference numerals.
  • the difference to the embodiment shown in Fig. 2 is that the End 42 of the relief groove 40 facing away from the cylinder space 44 is not directly in the Leakage space 37 opens out, but that a sliding surface 48 is provided.
  • the Inner diameter of the sliding surface 48 corresponds essentially to that Outside diameter of the piston 29, d. H. the sliding surface 48 runs only slightly Distance from the piston 29.
  • the pressure fluid flowing through the relief groove 40 therefore experiences one in the annular space between the sliding surface 48 and the piston 29 certain throttling, which the back pressure in the relief groove 40 and thus the effective hydrostatic relief increased.
  • To initiate the Is pressure fluid in the annular space between the sliding surface 48 and the piston 29 preferably an annular groove 49 between the sliding surface 48 and the relief groove 40 intended.
  • Fig. 7 shows a section through a cylinder drum 6 corresponding to a sixth Embodiment of the invention. Elements already described are also included here matching reference numerals. The difference from that in Fig. 6
  • the illustrated embodiment consists of a groove 50 on the sliding surface 48 is provided to form an outlet throttle and the effective throttle cross section of the annular space between the sliding surface 48 and the associated piston 29 increase. Due to the width and depth of the groove 50, the throttle cross section and thus the dynamic pressure in the relief groove 40 can be adjusted as required.
  • Fig. 8 shows a section through the cylinder drum 6 corresponding to a seventh Embodiment. Elements already described are also included here matching reference numerals. The difference to that already Embodiments described is that the relief groove 40 a from the end 43 adjoining the cylinder space 44 in the direction of the opposite end 42 has a continuously narrowing cross section. The steadily narrowing cross section of the relief groove 40 leads to an increased dynamic pressure in the Relief groove 40 and thus for an efficient hydrostatic relief. The Varying the cross section of the relief groove 40 may also vary with the Pitch of the relief groove 40 can be easily combined.
  • Fig. 9 shows a section through the cylinder drum 6 corresponding to an eighth Quotation example of the invention. Elements already described are also included here matching reference numerals. Unlike the ones already The exemplary embodiments described is that shown in FIG. 9 Embodiment an inlet throttle 51 for the spiral relief groove 40 intended.
  • the inlet throttle 51 is thereby formed that between the relief groove 40 and the cylinder space 44 a sliding surface 52 is provided, only one of the pistons 29 inserted into the bushing 28 has a small distance.
  • the Slide surface 52 have a groove 53.
  • For even absorption and introduction of the Pressure fluids in the relief groove 40 can have an annular groove 54 between the sliding surface 52 and the relief groove 40 may be provided.
  • Drain throttle and the inlet throttle shown in Fig. 9 can of course can also be combined with each other.
  • 10A shows a section through the cylinder drum 6 corresponding to a ninth Embodiment of the invention.
  • 10B shows the corresponding front view of FIG Cylinder drum 6 with a view of the cylinder bores 26.
  • the spiral relief groove 40 is connected to a pressure pocket 55.
  • the Pressure pocket 55 can be a targeted radial component for hydrostatic relief of the piston 29 inserted into the liner 28 are generated.
  • suitable Arrangement of the pressure pocket 55 and, if necessary, further pressure pockets can be a targeted stabilization of the axis of movement of the piston 29 with respect to the axis 56 of the Liner 28 can be reached.
  • 11A shows a section through the cylinder drum 6 corresponding to a tenth Embodiment of the invention.
  • 11B shows a corresponding front view of FIG Cylinder drum 6 with a view of the cylinder bores 26.
  • the relief groove 40 does not extend to the exemplary embodiments already described spiral but zigzag in one with respect to the axis of rotation of the Cylinder drum 6 is the radially outer area 60 of the liner 28.
  • the opening angle ⁇ is radially outer with respect to the axis of rotation 47 Area 60 shown.
  • the opening angle ⁇ of the radially outer region 60, in which the zigzag-shaped relief groove 40 is arranged preferably between 60 ° and 120 ° and is particularly preferably about 90 °.
  • Fig. 12 shows a section through the cylinder drum 6 corresponding to an eleventh Embodiment of the invention. Elements already described are also included here matching reference numerals.
  • the relief groove 40 does not run exclusively in the radially outer area 60, but in the flow direction of the Pressure fluids first in a radially inner region 61 and then in one radially outer region 60. Between the radially inner region 61 and The relief groove 40 has a radially outer region 60 Connection area 62.
  • FIG. 13 shows a front view of the cylinder drum 6 corresponding to a twelfth Embodiment of the invention.
  • the Cylinder bores 26 and the inner walls of the liners 28 an oval Cross section on, while the piston 29, not shown, a circular cross section exhibit. This creates between the inner wall of the liner 28 and the Outer surfaces of the pistons 29 two opposite spaces 70, 71, the are illustrated in FIG. 14.
  • 14 shows a section through the liner 28 and the piston 29 perpendicular to the axis 56 of the liner.
  • the gaps 70, 71 form parallel to the axis 56 of the sleeve 28 running channels similar to the relief grooves 40 in the axial direction of the bushings 28 extend.
  • the spaces 70, 71 are preferably oriented such that a first Space 70 of the axis of rotation 47 facing the cylinder drum 6 and a opposite second space 71 of the axis of rotation 47 of the cylinder drum 6 is turned away.
  • the spaces 70, 71 run particularly preferably from the Cylinder spaces 44 narrowing conically towards the leakage space 37, so that in the Interstices 70, 71 build up a dynamic pressure, the hydrostatic discharge favored.
  • Fig. 15 shows a section through the cylinder drum 6 corresponding to a thirteenth embodiment of the invention.
  • a first relief groove 40a with a radially inner region 61 and a second relief groove 40b with a radial external area 60 is provided.
  • the radially inner region 61 and the relief grooves 40a and 40b are the radially outer region 60, respectively guided zigzag, in a similar manner to that shown in Fig. 12 Embodiment.
  • the radially inner region 61 and the radial are exemplary embodiments outer area 60, however, separated from each other and each a separate Relief groove 40a, 40b assigned.
  • the connection of the radially outer, zigzag-shaped Area 60 of the second relief groove 40b with the cylinder space 44 takes place via a second connection 81.
  • Connections 80 and 81 are preferred also designed as grooves.
  • the advantage with this embodiment is that that both for the radially inner zigzag area 61 and for the radially outer zigzag area 60 through the immediate Connection with the cylinder space 44 and the leak space 37 an effective hydraulic relief, as well as improved lubrication and cooling is achieved. May settle in the zigzag areas 61 or 60 Dirt particles are effectively washed away without the risk that these dirt particles in the other zigzag-shaped area 60, 61 fix again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Claims (15)

  1. Machine à pistons axiaux comportant un tambour à cylindres (6) qui est monté de manière à pouvoir tourner autour d'un axe de rotation (47) et qui comporte des alésages (26) de cylindres, dans lesquels sont déplaçables, de façon guidée, des pistons (29), qui prennent appui sur un disque oblique (3),
    dans lequel les parois des alésages (26) des cylindres comportent des évidements servant à réaliser la détente hydrostatique du mouvement de glissement du piston (29) dans les alésages (26) des cylindres,
    dans lequel les évidements servant à réaliser la détente hydrostatique, qui sont formés dans les parois des alésages (26) des cylindres sous la forme de gorges de détente (40), avec une configuration de forme hélicoïdale ou en zigzag et qui s'enroulent dans la direction axiale dans les alésages des cylindres.
    caractérisée en ce que les gorges de détente (40) débouchent dans l'espace de fuite (37) de la machine à pistons axiaux, par l'intermédiaire d'un rétrécissement (45) pouvant être étranglé.
  2. Machine à pistons axiaux selon la revendication 1, caractérisée en ce que les gorges de détente (40) débouchent dans l'espace de fuite (37) de la machine à pistons axiaux respectivement au niveau d'un point de sortie (46), qui est positionné au niveau du point de la circonférence de la paroi respective de cylindre (26) de façon périphérique radialement par rapport à l'axe de rotation (47) du tambour à cylindres (6).
  3. Machine à pistons axiaux selon la revendication 1 ou 2, caractérisée en ce que les gorges de détente (40) débouchent respectivement par l'intermédiaire d'une surface de glissement (48), qui s'étend à une faible distance du piston associé (29), dans l'espace de fuite (37) de la machine à pistons axiaux.
  4. Machine à pistons axiaux selon la revendication 3, caractérisée en ce qu'une gorge annulaire (49) est disposée respectivement entre les gorges de détente (40) et les surfaces de glissement (48).
  5. Machine à pistons axiaux selon la revendication 3 ou 4, caractérisée en ce que sur la surface de glissement (48) est prévu un étranglement de sortie, notamment sous la forme d'une gorge (50) possédant une section transversale rétrécie par rapport à la gorge de détente (40).
  6. Machine à pistons axiaux selon l'une des revendications précédentes, caractérisée en ce que le pas d'enroulement des gorges de détente (40) varie sur l'étendue axiale des alésages (26) des cylindres.
  7. Machine à pistons axiaux selon la revendication 6, caractérisée en ce que le pas des gorges de détente (40) sur l'extrémité (42), située à l'opposé de la chambre (44) du cylindre, qui est fermée par le piston associé (29), est plus petit que sur l'extrémité (43) contiguë à la chambre (44) du cylindre.
  8. Machine à pistons axiaux selon l'une des revendications précédentes, caractérisée en ce que les gorges de détente (40) possèdent une section transversale qui se rétrécit continûment.
  9. Machine à pistons axiaux selon l'une des revendications précédentes, caractérisée en ce que les gorges de détente (40) possèdent chacune un étranglement d'arrivée (51).
  10. Machine à pistons axiaux selon l'une des revendications précédentes, caractérisée en ce que les gorges de détente (40) sont reliées respectivement à au moins une poche de pression (55), qui est formée dans la paroi de l'alésage associé de cylindre (26).
  11. Machine à pistons axiaux selon l'une des revendications précédentes, caractérisée en ce que les gorges de détente (40) sont réalisées respectivement avec une forme en zigzag dans une zone (61) située radialement à l'intérieur et/ou dans une zone (60) située radialement à l'extérieur par rapport à l'axe de rotation (47) du tambour à cylindres.
  12. Machine à pistons axiaux selon la revendication 11, caractérisée en ce que les gorges de détente (40) possèdent chacune une partie (61) intérieure du point de vue radial, une partie (60) étendue du point de vue radial et décalée axialement par rapport à la partie (61) intérieure du point de vue radial, et une zone de jonction (62) disposée entre ces parties.
  13. Machine à pistons axiaux selon la revendication 11, caractérisée en ce que respectivement une première gorge de détente (40a) possède une zone (61) intérieure du point de vue radial et en forme de zigzag et respectivement une seconde gorge de détente (40b) séparée de la première gorge de détente (40a) possède une zone (60) extérieure du point de vue radial et en forme de zigzag, la partie (61), intérieure du point de vue radial, de la première gorge de détente (40a) étant décalée axialement par rapport à la partie (61), intérieure du point de vue radial, de la seconde gorge de détente (40b).
  14. Machine à pistons axiaux comportant un tambour à cylindres (6) qui est monté de manière à pouvoir tourner autour d'un axe de rotation (47) et qui comporte des alésages (26) de cylindres, dans lesquels sont déplaçables, de façon guidée, des pistons (29), qui prennent appui sur un disque oblique (3),
    dans lequel les parois des alésages (26) des cylindres comportent des évidements (40) servant à réaliser la détente hydrostatique du mouvement de glissement du piston (21) dans les alésages (26) des cylindres,
    et dans lequel les évidements servant à réaliser la détente hydrostatique, qui sont formés dans les parois des alésages (26) des cylindres sous la forme de gorges de détente (40), avec une configuration de forme hélicoïdale ou en zigzag et qui s'enroulent dans la direction axiale dans les alésages des cylindres.
    caractérisée en ce que
    le pas des gorges de détente (40) sur l'extrémité (42), située à l'opposé de la chambre (44) du cylindre, qui est fermée par le piston associé (29), est plus petit que sur l'extrémité (43) contiguë à la chambre (44) du cylindre.
  15. Machine à pistons axiaux selon l'une quelconque des revendications précédentes, caractérisée en ce que les gorges de détente (40) sont formées respectivement dans un manchon de course (28), qui forme la paroi des alésages (26) des cylindres et qui est déplaçable axialement dans l'alésage (26) de cylindre respectif.
EP19990105278 1998-03-16 1999-03-15 Machine axiale à pistons avec compensation hydrostatique des alésages des cylindres Expired - Lifetime EP0943798B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19811312 1998-03-16
DE19811312 1998-03-16
DE19815614A DE19815614B4 (de) 1998-03-16 1998-04-07 Axialkolbenmaschine mit hydrostatischer Entlastung der Zylinderbohrungen
DE19815614 1998-04-07

Publications (3)

Publication Number Publication Date
EP0943798A2 EP0943798A2 (fr) 1999-09-22
EP0943798A3 EP0943798A3 (fr) 2000-06-28
EP0943798B1 true EP0943798B1 (fr) 2004-08-18

Family

ID=26044643

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19990105278 Expired - Lifetime EP0943798B1 (fr) 1998-03-16 1999-03-15 Machine axiale à pistons avec compensation hydrostatique des alésages des cylindres

Country Status (1)

Country Link
EP (1) EP0943798B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021208329A1 (de) 2021-08-02 2023-02-02 Robert Bosch Gesellschaft mit beschränkter Haftung Axialkolbenmaschine
DE102022207272A1 (de) 2022-07-18 2024-01-18 Robert Bosch Gesellschaft mit beschränkter Haftung Axialkolbenmaschine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1403754A1 (de) * 1960-08-31 1969-01-23 Mini Of Technology Druckmittelbetaetigte Maschine mit hin- und hergehendem Kolben
FR1595812A (fr) * 1968-11-28 1970-06-15
DE2534001A1 (de) * 1975-07-30 1977-02-17 Paul Hammelmann Hochdruckplungerpumpe mit einem beruehrungslos gleitbar gelagerten plunger
JPH07189889A (ja) * 1993-12-27 1995-07-28 Tokimec Inc ピストン型液圧装置
DE4423023C2 (de) 1994-06-30 1998-07-09 Brueninghaus Hydromatik Gmbh Axialkolbenmaschine mit einem Kühlkreislauf für die Zylinder und Kolben

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021208329A1 (de) 2021-08-02 2023-02-02 Robert Bosch Gesellschaft mit beschränkter Haftung Axialkolbenmaschine
DE102022207272A1 (de) 2022-07-18 2024-01-18 Robert Bosch Gesellschaft mit beschränkter Haftung Axialkolbenmaschine

Also Published As

Publication number Publication date
EP0943798A2 (fr) 1999-09-22
EP0943798A3 (fr) 2000-06-28

Similar Documents

Publication Publication Date Title
EP0767864B1 (fr) Moteur a pistons axiaux pourvu d'un circuit de refroidissement pour les cylindres et les pistons
DE102004061941B4 (de) Axial angetriebene Kolben-Zylinder-Einheit
DE68912352T2 (de) HYDRAULISCHER MOTOR ODER PUMPE MIT KONSTANTER KLEMMKRAFT ZWISCHEN ROTOR UND öFFNUNSPLATTE.
DE102009057070B9 (de) Kolbenmaschine zum Einsatz als Vakuumpumpe für medizinische Zwecke
EP2024638A1 (fr) Machine à piston axial avec appui hydrostatique du serre-flan
DE69303388T2 (de) Anlage zur Energieumwandlung eines Fluidums mit veränderlicher Verdrängung
WO2022058321A1 (fr) Ensemble piston-cylindre pour un compresseur à pistons radiaux et compresseur à pistons radiaux
EP1672215B1 (fr) Pompe hydraulique à pistons
EP1757811B1 (fr) Disque d'attachement pour une machine à piston hydrostatique et méthode de fabrication de ce disque
EP1427914B1 (fr) Machine hydrostatique chemises de cylindres compenses
EP0943798B1 (fr) Machine axiale à pistons avec compensation hydrostatique des alésages des cylindres
DE19815614B4 (de) Axialkolbenmaschine mit hydrostatischer Entlastung der Zylinderbohrungen
DE102018214481A1 (de) Hydrostatische Verdrängermaschine
EP1588051B1 (fr) Machine a piston avec arbre et palier a roulement
DE102006044294B3 (de) Radialkolbenpumpe
EP0763657B1 (fr) Machine à pistons axiaux ayant des patins glissants à contrainte réduite
DE10023849B4 (de) Kolbenmaschine mit in Führungsbuchsen einer Zylindertrommel verschiebbar gelagerten Kolben und Führungsbuchse für eine solche Kolbenmaschine
DE10051420A1 (de) Zylinderblock eines Axialkolbenverdichters mit verlängerter Zylinderlauffläche
DE10157248A1 (de) Hydrostatische Maschine mit kompensierten Laufbuchsen
EP1287232B1 (fr) Moteur a piston axial
EP0011145B1 (fr) Patin pour machines à pistons hydrostatiques
DE102022200140A1 (de) Axialkolbenmaschine mit zumindest teilweise spanend hergestellten Vorkompressionsräumen
DE3042836C2 (de) Hochdruck-Kolbenpumpe für Flüssigkeiten, vorzugsweise für Wasser
DE102021212098A1 (de) Gleitschuh für eine Axialkolbenmaschine und Axialkolbenmaschine damit
WO2021078800A1 (fr) Piston pour un moteur à combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 04B 1/20 A, 7F 01B 3/00 B, 7F 04B 53/16 B

17P Request for examination filed

Effective date: 20000808

AKX Designation fees paid

Free format text: DE FR GB IT SE

17Q First examination report despatched

Effective date: 20030220

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59910234

Country of ref document: DE

Date of ref document: 20040923

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091222

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100325

Year of fee payment: 12

Ref country code: FR

Payment date: 20100331

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100324

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100512

Year of fee payment: 12

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110315

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59910234

Country of ref document: DE

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110315

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110316