EP0636852B1 - Artillery rocket using canard fins for guiding - Google Patents

Artillery rocket using canard fins for guiding Download PDF

Info

Publication number
EP0636852B1
EP0636852B1 EP94110495A EP94110495A EP0636852B1 EP 0636852 B1 EP0636852 B1 EP 0636852B1 EP 94110495 A EP94110495 A EP 94110495A EP 94110495 A EP94110495 A EP 94110495A EP 0636852 B1 EP0636852 B1 EP 0636852B1
Authority
EP
European Patent Office
Prior art keywords
rocket
rudders
control system
canard
flight controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94110495A
Other languages
German (de)
French (fr)
Other versions
EP0636852A1 (en
Inventor
Raimer Dipl.-Ing. Steuer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Verwaltungs Stiftung
Original Assignee
Diehl GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl GmbH and Co filed Critical Diehl GmbH and Co
Publication of EP0636852A1 publication Critical patent/EP0636852A1/en
Application granted granted Critical
Publication of EP0636852B1 publication Critical patent/EP0636852B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/62Steering by movement of flight surfaces
    • F42B10/64Steering by movement of flight surfaces of fins

Definitions

  • the invention relates to a rocket according to the preamble of claim 1.
  • Such a rocket is known from GB 21 84 414 A.
  • the rocket In order to switch to an elongated path after the ballistic ascent path to increase the range despite the low power of the rocket motor, the rocket there is equipped in the middle third - between the payload warhead and the rocket engine - with a cavity for receiving fold-out oars.
  • the unfolding of the rudders (and later a folding back into the receiving area to achieve a steeper descent) and the deployment of the payload are time-controlled from the start of the rocket and are therefore not very precise with regard to the target conditions, as will be explained in more detail below.
  • EP 0 547 637 A1 describes the precise delivery of a fall projectile from a carrier system to a target area, which is clarified by the carrier system using a synthetic radar; wherein the carrier system and the camber projectile are equipped with satellite navigation receivers in order to enable a path correction of the camber projectile with regard to the spatial coordinates of the reconnaissance radar.
  • the invention relates in particular to an increase in the power of the rocket which has been introduced in the western world as the MLRS basic rocket for the ballistic deployment of submunition warheads over a predetermined target area.
  • the azimuth and elevation of the rocket's stowage and launch container determine the direction and distance to the target area when it is ejected, which is followed by a short boost phase for acceleration in a ballistic trajectory, and above which a time-liner programmed to trigger a gas generator Ejecting the submunition warhead from the launcher fires.
  • the invention is therefore based on the object of increasing the precision of a rocket of the generic type while maintaining the system components introduced.
  • the rocket is equipped with a flight controller, the technical complexity of which can be kept comparatively low because it is supported by a precise radio navigation system that not only provides a reference for the current orbit coordinates, but in particular also for the location and time of the payload delivery .
  • the flight controller works on an actuating system that is located in front of the warhead in the front area of the ogive, without the usable one Noticeably restrict the volume of the warhead.
  • the design of the rocket in the area of their rocket motor remains completely unaffected by the fact that the rudders on which the flight controller works are designed as comparatively strongly extended canards in the longitudinal direction of the rocket. Their small span enables them to be accommodated in the rocket's stowage and launch container without resorting to complex folding mechanisms to have to.
  • the basic missile 11 of the MLRS artillery system (also as the medium one) which was introduced in the western world Artillery Missile System called MARS) (which does not appear visually as a result of the interrupted representation of FIG. 1) is a very slim, that is to say very long in relation to its diameter, missile.
  • the rocket 11 By means of its solid rocket motor 12, which extends approximately over the rear half of the missile length, the rocket 11 is accelerated in the order of magnitude of two seconds immediately after it has been ejected from the storage and launching container, in order then to be without drive on the ballistic path over the predetermined one
  • the missile 11 is equipped according to the invention with an active inertial trajectory control system 13, to which a target trajectory is predefined in the target coordinates at the start and which can thereby correct influences of errors when approaching the target area, in particular on departure disorders and on disturbing wind influences decrease, which lead to an offset of the ballistic trajectory 14 (FIG. 3) in the case of an uncorrected flight.
  • the active flight path control system 13 enables the position to be kept and the position controlled during the entire flight mission, with the detection of any deviations from the desired flight path and the correction of errors that have occurred by means of the flight controller 15, which, with the information about the control deviation 16 (FIG. 2), compensates for this on a control system 17 acts on the missile 11.
  • the rocket 11 is also equipped with a roll position sensor 18 for acting on the flight controller 15.
  • An initialization computer 19 transmits the specified target values with regard to the flight path and delivery point and the current actual values with respect to the flight controller 15 immediately before the launch of the rocket 11 Operating variables such as start coordinates and start elevation as well as current disturbance variables such as manufacturing-related misdirection when starting from the container and current cross wind strength.
  • a radio-based navigation system such as ibs. of a global positioning system (GPS) receiver 20 in the function of the flight path control system 13 with the inertial flight controller 15 allows the ignition point for the initiation of the gas generator 21 for the lateral ejection of the payload with regard to the time period from the start of the rocket 11 and / or to determine very precisely with regard to the location coordinates of the target area reached by the flight path 14 and thus to achieve high precision in the defined payload delivery that would not be achievable with an autonomous runtime control from the rocket launch.
  • GPS global positioning system
  • the entire trajectory control system 13, including electrical energy supply 22 and actuating system 17, is integrated into the front section of the ogive of the missile 11 between the warhead and the gas generator 21 in the space immediately behind the front frame 23 and takes up only a minimal payload space there in comparison to the conventional equipment of the MLRS Basic rocket 11.
  • the front main frame 23, which connects the gas generator section to the warhead shell, is thus retained in its form and function completely, but is incorporated as an integral part in the structural implementation of the additionally installed trajectory control system 13, especially with regard to the Storage of the control system 17 (see below).
  • the flight controller 15 including the inertial package (consisting of pitch and yaw rate gyros, roll position sensor 18, navigation receiver 20, and data processing) and the energy supply 22 in the conically widening section of the ogive.
  • the implementation effort for the inertial flight controller 15 can be kept comparatively low despite increased demands on the delivery accuracy, since it is updated with precise actual position coordinates from the GPS receiver 20 during the flight of the rocket 11 and the current flight speed is also always very high can be determined exactly from the GPS information (change in position over the system time difference).
  • the stabilizing fins 24 emerging at the tail of the rocket 11 after leaving the start canister are not readily available for retrofitting to control the flight path because the articulation area of the rocket motor 12 intervenes in this area should be. Therefore, the mechanically highly stressable area behind the front main frame 23 in the ogive of the missile 11 is selected for the positioning system storage, which results in the realization of the rudder 25 as canards.
  • the rear stabilizing flaps 24, which are spring-loaded only after the start, are mounted without employment.
  • the canard rudders 25 also have no position when the start is as swirl-free as possible in order to first fly through the undisturbed ballistic path 14 (left in FIG. 3) during and after the boost phase.
  • the height h of the railway apogee 34 which depends on the elevation e, this would lead to a range R which can only be varied to a limited extent and, if the start is too steep, even reduced.
  • the rudders 25 are turned on by the flight path control system 13 after apogee 34 has been reached in order to intervene correctively in the path, then the originally ballistic flight path 14 is left because the lifting effect of the now turned rudders 25 leads to an elongated path 14 'and thus to one Increasing the distance d leads to approximately twice the range 2R (FIG. 3). Because of the aerodynamic buoyancy of the canard rudders 25, the rocket 11 then flies along the latter with an almost constant glide angle precisely over the target area specified in terms of coordinates.
  • the radial dimensions of the canard oars 25 in the conically tapering ogive area in front of the warhead do not require expensive folding wings, because the clear width of the storage and launch container is sufficient to accommodate sufficiently protruding canard wings.
  • the control system 17 is not yet active during the boost phase. Then the rocket 11 is accelerated to multiple speeds of sound, but this is not a problem for the canard rudders 25 because they do not have to be unfolded first, but are held in their functional position without play.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

Die Erfindung betrifft eine Rakete gemäß dem Oberbegriff des Anspruches 1.The invention relates to a rocket according to the preamble of claim 1.

Eine solche Rakete ist aus der GB 21 84 414 A bekannt. Um im Anschluß an die ballistische Aufstiegsbahn zur Reichweiten-Steigerung trotz geringer Leistung des Raketenmotors in eine gestreckte Bahn überzugehen, ist die Rakete dort im mittleren Drittel - zwischen dem Nutzlast-Gefechtskopf und dem Raketentriebwerk - mit einem Hohlraum zur Aufnahme von ausklappbaren Rudern ausgestattet. Das Ausklappen der Ruder (und später ein Zurückklappen in den Aufnahmeraum, um einen steileren Abstieg zu erbringen) sowie das Ausbringen der Nutzlast erfolgen zeitgesteuert ab Start der Rakete und deshalb nicht sehr präzise in Hinblick auf die Zielgegebenheiten, wie unten noch näher dargestellt wird.Such a rocket is known from GB 21 84 414 A. In order to switch to an elongated path after the ballistic ascent path to increase the range despite the low power of the rocket motor, the rocket there is equipped in the middle third - between the payload warhead and the rocket engine - with a cavity for receiving fold-out oars. The unfolding of the rudders (and later a folding back into the receiving area to achieve a steeper descent) and the deployment of the payload are time-controlled from the start of the rocket and are therefore not very precise with regard to the target conditions, as will be explained in more detail below.

Aus der US 4 438 893 ist ein Lenkprojektil bekannt, bei dem der vorderste Teil der Ogive um die Projektil-Längsachse verdrehbar ist und als Halterung für kurze, breite Canard-Ruder dient.From US 4,438,893 a steering projectile is known in which the foremost part of the ogive can be rotated about the longitudinal axis of the projectile and serves as a holder for short, wide canard rudders.

Die EP 0 547 637 Al beschreibt die präzise Abgabe eines Sturzprojektils von einem Trägersystem in ein Zielgebiet, welches vom Trägersystem mittels eines synthetischen Radars aufgeklärt wird; wobei das Trägersystem und das Sturzprojektil mit Satelliten-Navigationsempfängern ausgestattet sind, um eine Bahnkorrektur des Sturzprojektils in Hinblick auf die Ortskoordinaten des Aufklärungs-Radars zu ermöglichen.EP 0 547 637 A1 describes the precise delivery of a fall projectile from a carrier system to a target area, which is clarified by the carrier system using a synthetic radar; wherein the carrier system and the camber projectile are equipped with satellite navigation receivers in order to enable a path correction of the camber projectile with regard to the spatial coordinates of the reconnaissance radar.

Die Erfindung bezieht sich aber insbesondere auf eine Leistungssteigerung derjenigen Rakete, die in der westlichen Welt als die MLRS-Basisrakete zum ballistischen Verbringen von Submunitions-Gefechtsköfpen über ein vorgegebenes Zielgebiet eingeführt ist. Azimut und Elevation des Stau- und Startbehälters der Rakete bestimmen bei ihrem Ausstoß, auf den eine kurze Boost-Phase zur Beschleunigung in eine ballistische Flugbahn folgt, Richtung und Distanz zum Zielgebiet, über dem ein flugbahnabhängig programmierter Zeitzünder einen Gasgenerator zum Ausstoßen des Submunitions-Gefechtskopfes aus der Trägerrakete zündet. Systembedingte Fehler, insoweit sie überhaupt quantitativ erfaßbar sind, können nur vor dem Raketen-Start berücksichtigt werden; wie etwa ein fertigungsbedingter individueller Abgangsfehler der jeweiligen Rakete oder die momentanen Boden-Querwindeinflüsse, welche mittels einer Sonde gemäß DE 41 20 367 Al ermittelbar sind. Aber auch solche Berücksichtigung aktueller Störgrößeneinflüsse ist fehleranfällig, zumal Störeinflüsse beim Durchfliegen der ballistischen Bahn nach dem Start gar nicht mehr berücksichtigt werden können. Daraus resultiert eine gewisse Ungenauigkeit bei der Abgabe der Nutzlast über dem vorbestimmten Zielgebiet, die unvermeidlich und nur insofern hinnehmbar ist, als es sich bei der eingeführten Nutzlast um Streumunition (Bomblets und Streuminen) handelt. Gerade deshalb ist allerdings der Einsatz dieser eingeführten ballistisch fliegenden Artillerie-Rakete in verzahnten Konfliktgebieten kaum vertretbar, weil es dort auf sehr präzise Bekämpfung definierter Zielgebiete ankommt.However, the invention relates in particular to an increase in the power of the rocket which has been introduced in the western world as the MLRS basic rocket for the ballistic deployment of submunition warheads over a predetermined target area. The azimuth and elevation of the rocket's stowage and launch container determine the direction and distance to the target area when it is ejected, which is followed by a short boost phase for acceleration in a ballistic trajectory, and above which a time-liner programmed to trigger a gas generator Ejecting the submunition warhead from the launcher fires. System-related errors, insofar as they can be quantified at all, can only be taken into account before the rocket is launched; such as a manufacturing-related individual departure error of the respective rocket or the current ground cross-wind influences, which can be determined by means of a probe according to DE 41 20 367 Al. However, such consideration of current disturbance variables is also susceptible to errors, especially since disturbances when flying through the ballistic trajectory can no longer be taken into account after the start. This results in a certain inaccuracy in the delivery of the payload over the predetermined target area, which is inevitable and only acceptable in so far as it is with the imported payload cluster munitions (bomblets and cluster mines). Precisely for this reason, however, the use of this ballistic flying artillery missile in interlocking conflict areas is hardly justifiable because it is very important to combat defined target areas there.

In Erkenntnis dieser Gegebenheiten liegt der Erfindung deshalb die Aufgabe zugrunde, eine Rakete gattungsgemäßer Art unter Beibehaltung der eingeführten Systemkomponenten in ihrer Präzision zu steigern.In recognition of these circumstances, the invention is therefore based on the object of increasing the precision of a rocket of the generic type while maintaining the system components introduced.

Diese Aufgabe ist bei einer gattungsgemäßen Rakete dadurch gelöst, daß sie gemäß den Merkmalen des Patentanspruches 1 ausgestattet ist.This object is achieved in a generic rocket in that it is equipped according to the features of claim 1.

Nach dieser Lösung wird die Rakete mit einem Flugregler ausgestattet, dessen technischer Aufwand vergleichsweise gering gehalten bleiben kann, weil er aus einem präzisen Funknavigationssystem gestützt wird, das nicht nur eine Referenz für die aktuellen Bahnkoordinaten, sondern insbesondere auch für Ort bzw. Zeitpunkt der Nutzlastabgabe liefert.According to this solution, the rocket is equipped with a flight controller, the technical complexity of which can be kept comparatively low because it is supported by a precise radio navigation system that not only provides a reference for the current orbit coordinates, but in particular also for the location and time of the payload delivery .

Um nicht nur ohne wesentliche Eingriffe in das eingeführte MLRS-System, sondern auch ohne gravierende Eingriffe in die Struktur der Basisrakete diese Präzisionssteigerung zu erreichen, arbeitet der Flugregler auf ein Stellsystem, das vor dem Gefechtskopf im vorderen Bereich der Ogive untergebracht ist, ohne das nutzbare Volumen für den Gefechtskopf spürbar einzuschränken. Die Raktenauslegung im Bereiche ihres Raketenmotors bleibt also völlig unbeeinflußt, indem die Ruder, auf die der Flugregler arbeitet, als vergleichsweise stark in Raketen-Längsrichtung gestreckte Canards ausgelegt sind. Deren geringe Spannweite ermöglicht die Unterbringung im Stau- und Startkontainer der Rakete, ohne auf konstruktiv aufwendige Klappmechanismen zurückgreifen zu müssen. Wenn die Canard-Ruder nach Durchfliegen des ballistischen Apogäums aus ihrer anfänglichen neutralen Stellung angestellt werden, um vom Flugregler ermittelte Bahnkorrekturen für das zuverlässige Erreichen der vorgegebenen zielkoordinaten zu ermöglichen, ergibt sich dadurch ein zusätzlicher aerodynamischer Auftrieb, der zu einer Streckung der Bahnkurve und dadurch zusätzlich zur Präzisionssteigerung auch noch zu einer wesentlichen Reichweitensteigerung führt, so daß die daraus resultierende Senkung der logistischen Kosten den höheren Ausstattungsaufwand der Basisrakete weit überkompensiert.In order to achieve this increase in precision not only without significant interventions in the introduced MLRS system, but also without serious interventions in the structure of the base rocket, the flight controller works on an actuating system that is located in front of the warhead in the front area of the ogive, without the usable one Noticeably restrict the volume of the warhead. The design of the rocket in the area of their rocket motor remains completely unaffected by the fact that the rudders on which the flight controller works are designed as comparatively strongly extended canards in the longitudinal direction of the rocket. Their small span enables them to be accommodated in the rocket's stowage and launch container without resorting to complex folding mechanisms to have to. If the canard rudders are turned from their initial neutral position after flying through the ballistic apogee in order to enable the flight controller to determine the corrected path for reliably reaching the specified target coordinates, this results in additional aerodynamic lift, which leads to a stretching of the path curve and thereby additionally the increase in precision also leads to a substantial increase in range, so that the resulting reduction in logistic costs more than compensates for the higher outlay on the basic rocket.

Zusätzliche Alternativen und Weiterbildungen sowie weitere Merkmale und Vorteile der Erfindung ergeben sich aus den weiteren Ansprüchen und, auch unter Berücksichtigung der Darlegungen in der Zusammenfassung, aus nachstehender Beschreibung eines in der Zeichnung unter Beschränkung auf das Wesentliche nicht ganz maßstäblich und stark abstrahiert skizzierten bevorzugten Realisierungsbeispiels zur erfindungsgemäßen Lösung. In der Zeichnung zeigt:

Fig. 1
in unterbrochener Darstellung, teilweise als Axial-Längsschnitt, eine mit satellitennavigationsgestütztem Flugregler für die Ansteuerung von Canard-Rudern ausgestattete Rakete,
Fig. 2
im Blockschaltbild eine stark vereinfachte Lenkschleife für eine typische Steuerung der erfindungsgemäß ausgestatteten Rakete nach Fig. 1 und
Fig. 3
das Flugbahnprofil über der Reichweite in Abhängigkeit von der Startelevation der Rakete mit einer Flugbahn-Beeinflussung etwa gemäß Fig. 2.
Additional alternatives and further developments as well as further features and advantages of the invention result from the further claims and, also taking into account the explanations in the summary, from the following description of a preferred implementation example which is not drawn to scale and in a highly abstract manner and is limited to the essentials solution according to the invention. The drawing shows:
Fig. 1
in interrupted representation, partially as an axial longitudinal section, a rocket equipped with satellite navigation-supported flight controller for the control of canard oars,
Fig. 2
in the block diagram a greatly simplified steering loop for a typical control of the missile equipped according to the invention according to FIGS. 1 and
Fig. 3
the trajectory profile over the range as a function of the launch elevation of the rocket with a trajectory influence, for example according to FIG. 2.

Bei der Basis-Rakete 11 des in der westlichen Welt eingeführten MLRS-Artillerieraketensystems (auch als mittleren Artillerieraketensystem MARS bezeichnet) handelt es sich (was infolge der unterbrochenen Darstellung der Fig. 1 visuell nicht in Erscheinung tritt) um einen sehr schlanken, also im Verhältnis zu seinem Durchmesser sehr langen Flugkörper. Mittels seines sich etwa über die rückwärtige Hälfte der Flugkörper-Länge erstreckenden Feststoff-Raketenmotors 12 wird die Rakete 11 unmittelbar nach ihrem Ausstoß aus dem Stau- und Startbehälter in der Größenordnung von kanpp zwei Sekunden lang beschleunigt, um dann antriebslos auf ballistischer Bahn über das vorbestimmte Zielgebiet zu fliegen und dort ihre Wirkkörper (Bomblets, Abwurfminen oder endphasenlenkende Submunitionsflugkörper) durch seitliches Aufbrechen der Raketenhülle abzuliefern.In the case of the basic missile 11 of the MLRS artillery system (also as the medium one) which was introduced in the western world Artillery Missile System called MARS) (which does not appear visually as a result of the interrupted representation of FIG. 1) is a very slim, that is to say very long in relation to its diameter, missile. By means of its solid rocket motor 12, which extends approximately over the rear half of the missile length, the rocket 11 is accelerated in the order of magnitude of two seconds immediately after it has been ejected from the storage and launching container, in order then to be without drive on the ballistic path over the predetermined one To fly to the target area and to deliver their active bodies (bomblets, launch mines or final phase-guiding submunition missiles) by breaking open the missile shell at the side.

Um dieses vorbestimmte Zielgebiet zuverlässiger zu erreichen, ist die Rakete 11 erfindungsgemäß mit einem aktiven Inertial-Flugbahnsteuersystem 13 ausgestattet, dem beim Start eine Sollflugbahn in die Zielkoordinaten vorgegeben wird und das dadurch beim Anflug auf das Zielgebiet Fehlereinflüsse korrigieren kann, die insbesondere auf Abgangsstörungen und auf störende Windeinflüsse zurückgehen, welche bei unkorrigiertem Flug zu einem Versatz der ballistischen Flugbahn 14 (Fig. 3) führen. Das aktive Flugbahnsteuersystem 13 dagegen ermöglicht eine Lagehaltung und Lageregelung während der gesamten Flugmission unter Feststellung etwaiger Abweichungen von der Sollflugbahn und Korrektur aufgetretener Fehler mittels des Flugreglers 15, der mit der Information über die Regelabweichung 16 (Fig. 2) zu deren Kompensation auf ein Stellsystem 17 an der Rakete 11 einwirkt. Um das Stellsystem 17 für definierte Bewegungen im Raum ansteuern zu können, ist die Rakete 11 ferner mit einem Roll-Lagesensor 18 zur Beaufschlagung des Flugreglers 15 ausgestattet. Ein Initialisierungsrechner 19 überträgt unmittelbar vor dem Start der Rakete 11 in den Flugregler 15 die vorgegebenen Sollwerte hinsichtlich Flugbahn und Ablieferungspunkt sowie die aktuellen Istwerte hinsichtlich Betriebsgrößen wie Startkoordinaten und Startelevation e sowie aktuelle Störgrößen wie fertigungsbedingte Fehlweisung beim Start aus dem Behälter und aktuelle Querwindstärke.In order to reach this predetermined target area more reliably, the missile 11 is equipped according to the invention with an active inertial trajectory control system 13, to which a target trajectory is predefined in the target coordinates at the start and which can thereby correct influences of errors when approaching the target area, in particular on departure disorders and on disturbing wind influences decrease, which lead to an offset of the ballistic trajectory 14 (FIG. 3) in the case of an uncorrected flight. The active flight path control system 13, on the other hand, enables the position to be kept and the position controlled during the entire flight mission, with the detection of any deviations from the desired flight path and the correction of errors that have occurred by means of the flight controller 15, which, with the information about the control deviation 16 (FIG. 2), compensates for this on a control system 17 acts on the missile 11. In order to be able to control the positioning system 17 for defined movements in space, the rocket 11 is also equipped with a roll position sensor 18 for acting on the flight controller 15. An initialization computer 19 transmits the specified target values with regard to the flight path and delivery point and the current actual values with respect to the flight controller 15 immediately before the launch of the rocket 11 Operating variables such as start coordinates and start elevation as well as current disturbance variables such as manufacturing-related misdirection when starting from the container and current cross wind strength.

Die Einbindung eines funkgestützten Navigationssystemes wie ibs. eines Global Positioning System- (GPS-)Empfängers 20 in die Funktion des Flugbahnsteuersystemes 13 mit dem Inertial-Flugregler 15 erlaubt es, für die Initiierung des Gasgenerators 21 zum seitlichen Ausstoß der Nutzlast den Zündpunkt hinsichtlich der Zeitspanne ab dem Start der Rakete 11 und/oder hinsichtlich der Ortskoordinaten des von der Flugbahn 14 erreichten Zielgebietes sehr genau zu bestimmen und damit eine hohe Präzision bei der definierten NutzlastAblieferung zu erzielen, wie sie mit einer autonomen Laufzeitsteuerung ab Raketenstart nicht erreichbar wäre.The integration of a radio-based navigation system such as ibs. of a global positioning system (GPS) receiver 20 in the function of the flight path control system 13 with the inertial flight controller 15 allows the ignition point for the initiation of the gas generator 21 for the lateral ejection of the payload with regard to the time period from the start of the rocket 11 and / or to determine very precisely with regard to the location coordinates of the target area reached by the flight path 14 and thus to achieve high precision in the defined payload delivery that would not be achievable with an autonomous runtime control from the rocket launch.

Das gesamte Flugbahnsteuersystem 13 einschließlich elektrischer Energieversorgung 22 und Stellsystem 17 ist in die vordere Sektion der Ogive der Rakete 11 zwischen Gefechtskopf und Gasgenerator 21 im Raum unmittelbar hinter dem vorderen Spant 23 integriert und beansprucht dort nur einen minimalen Nutzlastraum im Vergleich zur herkömmlichen Ausstattung der MLRS-Basisrakete 11. Der vordere Haupt-Spant 23, der die Gasgenerator-Sektion mit der Gefechtskopfhülle verbindet, bleibt so in seiner Form und Funktion vollständig erhalten, wird aber als integraler Bestandteil in die strukturelle Realisierung des zusätzlich eingebauten Flugbahnsteuersystemes 13 einbezogen, vor allem hinsichtlich der Lagerung des Stellsystemes 17 (s. unten). Hinter diesem schließen sich der Flugregler 15 samt Inertialpaket (bestehend aus Nick- und Gierraten-Kreiseln, Roll-Lagesensor 18, Navigations-Empfänger 20, und Datenverarbeitung) sowie die Energieversorgung 22 in der konisch sich aufweitenden Sektion der Ogive an.The entire trajectory control system 13, including electrical energy supply 22 and actuating system 17, is integrated into the front section of the ogive of the missile 11 between the warhead and the gas generator 21 in the space immediately behind the front frame 23 and takes up only a minimal payload space there in comparison to the conventional equipment of the MLRS Basic rocket 11. The front main frame 23, which connects the gas generator section to the warhead shell, is thus retained in its form and function completely, but is incorporated as an integral part in the structural implementation of the additionally installed trajectory control system 13, especially with regard to the Storage of the control system 17 (see below). This is followed by the flight controller 15 including the inertial package (consisting of pitch and yaw rate gyros, roll position sensor 18, navigation receiver 20, and data processing) and the energy supply 22 in the conically widening section of the ogive.

Der Realisierungs-Aufwand für den Inertial-Flugregler 15 kann trotz erhöhter Anforderungen an die Abliefergenauigkeit vergleichsweise gering gehalten werden, da er während des Fluges der Rakete 11 mit genauen Ist-Positionskoordinaten aus dem GPS-Empfänger 20 aktualisiert wird und auch die aktuelle Fluggeschwindigkeit stets sehr genau aus den GPS-Informationen (Positionsänderung über der Systemzeitdifferenz) ermittelbar ist.The implementation effort for the inertial flight controller 15 can be kept comparatively low despite increased demands on the delivery accuracy, since it is updated with precise actual position coordinates from the GPS receiver 20 during the flight of the rocket 11 and the current flight speed is also always very high can be determined exactly from the GPS information (change in position over the system time difference).

Die am Heck der Rakete 11 sich nach dem Verlassen des Startkanisters ausstellenden Stabilisierungsflossen 24 stehen für eine Umrüstung zu Rudern für die Flugbahnbeeinflussung nicht ohne weiteres zur Verfügung, weil dafür in ihrem Anlenkungsbereich in die Konstruktion und somit auch in die Funktion des Raketen-Motors 12 eingegriffen werden müßte. Deshalb wird der mechanisch hoch beanspruchbare Bereich hinter dem vorderen Haupt-Spant 23 in der Ogive der Rakete 11 für die Stellsystem-Lagerung gewählt, wodurch sich die Realisierung der Steuer-Ruder 25 als Canards ergibt. Diese greifen mit Wellenstümpfen 26 in die Ogiven-Hülle 27 radial bezüglich der Raketen-Längsachse 28 hinein und sind dort jeweils vor einem Stellgetriebe 29 auf einem Zapfen 30 gelagert, der von der rohrförmigen Innenstruktur 31 im Gefechtskopf-Bereich der Rakete 11 gehaltert ist.The stabilizing fins 24 emerging at the tail of the rocket 11 after leaving the start canister are not readily available for retrofitting to control the flight path because the articulation area of the rocket motor 12 intervenes in this area should be. Therefore, the mechanically highly stressable area behind the front main frame 23 in the ogive of the missile 11 is selected for the positioning system storage, which results in the realization of the rudder 25 as canards. These engage with shaft ends 26 in the ogive shell 27 radially with respect to the longitudinal axis 28 of the rocket and are each supported there in front of an actuator 29 on a pin 30 which is held by the tubular inner structure 31 in the warhead area of the rocket 11.

Im Interesse guten Regelverhaltens und hoher Dynamik sind für das Stellsystem 17 vier unabhängig voneinander ansteuerbare Ruder 25 orthogonal zueinander vorgesehen, und damit vier Servoantriebe 32, die zwischen den Stellgetrieben 29 und einem zusätzlich eingebauten Zwischenspant 33 auf der rohrförmigen Innenstruktur 31 vor dem Elektronikteil montiert sind. Diese Auslegung erlaubt den Einbau kleiner Stellmotore für die Realisierung hoher Stellsystemdynamik für die Nick- und Giersteuerung zusätzlich zur Roll-Lagebeeinflussung der Rakete 11. Eine besonders hohe Zuverlässigkeit auch nach langer Lagerzeit verspricht ein potentiometerfreier Servorantrieb 32 gemäß DE-PS 35 01 156. Für das Stellgetriebe 29 ist wegen der definierten und störungsfreien Hubbegrenzung eine Einrichtung nach der DE-OS 40 19 482 zu bevorzugen.In the interest of good control behavior and high dynamics, four independently controllable rudders 25 are provided orthogonally to one another for the actuating system 17, and thus four servo drives 32, which are mounted between the actuating gear 29 and an additionally installed intermediate frame 33 on the tubular inner structure 31 in front of the electronic part. This design allows the installation of small servomotors for realizing high positioning system dynamics for pitch and yaw control in addition to the roll position influencing of the rocket 11. A particularly high reliability even after a long storage time promises a potentiometer-free Servo drive 32 according to DE-PS 35 01 156. Because of the defined and trouble-free stroke limitation, a device according to DE-OS 40 19 482 is to be preferred for the actuating gear 29.

Die rückwärtigen, sich erst nach dem Start federbelastet aufstellenden Stabilisierungsklappen 24 sind ohne Anstellung montiert. Auch die Canard-Ruder 25 weisen beim möglichst drallfreien Start noch keine Anstellung auf, um während und nach der Boost-Phase zunächst die ungestörte ballistische Bahn 14 (in Fig. 3 links) zu durchfliegen. Die würde allerdings je nach der von der Elevation e abhängigen Höhe h des Bahn-Apogäums 34 zu einer nur beschränkt variierbaren und bei zu steilem Start sogar reduzierten Reichweite R führen. Wenn jedoch die Ruder 25 nach Erreichen des Apogäums 34 vom Flugbahnsteuersystem 13 angestellt werden, um korrigierend in die Bahn einzugreifen, dann wird die ursprünglich ballistische Flugbahn 14 verlassen, weil die Auftriebswirkung der nun angestellten Ruder 25 zu einer gestreckten Bahn 14' und damit zu einer Vergrößerung der Distanz d auf etwa die doppelte Reichweite 2R führt (Fig. 3). Längs dieser fliegt dann die Rakete 11 aufgrund des aerodynamischen Auftriebes der Canard-Ruder 25 mit nahezu konstantem Gleitwinkel genau über das koordinatenmäßig vorgegebene Zielgebiet.The rear stabilizing flaps 24, which are spring-loaded only after the start, are mounted without employment. The canard rudders 25 also have no position when the start is as swirl-free as possible in order to first fly through the undisturbed ballistic path 14 (left in FIG. 3) during and after the boost phase. Depending on the height h of the railway apogee 34, which depends on the elevation e, this would lead to a range R which can only be varied to a limited extent and, if the start is too steep, even reduced. However, if the rudders 25 are turned on by the flight path control system 13 after apogee 34 has been reached in order to intervene correctively in the path, then the originally ballistic flight path 14 is left because the lifting effect of the now turned rudders 25 leads to an elongated path 14 'and thus to one Increasing the distance d leads to approximately twice the range 2R (FIG. 3). Because of the aerodynamic buoyancy of the canard rudders 25, the rocket 11 then flies along the latter with an almost constant glide angle precisely over the target area specified in terms of coordinates.

Die radiale Abmessung der Canard-Ruder 25 im konisch sich verjüngenden Ogiven-Bereich vor dem Gefechtskopf bedingt keine teueren Klappflügel, weil die lichte Weite des Lager- und Startkontainers zur Aufnahme hinreichend ausladender Canard-Flügel ausreicht. Während der Boost-Phase ist das Stellsystem 17 noch nicht aktiv. Danach ist die Rakete 11 auf mehrfache Schallgeschwindigkeit beschleunigt, was aber für die Canard-Ruder 25 unproblematisch ist, weil diese ja nicht erst ausgeklappt werden müssen, sondern schon spielfrei in ihrer Funktionsstellung gehaltert sind. Die im Vergleich zur Gesamtlänge der Rakete 11 geringe Länge der Canard-Ruder 25 bei hoher Pfeilung ihrer Vorderkanten stellt sicher, daß selbst bei hohen Anstellwinkeln zum Übergang von der ballistischen Bahn 14 in die gestreckte Bahn 14' ein Strömungsabriß nicht zu befürchten ist, sondern stabile und reproduzierbare aerodynamische Verhältnisse beibehalten bleiben.The radial dimensions of the canard oars 25 in the conically tapering ogive area in front of the warhead do not require expensive folding wings, because the clear width of the storage and launch container is sufficient to accommodate sufficiently protruding canard wings. The control system 17 is not yet active during the boost phase. Then the rocket 11 is accelerated to multiple speeds of sound, but this is not a problem for the canard rudders 25 because they do not have to be unfolded first, but are held in their functional position without play. The comparison the total length of the rocket 11, the small length of the canard rudders 25 and the high sweep of its leading edges ensures that even at high angles of attack for the transition from the ballistic path 14 into the elongated path 14 'a stall is not to be feared, but rather stable and reproducible aerodynamic Conditions remain unchanged.

So liefert die höhere Ablieferungs-Präzision dieses an sich als ballistische Rakete eingeführten Waffensystems zugleich in wünschenswerter Weise eine ganz erhebliche Reichweitensteigerung. Das ermöglicht es, den Werfer in sicherere Positionen in größerem Abstand hinter die Front zurückzunehmen und dennoch mit dem gleichen Werfer-Azimutschwenk aufgrund der wesentlich vergrößerten Reichweite einen Sektor mit längerer Sehne im Frontbereich zu überdecken. Daraus wiederum resultiert, daß der seitliche Abstand zwischen einzelnen Werfern vergrößert werden kann, ohne daß Lücken in der Fronterfassung auftreten. Somit sind für vergleichbare Leistungen wegen der höheren Ablieferungsgenauigkeit nicht nur weniger Raketen 11 erforderlich, sondern auch weniger Starteinrichtungen, was die höheren Ausstattungskosten einer solchen präziseren und reichweitengesteigerten Artillerierakete 11 ohne weiteres rechtfertigt.The higher delivery precision of this weapon system, which was introduced as a ballistic missile, also provides a very substantial increase in range. This makes it possible to take the launcher back into the safer positions at a greater distance behind the front and still cover a sector with a longer tendon in the front area with the same launcher azimuth swivel due to the significantly increased range. This in turn means that the lateral distance between individual throwers can be increased without gaps in the front detection. Thus, because of the higher delivery accuracy, not only fewer rockets 11 are required for comparable services, but also fewer launch devices, which easily justifies the higher equipment costs of such a more precise and range-increased artillery rocket 11.

Claims (5)

  1. Artillery rocket (11) with a motor (12) for launching it into a ballistic trajectory (14) over a predetermined target area, via which a payload is to be released by means of a gas generator (21), and with a control system (17) for rudders (25), by means of which an extension of the trajectory (14') is achieved after flying through the ballistic apogee,
    characterised in that the control system (17) including the steering gear (29) for the rudders (25) is installed between the front main frame (23), in the area where the gas generator section merges with the missile warhead capsule of the rocket structure, and an additionally installed intermediate frame (33), where the rudders (25) may be designed as extended canard-type rudders with a small span, wherein in addition to the gas generator (21) and the control system (17), the energy supply (22) thereof and a flight controller (15) are arranged below the ogive capsule (27) of the rocket (11) in front of its payload missile warhead, an attitude sensor (18) and a navigation receiver (20) being switched onto said flight controller (15) to provide it with current location coordinates.
  2. Rocket according to Claim 1, characterised in that several canard-type rudders (25) are provided.
  3. Rocket according to one of the preceding claims, characterised in that the rudders (25) engage radially relative to their longitudinal axis (28) into the capsule (27) with shaft butt ends (26).
  4. Rocket according to one of the preceding claims, characterised in that several rudders (25), which may be adjusted independently of one another, are provided with their own steering gear (29).
  5. Rocket according to one of the preceding claims, characterised in that in the launching phase, a transfer of target coordinates to the flight controller (15) and of launching coordinates to the navigation receiver (20) from an initialisation computer (19) is provided in addition to current disturbance variable data.
EP94110495A 1993-07-28 1994-07-06 Artillery rocket using canard fins for guiding Expired - Lifetime EP0636852B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4325218A DE4325218C2 (en) 1993-07-28 1993-07-28 Artillery missile and method for increasing the performance of an artillery missile
DE4325218 1993-07-28

Publications (2)

Publication Number Publication Date
EP0636852A1 EP0636852A1 (en) 1995-02-01
EP0636852B1 true EP0636852B1 (en) 1996-10-02

Family

ID=6493850

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94110495A Expired - Lifetime EP0636852B1 (en) 1993-07-28 1994-07-06 Artillery rocket using canard fins for guiding

Country Status (3)

Country Link
US (1) US5467940A (en)
EP (1) EP0636852B1 (en)
DE (2) DE4325218C2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19500993A1 (en) * 1995-01-14 1996-07-18 Contraves Gmbh Establishing roll attitude of rolling flying object, e.g rocket or other projectile
DE19624187C1 (en) * 1996-06-18 1998-01-15 Diehl Gmbh & Co rocket
DE19635847C2 (en) * 1996-09-04 1998-07-16 Daimler Benz Aerospace Ag Guided missile with ramjet drive
US5775636A (en) * 1996-09-30 1998-07-07 The United States Of America As Represented By The Secretary Of The Army Guided artillery projectile and method
DE19645496C2 (en) * 1996-11-05 2001-05-17 Diehl Stiftung & Co Rocket rotating around its longitudinal axis with satellite navigation receiver
US6237496B1 (en) * 1997-02-26 2001-05-29 Northrop Grumman Corporation GPS guided munition
US5943009A (en) * 1997-02-27 1999-08-24 Abbott; Anthony Steven GPS guided munition
DE19922693A1 (en) * 1999-05-18 2000-11-23 Diehl Stiftung & Co Control device for the rudder of a missile
ITMI20010648A1 (en) * 2001-03-27 2002-09-27 Finmeccanica S P A Alenia Dife CONTROL GROUP FOR MISSILE AND / OR PROJECTILE DIRECTIONAL FLIGHTS
GB0111171D0 (en) * 2001-05-08 2001-06-27 Special Cartridge Company Ltd Projictile
DE10134785A1 (en) * 2001-07-17 2003-02-06 Diehl Munitionssysteme Gmbh Procedure for correcting the trajectory of ballistic missile-stabilized artillery ammunition
DE10141169A1 (en) 2001-08-22 2003-03-13 Diehl Munitionssysteme Gmbh artillery rocket
DE10147837A1 (en) * 2001-09-27 2003-04-24 Rheinmetall Landsysteme Gmbh Warhead throwing system with a mine neutralizer
DE10236157A1 (en) 2002-08-07 2004-02-26 Junghans Feinwerktechnik Gmbh & Co. Kg Fuse for artillery ammunition, comprises infrared interface at its cap, for recording large amounts of data in form of prediction data as initializing information for onboard satellite navigation
US6685143B1 (en) * 2003-01-03 2004-02-03 Orbital Research Inc. Aircraft and missile forebody flow control device and method of controlling flow
US7121210B2 (en) * 2003-02-18 2006-10-17 Kdi Precision Products, Inc. Accuracy fuze for airburst cargo delivery projectiles
WO2005026654A2 (en) 2003-05-08 2005-03-24 Incucomm, Inc. Weapon and weapon system employing the same
US7530315B2 (en) 2003-05-08 2009-05-12 Lone Star Ip Holdings, Lp Weapon and weapon system employing the same
IL162027A (en) * 2004-05-17 2009-05-04 Rafael Advanced Defense Sys Method and system for adjusting the flight path of an unguided projectile, with compensation for jittering deviation of the launcher
US7533849B2 (en) * 2005-02-07 2009-05-19 Bae Systems Information And Electronic Systems Integration Inc. Optically guided munition
US7834300B2 (en) * 2005-02-07 2010-11-16 Bae Systems Information And Electronic Systems Integration Inc. Ballistic guidance control for munitions
WO2006086527A1 (en) * 2005-02-07 2006-08-17 Bae Systems Information And Electronic Systems Integration Inc. Radiation homing tag
WO2007089243A2 (en) * 2005-02-07 2007-08-09 Bae Systems Information And Electronic Systems Integration Inc. Optically guided munition control system and method
WO2006086532A2 (en) * 2005-02-07 2006-08-17 Bae Systems Information And Electronic Systems Three axis aerodynamic control of guided munitions
US7895946B2 (en) 2005-09-30 2011-03-01 Lone Star Ip Holdings, Lp Small smart weapon and weapon system employing the same
US7690304B2 (en) 2005-09-30 2010-04-06 Lone Star Ip Holdings, Lp Small smart weapon and weapon system employing the same
US8541724B2 (en) 2006-09-29 2013-09-24 Lone Star Ip Holdings, Lp Small smart weapon and weapon system employing the same
IL178840A0 (en) * 2006-10-24 2007-09-20 Rafael Advanced Defense Sys System
US8117955B2 (en) * 2006-10-26 2012-02-21 Lone Star Ip Holdings, Lp Weapon interface system and delivery platform employing the same
US7926402B2 (en) * 2006-11-29 2011-04-19 Alliant Techsystems Inc. Method and apparatus for munition timing and munitions incorporating same
US7947938B2 (en) * 2007-03-15 2011-05-24 Raytheon Company Methods and apparatus for projectile guidance
US8546736B2 (en) 2007-03-15 2013-10-01 Raytheon Company Modular guided projectile
US7791007B2 (en) * 2007-06-21 2010-09-07 Woodward Hrt, Inc. Techniques for providing surface control to a guidable projectile
SE534614C2 (en) * 2010-02-25 2011-10-25 Bae Systems Bofors Ab Garnet provided with folding wings and control device
US8933383B2 (en) * 2010-09-01 2015-01-13 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for correcting the trajectory of a fin-stabilized, ballistic projectile using canards
US9068803B2 (en) 2011-04-19 2015-06-30 Lone Star Ip Holdings, Lp Weapon and weapon system employing the same

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067681A (en) * 1960-01-04 1962-12-11 Telecomputing Corp Guided missile
US3272124A (en) * 1960-11-28 1966-09-13 Pneumo Dynamics Corp Solid propellant actuation system
FR1528934A (en) * 1966-06-21 1968-06-14 Gen Dynamics Corp Improved control device for flying objects, especially missiles
US4438893A (en) * 1973-08-10 1984-03-27 Sanders Associates, Inc. Prime power source and control for a guided projectile
DE2853779C3 (en) * 1978-12-13 1988-02-11 Diehl GmbH & Co, 8500 Nürnberg Rollage knife for spin-stabilized missiles and projectiles
DE3013405C2 (en) * 1980-04-05 1983-10-20 GRS Gesellschaft für Raketen-Systeme mbH, 5300 Bonn Method of avoiding messaging from ballistic missile launchers
US4394997A (en) * 1980-04-14 1983-07-26 General Dynamics, Pomona Division Sequential time discrimination system for sub-delivery systems
US4530476A (en) * 1981-08-12 1985-07-23 E-Systems, Inc. Ordnance delivery system and method including remotely piloted or programmable aircraft with yaw-to-turn guidance system
US4606514A (en) * 1984-08-10 1986-08-19 Martin-Marietta Corporation Method for homing a projectile onto a target and for determining the ballistic trajectory thereof as well as arrangements for implementing the method
US4662580A (en) * 1985-06-20 1987-05-05 The United States Of America As Represented By The Secretary Of The Navy Simple diver reentry method
GB2184414B (en) * 1985-12-21 1989-10-18 Plessey Co Plc Rocket propelled vehicle
DE3645093C2 (en) * 1986-02-27 1991-06-13 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De Flying body steering system with connected motor
GB8612440D0 (en) * 1986-05-22 1986-09-17 Short Brothers Plc Unmanned flight body
DE3707159A1 (en) * 1987-03-06 1988-09-15 Diehl Gmbh & Co DEVICE FOR AUTONOMOUSLY DETERMINING THE NICKLE ANGLE ON BOARD A PROJECTILE
DE3716606A1 (en) * 1987-05-18 1988-12-08 Diehl Gmbh & Co METHOD AND DEVICE FOR DETERMINING THE APOGAE PASSAGE
FR2622966B1 (en) * 1987-11-06 1993-05-07 Thomson Brandt Armements GYROSCOPIC STABILIZATION DEVICE FOR A PROJECTILE HANDLING MEMBER
DE3738580A1 (en) * 1987-11-13 1989-06-01 Diehl Gmbh & Co STEERED ARTILLERY PROJECT WITH FLIGHT CONTROLLER
KR910010183B1 (en) * 1988-12-22 1991-12-20 삼성전자 주식회사 Recording stop time setting method
DE3904684A1 (en) * 1989-02-16 1990-09-20 Asea Brown Boveri Method for the correction of the trajectory (flight path) of an explosive projectile which is fired from a tube weapon or is self-propelled, as well as a projectile on which the method is used
DE4120367A1 (en) * 1991-06-20 1992-12-24 Diehl Gmbh & Co DEVICE FOR MEASURING THE ALTITUDE PROFILE OF A GROUND WIND
US5260709A (en) * 1991-12-19 1993-11-09 Hughes Aircraft Company Autonomous precision weapon delivery using synthetic array radar
US5322243A (en) * 1992-06-25 1994-06-21 Northrop Corporation Separately banking maneuvering aerodynamic control surfaces, system and method

Also Published As

Publication number Publication date
DE4325218A1 (en) 1995-02-02
DE4325218C2 (en) 1998-10-22
US5467940A (en) 1995-11-21
EP0636852A1 (en) 1995-02-01
DE59400761D1 (en) 1996-11-07

Similar Documents

Publication Publication Date Title
EP0636852B1 (en) Artillery rocket using canard fins for guiding
DE19740888C2 (en) Method for autonomously steering a spin-stabilized artillery projectile and autonomously guided artillery projectile for carrying out the method
DE69607944T2 (en) METHOD AND DEVICE FOR RAILWAY CORRECTION OF A BALLISTIC BULLET BY RADIAL PUSHING
EP1399706B1 (en) Artillery projectile comprising an interchangeable payload
EP1407218B1 (en) Method for correcting the flight path of ballistically fired spin-stabilised artillery ammunition
DE3323685A1 (en) DEVICE FOR COMBATING GROUND TARGETS FROM THE AIR
DE69523064T2 (en) METHOD AND DEVICE FOR USING A WARM HEAD STARTED BY A CARRIAGE PLANE TO COMBAT DESTINATIONS IDENTIFIED ALONG THE CARRIAGE OF THE CARRIAGE PLANE
EP2413086A2 (en) Method for controlling a guided missile powered by an engine
EP3882564B1 (en) Guided missile and method for ejecting a guided missile from a support platform
EP2594891B1 (en) Method for defence against an approaching ballistic rocket and interception system
DE68916058T2 (en) Vector guided by laser beam and pyrotechnic pulse generator.
DE3013405C2 (en) Method of avoiding messaging from ballistic missile launchers
EP3667226A1 (en) Projectile steering system with activatable brake unit
DE3522154C2 (en)
EP1286128B1 (en) Satellite controlloed artillery rocket with side thrust corrector
EP0049778B1 (en) Method for the distribution of ammunition
EP0187900B1 (en) Pilotless aircraft for fighting ground targets
DE4133405C2 (en) Submunition for low-flying use
DE19540252C2 (en) Procedure for guiding submunitions into a target and carrier therefor
DE2627183A1 (en) DEVICE FOR COMBATING GROUND TARGETS ON A FLYING WEAPON SUPPORT
DE3911576C2 (en)
DE10236987A1 (en) Aircraft launched rocket munition has rings behind warhead with reaction drives to correct flight alignment
DE2815206C2 (en) Procedure, guided missile and weapon system for combating ground targets
DE3529897A1 (en) Missile for engaging targets when overflying them
DE20221539U1 (en) Aircraft launched rocket munition has rings behind warhead with reaction drives to correct flight alignment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19950407

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 59400761

Country of ref document: DE

Date of ref document: 19961107

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961204

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010726

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020925

Year of fee payment: 9

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050629

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050704

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060706

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060706

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731