EP0489184B1 - Hochleistungsstrahler - Google Patents

Hochleistungsstrahler Download PDF

Info

Publication number
EP0489184B1
EP0489184B1 EP90123090A EP90123090A EP0489184B1 EP 0489184 B1 EP0489184 B1 EP 0489184B1 EP 90123090 A EP90123090 A EP 90123090A EP 90123090 A EP90123090 A EP 90123090A EP 0489184 B1 EP0489184 B1 EP 0489184B1
Authority
EP
European Patent Office
Prior art keywords
cooling
voltage source
high power
radiator
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90123090A
Other languages
English (en)
French (fr)
Other versions
EP0489184A1 (de
Inventor
Ulrich Dr. Kogelschatz
Christoph Von Arx
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Priority to DE59010169T priority Critical patent/DE59010169D1/de
Priority to EP90123090A priority patent/EP0489184B1/de
Priority to CA002055709A priority patent/CA2055709A1/en
Priority to US07/797,058 priority patent/US5198717A/en
Priority to JP3317789A priority patent/JP2783712B2/ja
Publication of EP0489184A1 publication Critical patent/EP0489184A1/de
Application granted granted Critical
Publication of EP0489184B1 publication Critical patent/EP0489184B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Definitions

  • the invention relates to a high-power radiator, in particular for ultraviolet light, with a discharge space which is filled with a filling gas which emits radiation under discharge conditions, formed by the interior of a cooled hollow body made of a material which is permeable to the radiation produced, with from the inner walls of the hollow body, with dielectric channels spaced apart and provided with cooling channels, in which internal electrodes are embedded or inserted, with a high-voltage source for supplying the discharge.
  • the invention relates to a state of the art, such as results from EP-A-0 254 111.
  • UV sources The industrial use of photochemical processes depends heavily on the availability of suitable UV sources.
  • the classic UV lamps deliver low to medium UV intensities at some discrete wavelengths, such as the low-pressure mercury lamps at 185 nm and especially at 254 nm.
  • Really high UV powers can only be obtained from high-pressure lamps (Xe, Hg), which then have theirs Distribute radiation over a larger wavelength range.
  • the new excimer lasers have some new wavelengths for photochemical Basic experiments provided. For cost reasons, they are currently only suitable for an industrial process in exceptional cases.
  • the effective cooling of the radiator is also crucial for its economical use.
  • the outer electrode lying at earth potential is regularly cooled.
  • Cooling of the inner electrode (which is at high voltage potential) is also optionally provided, with only the following being stated: that a liquid or gaseous coolant is passed through the hollow inner electrode. Due to the potential conditions, a coolant with a very low conductivity, eg demineralized water or oil, must be used for liquid cooling. In addition, for reasons of economy, the internal electrode must be cooled in a closed circuit.
  • the object of the invention is to create a high-performance radiator, in particular for UV or VUV light, which can be cooled in a technically simple and economical manner.
  • the hollow body is in thermal contact with a cooling body, in which cooling channels () are provided which are connected to the cooling channels of the dielectric tubes and form a closed coolant circuit, and that a cooling liquid with a low electrical conductivity can be passed through these cooling channels.
  • the already necessary cooling device for the (outer) hollow body forms the heat exchanger for the coolant circuit of the dielectric tubes.
  • the hollow body can be cooled with ordinary tap water. This either saves you large amounts of expensive demineralized or distilled water or you save an additional circulation cooling unit for the dielectric tubes.
  • the high-performance radiator according to Fig.l and 2 consists of four cylindrical individual radiators 1 in the example, the structure of which is known per se.
  • a dielectric tube 3 is arranged at a distance from it.
  • the annular space between the two tubes forms the discharge space 4 of the radiator.
  • the inner wall of the dielectric tube 3 is provided with a metal layer 5 (shown excessively thick in FIG. 2) which forms the inner electrode of the radiator.
  • Metal pipes are used, which are covered with a dielectric layer, for example on a ceramic basis.
  • the outer electrode of the radiator consists of a wire mesh or a wire mesh 6 that extends over the entire length and a large part of the outer circumference of the outer quartz tube 2.
  • a high voltage source 7 for feeding the discharge is connected to this outer electrode and the inner electrode (FIG. 1).
  • the inside of the quartz tube 1 is filled with a filling gas which emits radiation under discharge conditions, e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.
  • a filling gas which emits radiation under discharge conditions, e.g. Mercury, noble gas, noble gas-metal vapor mixture, noble gas-halogen mixture, optionally using an additional further noble gas, preferably Ar, He, Ne, as a buffer gas.
  • the four individual radiators 1 are located in grooves 8 on the broad side of a heat sink 9 made of thermally highly conductive material. These grooves 8 are adapted in cross-section to the outer contour of the outer quartz tube 2.
  • the heat sink 9 is provided with two groups of cooling channels 10 and 11 which run in the longitudinal direction of the groove.
  • the cooling channels 10 of the first group lead to an outer cooling circuit, which is not shown any further. In the simplest case, ordinary tap water flows through them in the direction of the arrow.
  • the cooling channels 11 of the other group are connected to the interior 13 of the dielectric tubes 3 via connecting lines 12 and suitable connection fittings (not shown).
  • a pump 14 ensures the circulation of a cooling liquid with low electrical conductivity, for example demineralized water or oil, in the cooling circuit just described.
  • the heat sink 9 acts as a heat exchanger between the primary cooling system (cooling channels 10) and the secondary cooling system (cooling channels 11, connecting lines 12, inner space 13 of the dielectric tubes 3, pump 14). Potential isolation is ensured by the practically electrically non-conductive coolant in the secondary cooling system.
  • the high voltage source 7 basically corresponds to those used for feeding ozone generators. Typically, it delivers an adjustable AC voltage in the order of magnitude of several 100 volts to 20,000 volts at frequencies in the range of technical alternating current up to a few MHz, depending on the electrode geometry, pressure in the discharge space and composition of the filling gas. With the UV high-power lamps in question here, the frequencies of the supply voltage are regularly considerably higher than the technical AC voltage; they can reach several hundred kilohertz.
  • a suitable high-voltage source 7 is generally constructed according to the principle of a switched-mode power supply and accordingly contains electrical and electronic components that have to be cooled and are accordingly mounted on cooling profiles.
  • the heat sink 9, which is necessary anyway for cooling the radiator, is also used for cooling the components of the high-voltage source 7.
  • FIG. 2 the cooling profile or profiles 15 of the high-voltage source 7 are attached directly to the underside of the heat sink 9 of the radiator. In this way, the fan in the high voltage source 7 can be omitted. Due to the spatial proximity of the source and consumer, the effort for electromagnetic shielding is lower.
  • the structure of the entire radiation device can be designed extremely modular.
  • UV cooling lamps with a completely different geometry can also be equipped with the cooling concept according to the invention. This is explained in more detail below with the aid of FIG. 3.
  • five dielectric tubes 26 with hollow internal electrodes 27 are arranged in a quartz tube 21 with a rectangular cross section with the broad sides 22, 23 and the narrow sides 24, 25.
  • the dielectric tubes 26 are spaced apart from one another and also from the walls of the quartz tube 21.
  • the dielectric tubes 26 are, for example, quartz tubes, the inner electrodes 27 are metal tubes. Instead, a metal tube encased in dielectric material can also be used.
  • the two narrow sides 24, 25 and one of the broad sides 23 of the quartz tube 21 are each provided with an aluminum layer 28 on the outside.
  • the aluminum layer 28 is preferably vapor-deposited, flame-sprayed, plasma-sprayed or sputtered and serves as a reflector.
  • the aluminum layers 28 on the narrow sides 24, 25 of the quartz tube 21 can also serve as additional outer electrodes for feeding with a high-voltage source 7 with an earth-symmetrical output.
  • the quartz tube 21 is closed on both ends by plates 30, 31 made of insulating material. These plates are glued to the end faces, for example, or fused to the end walls in the case of quartz or glass plates.
  • the plates 30, 31 are provided with openings 32 into which the dielectric tubes 26 are inserted and fastened and sealed therein.
  • the interior of the quartz tube 1 can be evacuated via a filler neck 34 and then filled with a filler gas.
  • the radiator is electrically supplied from an alternating current source 7 in such a way that adjacent inner electrodes (metal tubes 27) are alternately connected to the alternating current source 7.
  • alternating current source 7 When a voltage is applied, a large number of discharge channels are formed 19 between adjacent dielectric tubes 26, which emit the UV light, which then penetrates through the transparent broad side 22 of the quartz tube 21 to the outside.
  • the proposed feed allows the use of a high voltage source 7 with a balanced output.
  • the heat sink 9a can then be connected to earth potential.
  • the quartz tube 21 is inserted into a heat sink 9a with a U-shaped cross-section to cool the radiator externally. Lateral strands 18 serve for the electrical contact between the aluminum layer 28 and the legs of the heat sink 9a. An optional heat-conducting paste 29 between the lower broad side 23 of the quartz tube 21 serves to improve the heat transfer.
  • a plurality of cooling channels 10, 11 running in the longitudinal direction of the heat sink are provided in the bottom section of the heat sink 9a.
  • the group designated 10 serves analogously to the embodiment according to FIGS. 1 and 2 as the primary cooling circuit and is flowed through, for example, by ordinary tap water.
  • the other group, designated 11 is connected to all metal tubes 27 connected in series or in parallel by means of suitable connecting lines 12a and connection fittings (not shown).
  • the pump 14 ensures the circulation of a cooling liquid with a very low electrical conductivity in this secondary cooling circuit.
  • the heat sink 9a serves as a heat exchanger between the two coolant circuits.
  • two groups of cooling channels 10, 11 were provided in the heat sink of the radiator. It is of course within the scope of the invention to design the primary cooling circuit in a different way.
  • the heat sink can be partially immersed in a coolant or provided with large-area cooling fins and can also be forced-cooled with air. With such alternatives, there is no need to change the secondary cooling circuit for the radiator.
  • the heat sink 9 serves both as a heat exchanger for the internal cooling of the radiator and as a heat exchanger for a further cooling circuit for cooling the high-voltage source 7.
  • additional channels 11a are provided in the heat sink 9, which channels 12b and a further pump 14a with cooling channels 33 in the high voltage source 7 are connected.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Lasers (AREA)

Description

    Technisches Gebiet
  • Die Erfindung bezieht sich auf einen Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem Entladungsraum, der mit einem Füllgas gefüllt ist, das unter Entladungsbedingungen Strahlung aussendet, gebildet durch den Innenraum eines gekühlten Hohlkörpers aus einem für die erzeugte Strahlung durchlässigem Material, mit von den Innenwänden des Hohlkörpers distanzierten und mit Kühlkanälen versehenen Dielektrikumsrohren, in welche Innenelektroden eingebettet oder eingelegt sind, mit einer Hochspannungsquelle zur Speisung der Entladung.
  • Die Erfindung nimmt dabei Bezug auf einen Stand der Technik, wie er sich etwa aus der EP-A-0 254 111 ergibt.
  • Technologischer Hintergrund und Stand der Technik
  • Der industrielle Einsatz photochemischer Verfahren hängt stark von der der Verfügbarkeit geeigneter UV-Quellen ab. Die klassischen UV-Strahler liefern niedrige bis mittlere UV-Intensitäten bei einigen diskreten Wellenlängen, wie z.B. die QuecksilberNiederdrucklampen bei 185 nm und insbesondere bei 254 nm. Wirklich hohe UV-Leistungen erhält man nur aus Hochdrucklampen (Xe, Hg), die dann aber ihre Strahlung über einen grösseren Wellenlängenbereich verteilen. Die neuen Excimer-Laser haben einige neue Wellenlängen für photochemische Grundlagenexperimente bereitgestellt. Sie sind zur Zeit aus Kostengründen für einen industriellen Prozess wohl nur in Ausnahmefällen geeignet.
  • In der eingangs genannten EP-Patentanmeldung oder auch in dem Konferenzdruck "Neue UV- und VUV-Excimerstrahler" von U.Kogelschatz und B.Eliasson, verteilt an der 10.Vortragstagung der Gesellschaft Deutscher Chemiker, Fachgruppe Photochemie, in Würzburg (BRD) 18. 20.November 1987, wird ein neuer Excimerstrahler beschrieben. Dieser neue Strahlertyp basiert auf der Grundlage, dass man Excimerstrahlung auch in stillen elektrischen Entladungen erzeugen kann, einem Entladungstyp, der in der Ozonerzeugung grosstechnisch eingesetzt wird. In den nur kurzzeitig (einige Nanosekunden) vorhandenen Stromfilamenten dieser Entladung werden durch Elektronenstoss Edelgasatome angeregt, die zu angeregten Molekülkomplexen (Excimeren) weiterreagieren. Diese Excimere leben nur einige Nanosekunden und geben beim Zerfall ihre Bindungsenergie in Form von Strahlung ab, deren Wellenlängenbereich je nach Zusammensetzung des Füllgases im UVA, UVB, UVC und VUV oder auch im sichtbaren Spektralbereich liegen kann.
  • In der jüngsten Vergangenheit hat die Nachfrage nach derartigen Hochleistungsstrahlern zugenommen, weil die besonderen Eigenschaften des Strahlers viele neue Anwendungsgebiete in der chemischen und physikalischen Verfahrenstechnik, im grafischen Gewerbe, für Beschichtungen etc. eröffnet haben.
  • Neben einer optimalen Auslegung des Strahlers hinsichtlich Dielektrikumsmaterial, Spaltweite, Druck, Temperatur und Zusammensetzung des Einsatzgases ist auch die wirksame Kühlung des Strahler mitentscheidend für seinen wirtschaftlichen Einsatz. Bei den bekannten Strahlern wird regelmässig die auf Erdpotential liegende Aussenelektrode gekühlt. Optional ist auch eine Kühlung der (auf Hochspannungspotential liegenden) Innenelektrode vorgesehen, wobei lediglich ausgeführt wird, dass durch die hohle Innenelektrode ein flüssiges oder gasförmiges Kühlmittel geleitet wird. Aufgrund der Potentialverhältnisse muss bei Flüssigkeitskühlung ein Kühlmittel verwendet werden, das einen sehr kleinen Leitwert, z.B. vollentsalztes Wasser, oder Oel, aufweist. Zudem muss aus oekonomischen Gründen die Kühlung der Innenelektrode im geschlossenen Kreislauf erfolgen.
  • Darstellung der Erfindung
  • Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Hochleistungsstrahler, insbesondere für UV oder VUV-Licht, zu schaffen, der technisch einfach und wirtschaftlich gekühlt werden kann.
  • Zur Lösung dieser Aufgabe bei einem Hochleistungsstrahler der eingangs genannten Gattung ist erfindungsgemäss vorgesehen, dass der Hohlkörper in thermischem Kontakt mit einem Kühlkörper steht, in welchem Kühlkanäle () vorgesehen sind, welche mit den Kühlkanälen der Dielektrikumsrohre in Verbindung stehen und einen geschlossen Kühlmittelkreislauf bilden, und dass durch diese Kühlkanäle eine Kühlflüssigkeit mit geringem elektrischen Leitwert hindurchleitbar ist.
  • Auf diese Weise bildet die ohnehin notwendige Kühleinrichtung für den (äusseren) Hohlkörper den Wärmetauscher für den Kühlmittelkreislauf der Dielektrikumsrohre. Der Hohlkörper kann mit gewöhnlichem Leitungswasser gekühlt werden. Somit erspart man sich entweder grosse Mengen von teurem vollentsalzten oder destillierten Wasser oder man erspart sich ein zusätzliches Umwälzkühlaggregat für die Dielektrikumsrohre.
  • Die Erfindung wird nachstehend anhand von Ausführungsbeispielen näher erläutert.
  • Kurze Beschreibung der Zeichnungen
  • In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt; darin zeigt
  • Fig. 1
    einen Längsschnitt durch den einen UVHochleistungsstrahler mit einer schematischen Darstellung der beiden Kühlkreisläufe;
    Fig. 2
    einen vergrösserte und mehr ins Detail gehende Schnittdarstellung des UV-Hochleistungsstrahlers nach Fig.1 längs deren Linie AA im Schnitt, wobei zusätzlich der Kühlkörper als Träger und Kühler für die elektrische Speisung des Strahlers dient;
    Fig. 3
    eine Ausführungsform mit einem anderen Strahlertyp;
    Fig. 4
    einen Schnitt durch den Strahler nach Fig.3 längs deren Linie BB;
    Fig.5
    einen einen Längsschnitt durch den einen UV-Hochleistungsstrahler in schematischenr Darstellung mit Kühlkreisläufen für den Strahler und die Hochspannungsquelle.
    Detaillierte Beschreibung der Erfindung
  • Der Hochleistungsstrahler nach Fig.l und 2 besteht aus im Beispielsfall vier zylindrischen Einzelstrahlern 1, deren Aufbau an sich bekannt ist. In einem äusseren Quarzrohr 2 ist von diesem beabstandet ein Dielektrikumsrohr 3 angeordnet. Der Ringraum zwischen den beiden Rohren bildet den Entladungsraum 4 des Strahlers. Die Innenwandung des Dielektrikumsrohrs 3 ist mit einer Metallschicht 5 (in Fig.2 übertrieben dick eingzeichnet) versehen, welche die Innenelektrode des Strahlers bildet. Alternativ können anstelle einer Metallschicht 5 auch Metallrohre verwendet werden, die mit einer dielektrischen Schicht, z.B. auf Keramik-Basis, überzogen sind. Die Aussenelektrode des Strahlers besteht aus einem Drahtnetz oder einem Drahtgewebe 6, dass sich über die gesamte Länge und einen grossen Teil des Aussenumfangs des äusseren Quarzrohrs 2 erstreckt. An diese Aussenelektrode und die Innenelektrode ist eine Hochspannungsquelle 7 zur Speisung der Entladung angeschlossen (Fig.1).
  • Das Innere des Quarzrohrs 1 ist mit einem unter Entladungsbedingungen Strahlung aussendenden Füllgas gefüllt, z.B. Quecksilber, Edelgas, EdelgasMetalldampfGemisch, Edelgas-Halogen-Gemisch, gegebenenfalls unter Verwendung eines zusätzlichen weiteren Edelgases, vorzugsweise Ar, He, Ne, als Puffergas.
  • Wie aus dem vergrössertem Schnittbild gemäss Fig.2 hervorgeht, liegen die vier Einzelstrahler 1 in Nuten 8 auf der Breitseite eines Kühlkörpers 9 aus thermisch gutleitendem Material. Diese Nuten 8 sind im Querschnitt der Aussenkontur des äusseren Quarzrohrs 2 angepasst. Der Kühlkörper 9 ist mit zwei Gruppen von Kühlkanälen 10 und 11 versehen, die in Nutlängsrichtung verlaufen. Die Kühlkanäle 10 der ersten Gruppe führen an einen nicht weiter dargestellten äusseren Kühlkreis. Sie werden im einfachsten Fall von gewöhnlichem Leitungswasser in Pfeilrichtung durchströmt. Die Kühlkanäle 11 der anderen Gruppe sind über Verbindungsleitungen 12 und geeignete Anschlussarmaturen (nicht dargestellt) mit dem Innenraum 13 der Dielektrikumsrohre 3 verbunden. Eine Pumpe 14 sorgt für die Zirkulation einer Kühlflüssigkeit mit geringer elektrischer Leitfähigkeit, z.B. demineralisiertes Wasser oder Oel, in dem soeben beschriebenen Kühlkreis. Der Kühlkörper 9 wirkt auf diese Weise als Wärmetauscher zwischen Primärkühlsystem (Kühlkanäle 10) und Sekundärkühlsystem (Kühlkanäle 11, Verbindungsleitungen 12, Inneraum 13 der Dielektrikumsrohre 3, Pumpe 14). Durch die praktisch elektrisch nichtleitende Kühlflüssigkeit im Sekundärkühlsystem ist die Potentialtrennung gewährleistet.
  • Die Hochspannungsquelle 7 entspricht grundsätzlich jenen, wie sie zur Anspeisung von Ozonerzeugern verwendet werden. Typisch liefert sie eine einstellbare Wechselspannung in der Grössenordnung von mehreren 100 Volt bis 20000 Volt bei Frequenzen im Bereich des technischen Wechselstroms bis hin zu einigen MHz, abhängig von der Elektrodengeometrie, Druck im Entladungsraum und Zusammensetzung des Füllgases. Bei den hier in Frage kommenden UV-Hochleistungsstrahlern liegen die Frequenzen der Speisespannung regelmässig erheblich über der technischen Wechselspannung; sie können einige hundert Kilohertz erreichen. Eine hierfür geeignete Hochspannungsquelle 7 ist in der Regel nach dem Prinzip eines Schaltnetzteils aufgebaut und enthält dementsprechend elektrische und elektronische Komponenten, die gekühlt werden müssen und demgemäss auf Kühlprofilen montiert sind. Gemäss einer Weiterbildung der Erfindung ist nun vorgesehen, den für die Kühlung des Strahlers ohnehin notwendigen Kühlkörper 9 auch zur Kühlung der Bauelemente der Hochspannungsquelle 7 heranzuziehen. Dies ist in Fig.2 dadurch veranschaulicht, dass das oder die Kühlprofile 15 der Hochspannungsquelle 7 unmittelbar auf der Unterseite des Kühlkörpers 9 des Strahlers befestigt sind. Auf diese Weise kann das Gebläse in der Hochspannungsquelle 7 entfallen. Durch die räumliche Nähe von Quelle und Verbraucher ist der Aufwand für die elektromagnetische Abschirmung geringer. Der Aufbau der gesamten Bestrahlungseinrichtung lässt sich extrem modular gestalten.
  • Neben den im vorstehenden beschriebenen Einzelstrahlern mit zylindrischem Querschnitt lassen sich selbstverständlich auch Flächenstrahler, z.B. nach des EP-A-0 254 111, mit einem Primär- und einem Sekundärkühlkreislauf versehen. Auch UV-Hochleistungsstrahler mit völlig anderer Geometrie lassen sich mit dem erfindungsgemässen Kühlkonzept ausstatten. Dies wird nachstehend anhand Fig.3 näher erläutert. Bei diesem UV-Hochleistungsstrahler sind in einem Quarzrohr 21 mit Rechteckquerschnitt mit den Breitseiten 22, 23 und den Schmalseiten 24, 25 fünf Dielektrikumsrohre 26 mit hohlen Innenelektroden 27 angeordnet. Die Dielektrikumsrohre 26 sind voneinander und auch von den Wänden des Quarzrohrs 21 beabstandet. Die Dielektrikumsrohre 26 sind beispielsweise Quarzröhrchen, die Innenelektroden 27 sind Metallröhrchen. Statt dessen kann auch ein von dielektrischem Material umhülltes Metallrohr verwendet werden.
  • Die beiden Schmalseiten 24,25 und eine der Breitseiten 23 des Quarzrohrs 21 sind aussen je mit einer Aluminiumschicht 28 versehen. Die drei Beschichtungen können müssen aber nicht elektrisch voneinander isoliert sein. Die Aluminiumschicht 28 ist vorzugsweise aufgedampft, flammgespritzt, plasmagespritzt oder gesputtert und dient als Reflektor. Die Aluminiumschichten 28 auf den Schmalseiten 24, 25 des Quarzrohrs 21 können darüber hinaus als zusätzliche Aussenelektroden für eine Anspeisung mit einer Hochspannungsquelle 7 mit erdsymmetrischem Ausgang dienen.
  • Wie aus Fig.4 zu erkennen ist, ist das Quarzrohr 21 an seinen beiden Stirnseiten durch Platten 30, 31 aus Isoliermaterial verschlossen. Diese Platten sind beispielsweise auf die Stirnseiten aufgeklebt oder im Falle von Quarz oder Glasplatten mit den besagten Stirnwänden verschmolzen. Die Platten 30, 31 sind mit Durchbrüchen 32 versehen, in welche die Dielektrikumsrohre 26 eingeschoben und darin befestigt und versiegelt sind. Ueber einen Füllstutzen 34 kann der Innenraum des Quarzrohrs 1 evakuiert und dann mit einem Füllgas gefüllt werden.
  • Wie aus Fig.4 ersichtlich ist, erfolgt die elektrische Anspeisung des Strahlers aus einer Wechselstromquelle 7 derart, dass abwechselnd benachbarte Innenelektroden (Metallröhrchen 27) an die Wechselstromquelle 7 angeschlossen sind. Bei Anliegen einer Spannung bildet sich eine Vielzahl von Entladungskanälen 19 zwischen benachbarten Dielektrikumsrohren 26 aus, welche das UV-Licht abstrahlen, das dann durch die transparente Breitseite 22 des Quarzrohrs 21 nach aussen dringt. Die vorgeschlagene Anspeisung erlaubt die Verwendung einer Hochspannungsquelle 7 mit erdsymmetrischem Ausgang. Der Kühlkörper 9a kann dann auf Erdpotential gelegt werden.
  • Zur Aussenkühlung des Strahlers ist das Quarzrohr 21 in einen Kühlkörper 9a mit U-förmigem Querschnitt eingelegt. Seitliche Litzenbänder 18 dienen dem elektrischen Kontakt zwischen der Alumniumschicht 28 und den Schenkeln des Kühlkörpers 9a. Eine optionale wärmeleitende Paste 29 zwischen der unteren Breitseite 23 des Quarzrohrs 21 dient zur Verbesserung des Wärmeübergangs. Im Bodenabschnitt des Kühlkörpers 9a ist eine Vielzahl von in Kühlkörperlängsrichtung verlaufenden Kühlkanälen 10, 11 vorgesehen. Die eine mit 10 bezeichnete Gruppe dient analog der Ausführungsform nach Fig.1 und 2 als Primärkühlkreislauf und wird beispielsweise von gewöhnlichem Leitungswasser durchströmt. Die andere mit 11 bezeichnete Gruppe ist über geeignete Verbindungsleitungen 12a und (nicht dargestellten) Anschlussarmaturen mit allen hydraulisch seriell oder parallelgeschalteten Metallröhrchen 27 verbunden. Die Pumpe 14 sorgt für den Zirkulation einer Kühlflüssigkeit mit sehr kleinem elektrischen Leitwert in diesem Sekundärkühlkreislauf. Der Kühlkörper 9a dient dabei als Wärmetauscher zwischen beiden Kühlmittelkreisläufen.
  • Bei den im vorstehenden beschriebenen Ausführungsbeispielen waren jeweils zwei Gruppen Kühlkanäle 10,11 im Kühlkörper des Strahlers vorgesehen. Es liegt selbstverständlich im Rahmen der Erfindung, den Primärkühlkreis auch auf andere Weise auszubilden. So kann beispielsweise der Kühlkörper teilweise in ein Kühlmittel eintauchen oder mit grossflächigen Kühlrippen versehen auch mit Luft zwangsgekühlt werden. Bei derartigen Alternativen bedarf es keiner Aenderung des Sekundärkühlkreislaufes für den Strahler.
  • Eine weitere Alternative ist in Fig.5 schematisch dargestellt. Dort dient der Kühlkörper 9 sowohl als Wärmetauscher für die Innenkühlung des Strahlers als auch als Wärmetauscher für einen weiteren Kühlkreislauf zur Kühlung der Hochspannungsquelle 7. Zu diesem Zweck sind im Kühlkörper 9 zusätzliche Kanäle 11a vorgesehen, welche über Verbindungsleitungen 12b und eine weitere Pumpe 14a mit Kühlkanälen 33 in der Hochspannungsquelle 7 verbunden sind.

Claims (3)

  1. Hochleistungsstrahler, insbesondere für ultraviolettes Licht, mit einem Entladungsraum (4), der mit einem Füllgas gefüllt ist, das unter Entladungsbedingungen Strahlung aussendet, gebildet durch den Innenraum eines gekühlten Hohlkörpers (2;21) aus einem für die erzeugte Strahlung durchlässigem Material, mit von den Innenwänden des Hohlkörpers distanzierten, mit Kühlkanälen (13) versehenen Dielektrikumsrohren (3;26), in welche Innenelektroden (5;27) eingebettet oder eingelegt sind, mit einer Hochspannungsquelle (7) zur Speisung der Entladung, dadurch gekennzeichnet, dass der Hohlkörper (2;21) in thermischem Kontakt mit einem Kühlkörper (9;9a) steht, in welchem Kühlkanäle (11) vorgesehen sind, welche mit den Kühlkanälen (13) der Dielektrikumsrohre (3;26) in Verbindung stehen und einen geschlossen Kühlmittelkreislauf bilden, und dass durch diese Kühlkanäle eine Kühlflüssigkeit mit geringem elektrischen Leitwert hindurchleitbar ist.
  2. Hochleistungsstrahler nach Anspruch 1, dadurch gekennzeichnet, dass zumindest einige der elektrischen oder elektronischen Komponenten der Hochspannungsquelle (7) auf dem Kühlkörper (9;9a) angeordnet sind und mit letzterem in thermisch gut leitender Verbindung stehen.
  3. Hochleistungsstrahler nach Anspruch 1, dadurch gekennzeichnet, dass die Hochspannungsquelle (7) mit einer eigenen Kühleinrichtung (30) versehen ist, welche an Kühlkanäle (11a) im Kühlkörper (9) angeschlossen ist.
EP90123090A 1990-12-03 1990-12-03 Hochleistungsstrahler Expired - Lifetime EP0489184B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE59010169T DE59010169D1 (de) 1990-12-03 1990-12-03 Hochleistungsstrahler
EP90123090A EP0489184B1 (de) 1990-12-03 1990-12-03 Hochleistungsstrahler
CA002055709A CA2055709A1 (en) 1990-12-03 1991-11-15 High-power radiator
US07/797,058 US5198717A (en) 1990-12-03 1991-11-25 High-power radiator
JP3317789A JP2783712B2 (ja) 1990-12-03 1991-12-02 高出力放射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90123090A EP0489184B1 (de) 1990-12-03 1990-12-03 Hochleistungsstrahler

Publications (2)

Publication Number Publication Date
EP0489184A1 EP0489184A1 (de) 1992-06-10
EP0489184B1 true EP0489184B1 (de) 1996-02-28

Family

ID=8204785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90123090A Expired - Lifetime EP0489184B1 (de) 1990-12-03 1990-12-03 Hochleistungsstrahler

Country Status (5)

Country Link
US (1) US5198717A (de)
EP (1) EP0489184B1 (de)
JP (1) JP2783712B2 (de)
CA (1) CA2055709A1 (de)
DE (1) DE59010169D1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4140497C2 (de) * 1991-12-09 1996-05-02 Heraeus Noblelight Gmbh Hochleistungsstrahler
KR100212704B1 (ko) * 1996-10-16 1999-08-02 윤종용 오존발생장치
JP3282798B2 (ja) * 1998-05-11 2002-05-20 クォークシステムズ株式会社 エキシマランプおよびエキシマ発光装置
US6015759A (en) * 1997-12-08 2000-01-18 Quester Technology, Inc. Surface modification of semiconductors using electromagnetic radiation
US6049086A (en) * 1998-02-12 2000-04-11 Quester Technology, Inc. Large area silent discharge excitation radiator
JP2003167100A (ja) * 2001-12-03 2003-06-13 Ushio Inc 紫外線照射装置
JP2003224117A (ja) * 2002-01-31 2003-08-08 Advanced Lcd Technologies Development Center Co Ltd 絶縁膜の製造装置
US20030157000A1 (en) * 2002-02-15 2003-08-21 Kimberly-Clark Worldwide, Inc. Fluidized bed activated by excimer plasma and materials produced therefrom
US20090052187A1 (en) * 2007-08-24 2009-02-26 Weiping Li Heat-Dissipating Lighting System
US8596826B2 (en) * 2010-08-23 2013-12-03 Abl Ip Holding Llc Active cooling systems for optics
DE102010043215A1 (de) 2010-11-02 2012-05-03 Osram Ag Strahler mit Sockel für die Bestrahlung von Oberflächen
JP6036740B2 (ja) 2014-04-08 2016-11-30 ウシオ電機株式会社 光照射装置
RU2557013C1 (ru) * 2014-04-15 2015-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") Рентгеновская трубка электрического газового барьерного разряда для контроля металлических и газовых включений в полимерной кабельной изоляции
RU2559806C1 (ru) * 2014-04-21 2015-08-10 Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН) Источник излучения
US9722550B2 (en) 2014-04-22 2017-08-01 Hoon Ahn Power amplifying radiator (PAR)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2342412A (en) * 1941-08-28 1944-02-22 Bell Telephone Labor Inc Electron discharge device
CH670171A5 (de) * 1986-07-22 1989-05-12 Bbc Brown Boveri & Cie
CH675504A5 (de) * 1988-01-15 1990-09-28 Asea Brown Boveri
CH676168A5 (de) * 1988-10-10 1990-12-14 Asea Brown Boveri
CH677292A5 (de) * 1989-02-27 1991-04-30 Asea Brown Boveri

Also Published As

Publication number Publication date
JP2783712B2 (ja) 1998-08-06
JPH04301357A (ja) 1992-10-23
EP0489184A1 (de) 1992-06-10
US5198717A (en) 1993-03-30
CA2055709A1 (en) 1992-06-04
DE59010169D1 (de) 1996-04-04

Similar Documents

Publication Publication Date Title
EP0489184B1 (de) Hochleistungsstrahler
EP0547366B1 (de) Hochleistungsstrahler
EP0509110B1 (de) Bestrahlungseinrichtung
EP0389980A1 (de) Hochleistungsstrahler
EP0363832B1 (de) Hochleistungsstrahler
EP0578953B1 (de) Hochleistungsstrahler
EP0458140B1 (de) Hochleistungsstrahler
EP0482230B1 (de) Hochleistungsstrahler
EP0385205B1 (de) Hochleistungsstrahler
DE69501196T3 (de) Lichtquellen-Vorrichtung mit einer Dielektrikumbegrenzter Entladungslampe
EP0254111B1 (de) UV-Strahler
EP0324953B1 (de) Hochleistungsstrahler
EP0386471B1 (de) Vorrichtung zur Erzeugung von Ozon
EP0357911B1 (de) Ozonerzeuger
EP0449018A2 (de) Bestrahlungseinrichtung
EP0517929B1 (de) Bestrahlungseinrichtung mit einem Hochleistungsstrahler
DE19526211A1 (de) Verfahren zum Betreiben von Entladungslampen bzw. -strahler
CH677846A5 (de)
DE4010809A1 (de) Hochleistungsstrahler
DE3731168C2 (de) Ozonisator zur Erzeugung von Ozon durch kaltes Plasma für Wechselspannungsanregung im kHz-Bereich und Verfahren zur Herstellung der Vorrichtung
DE4022279A1 (de) Bestrahlungseinrichtung
DE19741668C2 (de) Entladungslampe für Oberflächen-Gleitentladung
EP0515711A1 (de) Hochleistungsstrahler
DE3225327C2 (de)
EP2893551A1 (de) Dielektrisch behinderte entladungs-lampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19921113

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAEUS NOBLELIGHT GMBH

17Q First examination report despatched

Effective date: 19950410

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960226

REF Corresponds to:

Ref document number: 59010169

Country of ref document: DE

Date of ref document: 19960404

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961108

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961213

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961219

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961230

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970829

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051203