EP0363758B1 - Aromatische Polyhydroxypolyamine, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Polyurethan-Kunststoffen - Google Patents

Aromatische Polyhydroxypolyamine, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Polyurethan-Kunststoffen Download PDF

Info

Publication number
EP0363758B1
EP0363758B1 EP89118111A EP89118111A EP0363758B1 EP 0363758 B1 EP0363758 B1 EP 0363758B1 EP 89118111 A EP89118111 A EP 89118111A EP 89118111 A EP89118111 A EP 89118111A EP 0363758 B1 EP0363758 B1 EP 0363758B1
Authority
EP
European Patent Office
Prior art keywords
aromatic
polyhydroxypolyamines
mol
compounds
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89118111A
Other languages
English (en)
French (fr)
Other versions
EP0363758A2 (de
EP0363758A3 (de
Inventor
Urs Dr. Thiery
Josef Dr. Sanders
Dieter Prof. Dr. Dieterich
Gerhard Dr. Grögler
Helmut Dr. Reiff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to AT89118111T priority Critical patent/ATE83231T1/de
Publication of EP0363758A2 publication Critical patent/EP0363758A2/de
Publication of EP0363758A3 publication Critical patent/EP0363758A3/de
Application granted granted Critical
Publication of EP0363758B1 publication Critical patent/EP0363758B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • C08G18/5027Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups directly linked to carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/84Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/329Hydroxyamines containing aromatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/322Polymers modified by chemical after-treatment with inorganic compounds containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33379Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group
    • C08G65/33386Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group cyclic
    • C08G65/33389Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing nitro group cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products

Definitions

  • the invention relates to new compounds having terminal aminophenoxy and hydroxyl groups, a process for their preparation and their use as structural components in the production of optionally cellular polyurethane plastics and foams.
  • Terminal polyadducts containing aromatic amino groups are known in principle.
  • NCO prepolymers with sulfamic acid according to DE-AS 1 155 907, with formic acid according to FR-PS 1 415 317 or with hydroxyl-containing enamines, aldimines or ketimines according to DE-OS 2 116 882 and DE-OS 2 546 536 also leads after hydrolysis or saponification to give aromatic aminopolyethers, such as the thermal cleavage of urethanes from NCO prepolymers and secondary or tertiary carbinols according to DE-AS 1 270 046.
  • DE-OS 2 948 419, 3 223 397, 3 223 398 describe and 3,223,400 different one- or two-stage processes for the production of aromatic polyamines by hydrolysis of NCO prepolymers in the presence of various solvent and catalyst systems.
  • Another reaction possibility for aromatic polyamines is the ring opening reaction of isatoic anhydride with polyols.
  • Aromatic amino polyethers are also obtained by reacting polyoxyalkylene polyols with p-aminobenzoic acid derivatives according to Japanese patent applications 59 053 533, 59 089 322 and 59 199 715.
  • the low reactivity of the aromatic ester amines obtained in this way is disadvantageous for many purposes.
  • EP-A-268 849 presented polyphenoxyamines which show more favorable viscosities and, in some cases, good reactivities with isocyanates. However, in the preparation of the polyphenoxynitro compounds from which the amines are obtained by hydrogenation, there remains unreacted nitrophenylating agent, which has an extremely disruptive effect when the amines are processed and which has to be removed beforehand at great expense.
  • the present invention thus relates to novel compounds of the general formula having terminal aminophenoxy and hydroxyl groups in which 1 R represents an m-valent radical, such as is formed by partially removing the hydroxyl groups from an m-valent polyhydroxyl compound with a molecular weight of 400-8000, 2 R represents hydrogen or a methyl group, m is an integer from 2 to 4, n represents an average value and a positive number of 0.05 ⁇ m to 0.73 ⁇ m, preferably 0.15 ⁇ m to 0.70 ⁇ m.
  • 1 R represents an m-valent radical, such as is formed by partially removing the hydroxyl groups from an m-valent polyhydroxyl compound with a molecular weight of 400-8000
  • 2 R represents hydrogen or a methyl group
  • m is an integer from 2 to 4
  • n represents an average value and a positive number of 0.05 ⁇ m to 0.73 ⁇ m, preferably 0.15 ⁇ m to 0.70 ⁇ m.
  • the invention also relates to the use of the compounds according to the invention having the latter hydroxyl and aminophenoxy groups as structural components in the production of polyurethane plastics by the isocyanate polyaddition process.
  • Starting materials for the process according to the invention are (i) higher molecular weight polyhydroxyl compounds and (ii) optionally methyl-substituted nitrohalobenzenes.
  • Suitable polyhydroyl compounds (i) are preferably higher molecular weight compounds with an average molecular weight of 400 to 8000, which have at least 2 to 4 reactive hydroxyl groups per mol.
  • hydroxyl-containing polyacetals, polythioethers, polycarbonates, polyamides, polysiloxanes and / or polybutadienes, polyesters, polylactones and polyethers are suitable for use in polyurethane chemistry. in particular, however, polyethers bearing hydroxyl groups.
  • the polyethers according to the invention which have hydroxyl groups are those of the type known per se and are known, for. B. by polymerization of epoxides such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin with itself, for. B. in the presence of BF3, or by the addition of these epoxides, optionally in a mixture or in succession, to starting components with reactive hydrogen atoms such as water, alcohols or amines, e.g. B.
  • epoxides such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin
  • BF3 BF3
  • reactive hydrogen atoms such as water, alcohols or amines
  • sucrose polyethers such as those e.g. B. are described in German interpretations 1 176 358 and 1 064 938, come into question according to the invention. In many cases, those polyethers are preferred which predominantly (up to 90% by weight, based on all the OH groups present in the polyether) have primary OH groups. Also modified by vinyl polymers, polyethers such as z. B.
  • polyacetals such. B. from glycols, such as di- or tri-ethylene glycol, 4,4'-dihydroxyethoxydiphenylmethane, hexanediol and formaldehyde or by polymerization of cyclic acetals, such as. B. trioxane, producible compounds in question.
  • glycols such as di- or tri-ethylene glycol, 4,4'-dihydroxyethoxydiphenylmethane, hexanediol and formaldehyde
  • polymerization of cyclic acetals such as. B. trioxane, producible compounds in question.
  • Suitable polycarbonates containing hydroxyl groups are those of the type known per se, which, for. B. by reacting diols such as 1,3-propanediol, 1,4-butanediol and / or 1,6-hexanediol, di-, tri- or tetraethylene glycol or thiodiglycol with diaryl carbonates, e.g. B. diphenyl carbonate, or phosgene can be produced (DE-B 1 694 080, 1 915 908 and 2 221 751; DE-A 2 605 024).
  • Suitable polyesters from dicarboxylic acids and diols are those from adipic acid and isophthalic acid and straight-chain and / or branched diols, as are lactone polyesters, preferably based on caprolactone and starter diols.
  • Polyhydroxyl compounds already containing urethane or urea groups and also modified natural polyols can also be used. Addition products of alkylene oxides on phenol-formaldehyde resins or also on urea-formaldehyde resins can also be used according to the invention. It is also possible e.g. B. according to DE-A 2 559 372, in the polyhydroxy compounds to introduce amide groups.
  • polyhydroxyl compounds in which high molecular weight polyadducts or polycondensates or polymers are also used can optionally be used are contained in finely dispersed or dissolved form.
  • Such polyhydroxyl compounds are e.g. B. obtained when polyaddition reactions (z. B. reactions between polyisocyanates and amino-functional compounds) or polycondensation reactions (z. B. between formaldehyde and phenols and / or amines) in situ in the above-mentioned, hydroxyl-containing compounds .
  • polyhydroxyl compounds such as z. B. by polymerization of styrene and acrylonitrile in the presence of polyethers (US Pat. No. 3,383,351, 3,304,273, 3,523,093, 3,110,695, DE-B 1,152,536) or polycarbonate polyols (DE-PS 1,769,795, US -PS 3 637 909) are obtained are suitable for the process according to the invention.
  • plastics When using polyether polyols which have been modified according to DE-A 2 442 101, 2 644 922 and 2 646 141 by graft polymerization with vinylphosphonic acid esters and optionally (meth) acrylonitrile, (meth) acrylamide or OH-functional (meth) acrylic acid esters, plastics are obtained of special flame retardancy.
  • modified polyhydroxyl compounds of the type mentioned above gives rise to starting components which, in many cases, give polyurethane plastics with significantly improved mechanical properties in the polyisocyanate polyaddition process.
  • Suitable, albeit less preferred, polyhydroxyl components (i) are also organofunctional polysiloxanes which have two terminal groups and structural units of the formula -O-Si (R) 2- which are reactive toward isocyanate groups, R in this formula representing a C1-C4- Alkyl or a phenyl radical, but preferably a methyl radical.
  • suitable starting materials are both the pure polysiloxanes which are known per se and have terminal organofunctional groups and the terminal organofunctional siloxanepolyoxyalkylene copolymers which are known per se.
  • organopolysiloxanes which are particularly preferred according to the invention correspond to the general formula
  • the starting materials (ii) which are suitable according to the invention include, where appropriate, methyl-substituted halonitrobenzenes of the general formula for which 2R represents hydrogen or a methyl group, preferably hydrogen, X represents fluorine or preferably chlorine, and in which the halogen and nitro substituents are preferably arranged ortho or para to one another.
  • Particularly preferred starting materials (ii) are 2-nitrochlorobenzene or 4-nitrochlorobenzene.
  • alkaline compounds which are required for the reaction of the polyhydroxyl compounds (i) with the halonitrobenzenes (ii) are metal hydrides, metal alkoxides and preferably metal hydroxides. Sodium hydroxide and potassium hydroxide are particularly preferred.
  • stage a) of the process according to the invention When stage a) of the process according to the invention is carried out, the starting materials (ii), based on component (i), are used in a deficit.
  • the hydrogen halide released in the reaction can be bound by adding metal hydrides, metal alkoxides and metal hydroxides.
  • Sodium or potassium hydroxide is preferably used in finely divided form. The amount is at least such that it is sufficient to neutralize the hydrogen chloride that is split off. They are particularly preferably used in an amount such that 1 to 3 mol base equivalents are available per mol component (ii).
  • Step a) of the process according to the invention is carried out in bulk or advantageously in an organic solvent, optionally in the presence of a phase transfer catalyst.
  • the reactants can be present in a homogeneous phase or in two phases, dissolved, emulsified or suspended.
  • Suitable organic solvents are for example: benzene, toluene, xylene, chlorobenzene, dichlorobenzene, trichlorobenzene, diethyl ether, diisopropyl ether, tert-butyl methyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, Essigester, acetone, methyl ethyl ketone, acetonitrile, furfural, methylene chloride, chloroform, trichlorethylene, tetrachlorethylene , Nitromethane, nitropropane, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, tetramethylurea, N-methylcaprolactam, dimethyl sulfoxide, tetramethylene sulfone, hexamethylene phosphoric acid triamide, etc.
  • the amount of solvent is generally such that it is sufficient to clearly dissolve the starting materials (i) and (ii). In practice, this means that the solvents are generally used in an amount of 50 to 1,000, preferably 100 to 500 parts by weight of solvent per 100 parts by weight of the mixture of components (i) and (ii).
  • a phase transfer catalyst Such catalysts are e.g. B. in EV and SS Dehmlow, Phase Transfer Catalysis, 2nd edition, Verlag Chemie 1983.
  • Suitable catalysts are quaternary ammonium or phosphonium salts of the formula in which Z represents nitrogen or phosphorus, R ', R ⁇ , R ⁇ ' and R ⁇ ⁇ represent the same or different radicals and are alkyl groups having 1 to 18 carbon atoms, where one of the radicals can also represent an araliphatic radical having 7 to 16 carbon atoms, and the sum of the Carbon atoms of the four radicals is preferably 12 to 31.
  • Typical examples of suitable catalysts are N-benzyl-N, N, N-triethylammonium chloride or bromide, N-benzyl-N-dodecyl-N, N-dimethylammonium chloride or bromide, N, N, N, N-tetra -n-hexylammonium chloride or bromide, N-benzyl-N, N, N -tri-n-octylammonium chloride or bromide or the phosphonium salts corresponding to these ammonium salts, preferably N, N, N-trimethyl-N-benzylammonium chloride or N-hexadecyl-N, N, N-trimethylammonium bromide.
  • the quaternary ammonium or phosphonium salts mentioned by way of example are preferably carried out in bulk or in the form of their aqueous solutions (for example with a solids content of 30 to 60% by weight) and preferably in an amount of 1 to 10 mol%, based on the number of moles of the hydroxyl groups present.
  • Step a) of the process according to the invention is generally carried out at 10 to 100 ° C., preferably at 20 to 80 ° C., with positive pressure, negative pressure or expediently without pressure, continuously or batchwise.
  • the residence time is generally 0.5 to 24 hours; 0.5 to 12 hours are preferred.
  • stage a) of the process according to the invention one can proceed, for example, by initially introducing the starting materials and, if appropriate, the phase transfer catalyst in the solvent selected, and the base in dissolved or suspended form, preferably in solid, as finely ground as possible, with stirring, if appropriate with Cooling is added in portions or continuously. The mixture is then stirred at room temperature or, if appropriate, at an elevated temperature, until complete conversion of the nitrophenylating agent (ii) is indicated by thin layer chromatography.
  • the nitrophenoxy adducts are worked up in a manner known per se.
  • the reaction mixture is expediently diluted with an inert solvent which is not miscible with water and washed with water or brine neutral, distilled off the solvents, if necessary, in vacuo and dried in vacuo.
  • the reaction mixture can also be neutralized by treatment with CO2.
  • inert solvents are toluene, methylene chloride, chlorobenzene, dichlorobenzene, 1,2-dichloroethane, trichlorethylene.
  • Another way of working up is that after adding 1-20% water to the reaction mixture with mineral acid, preferably hydrochloric acid or sulfuric acid, optionally under vacuum, the mixture is removed and the mixture at temperatures of 10-120 ° C., preferably 25-90 ° C, filtered.
  • the crude product thus obtained can generally be processed without further purification.
  • stage a In principle conceivable, but less preferred, would also be a procedure which consists in feeding the reaction mixture obtained in stage a) directly to stage b), if appropriate after neutralizing the excess alkali metal hydroxide without intermediate isolation.
  • the compounds containing terminal nitrophenoxy groups obtained in stage a) of the process according to the invention are converted into the corresponding polyamines in stage b) in a manner known per se by reduction with nascent or catalytic hydrogen, for example by means of Raney nickel or palladium on carbon.
  • the hydrogenation can be carried out in the presence or absence of inert solvents at 20-120 ° C. and a pressure of 20 to 80 bar.
  • Suitable solvents are, for example, methanol, ethanol, i-propanol, toluene, DMF and others. Methanol or toluene is preferred.
  • the diamines are used as a distillation residue obtained during the removal of the solvent by distillation and can be used for the production of polyurethane plastics without further purification steps.
  • the polyhydroxypolyamines according to the invention obtained after working up are generally light yellow to brownish colored products and are distinguished from the previously known aromatic aminopolyethers by their lower viscosity.
  • the functional groups already present in the underlying polyhydroxyl compounds such as e.g. B. ether and / or thioether and / or dialkylsiloxane and / or carbonate groups and / or residues of polybutadienes only a number of ether groups and hydroxyl groups corresponding to their functionality.
  • the aromatic polyhydroxypolyamines according to the invention are suitable as reactants for optionally blocked polyisocyanates in the production of polyurethanes (polyurethane ureas), optionally cellular polyurethane plastics or polyurethane foams, where appropriate also with other low molecular weight (molecular weight 32 to 399) and / or higher molecular weight (molecular weight 400 to approx. 12,000 compounds with groups reactive toward isocyanates can be combined.
  • suitable starting components for the production of polyurethane plastics are described, for example, in DE-A 2 302 564, DE-A 2 432 764 (US Pat. No.
  • the polyhydroxypolyamines according to the invention are particularly suitable for use in combination with solid polyisocyanates. According to DE-A 3 230 757, these components can be used to produce reaction systems which can be stored for as long as required at RT or, if appropriate, at elevated temperature and which cure only when exposed to high temperatures. Systems of this type are generally referred to as one-component systems.
  • Suitable solid polyisocyanates are, for example, dimeric 2,4-diisocyanatotoluene (TT) or 3,3'-dimethyl-4,4'-diisocyanatodiphenylurea (TDIH).
  • polyurethane (urea) by means of the polyamines produced according to the invention is also the subject of the present invention.
  • Your application can e.g. B. for elastomers, coatings, threads in the application from melts, solutions, dispersions or as a reactive component mixture.
  • Further uses of the polyamines produced according to the invention are e.g. B. coupling components for diazo dyes, hardeners for epoxy and phenolic resins, and all other known reactions of amines such as amide or imide formation and others.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyamides (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

  • Die Erfindung betrifft neue, endständige Aminophenoxy- und Hydroxygruppen aufweisende Verbindungen, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Aufbaukomponente bei der Herstellung von gegebenenfalls zellförmigen Polyurethan-Kunststoffen und Schaumstoffen.
  • Endständige, aromatische Aminogruppen aufweisende Polyaddukte sind im Prinzip bekannt.
  • US-PS 2 888 439 und DE-OS 1 720 646 beschreiben die Herstellung von Aminopolyethern durch Reaktion von Nitroarylisocyanaten mit Polyolen und nachfolgender Hydrierung. Die analoge Umsetzung von Azoarylisocyanaten mit Polyolen liefert nach Reduktion ebenfalls aromatische Aminopolyether (DE-OS 1 257 427). In den DE-OS 1 122 254 und DE-OS 1 694 152 wird ein Verfahren beschrieben, bei dem NCO-Prepolymere mit Diaminen umgesetzt werden, welche unterschiedlich reaktive Aminogruppen aufweisen.
  • Auch die Reaktion von NCO-Prepolymeren mit Sulfaminsäure gemäß DE-AS 1 155 907, mit Ameisensäure gemäß FR-PS 1 415 317 oder mit Hydroxylgruppen aufweisenden Enaminen, Aldiminen oder Ketiminen gemäß DE-OS 2 116 882 sowie DE-OS 2 546 536 führt nach Hydrolyse bzw. Verseifung ebenso zu aromatischen Aminopolyethern, wie die thermische Spaltung von Urethanen aus NCO-Prepolymeren und sekundären oder tertiären Carbinolen gemäß DE-AS 1 270 046. Ferner beschreiben die DE-OS 2 948 419, 3 223 397, 3 223 398 sowie 3 223 400 verschiedene ein- bzw. zweistufige Verfahren zur Herstellung aromatischer Polyamine durch Hydrolyse von NCO-Prepolymeren in Gegenwart verschiedener Lösungsmittel- und Katalysatorsysteme.
  • Alle bisher beschriebenen Verfahren verlaufen über Isocyanatzwischenstufen und liefern daher in allen Fällen Produkte, die neben Ether- und aromatischen Aminogruppen zusätzliche Urethan- bzw. Harnstoffgruppen aufweisen. Dadurch bedingt zeigen diese Produkte eine für viele Zwecke unerwünscht hohe Viskosität. Ein weiterer Nachteil dieser zusätzlichen Urethan- bzw. Harnstoffbindungen ist ihre relativ geringe thermische Stabilität, wodurch der Wärmestand entsprechender mit diesen Aminopolyethern hergestellten Polyurethankunststoffe insbesondere von Elastomeren ungünstig beeinflußt wird.
  • Als weitere Synthesemöglichkeit für aromatische Polyamine kommt die unter Ringöffnung verlaufende Reaktion von Isatosäureanhydrid mit Polyolen in Betracht.
  • Solche Amine sind beispielsweise in den DE-OS 2 019 432, 2 619 840, 2 648 774, 2 648 825 sowie in US-PS 4 180 644, beschrieben. Aromatische Aminopolyether erhält man ferner durch Umsetzung von Polyoxyalkylenpolyolen mit p-Aminobenzoesäurederivaten gemäß den japanischen Patentanmeldungen 59 053 533, 59 089 322 und 59 199 715. Nachteilig für viele Zwecke ist jedoch die geringe Reaktivität der auf diesem Wege erhaltenen aromatischen Esteramine.
  • In der EP-A-268 849 wurden Polyphenoxyamine vorgestellt, welche günstigere Viskositäten und teilweise gute Reaktivitäten mit Isocyanaten aufzeigen. Bei der Darstellung der Polyphenoxynitroverbindungen, aus denen die Amine durch Hydrierung erhalten werden, verbleibt jedoch nicht umgesetztes Nitrophenylierungsmittel, das sich bei einer Verarbeitung der Amine äußerst störend auswirkt und zuvor aufwendig entfernt werden muß.
  • Es war daher Aufgabe der vorliegenden Erfindung, neue Polyhydroxypolyphenoxyamine zur Verfügung zu stellen, unter vollständigem Umsatz des Nitrophenylierungsmittels und insbesondere mit noch niedrigeren Viskositäten als oben genannte Polyphenoxyamine und gegebenenfalls günstigeren Reaktivitäten. Der durch die schnell reagierenden Aminogruppen und die langesamer reagierenden OH-Gruppen erreichte zweistufige Reaktionsverlauf wirkt sich besonders günstig z. B. beim Reaktionsspritzgießen aus. Durch die anfänglich niedrige Viskosität wird eine gute Vermischung im Mischkopf erreicht. Nach Reaktion der schnellen Aminogruppen steigt die Viskosität soweit an, daß Dichtungsprobleme an der Form nicht auftreten, wobei jedoch das Produkt lang genug dünnflüssig bleibt um die Form vollständig auszufüllen.
  • Diese Aufgabe konnte durch Bereitstellung der erfindungsgemäßen Verbindungen gelöst werden.
  • Gegenstand der vorliegenden Erfindung sind somit neue endständige Aminophenoxy- und Hydroxylgruppen aufweisende Verbindungen der allgemeinen Formel
    Figure imgb0001

    in welcher
       1R für einen m-wertigen Rest steht, wie er durch teilweise Entfernung der Hydroxylgruppen von einer m-wertigen Polyhydroxylverbindung des Molgewichts 400 - 8000 entsteht,
       2R für Wasserstoff oder eine Methylgruppe steht,
       m eine ganze Zahl von 2 bis 4 bedeutet,
       n ein Durchschnittswert und eine positive Zahl von 0,05·m bis 0,73·m bedeutet, vorzugsweise 0,15·m bis 0,70·m.
  • Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung von endständige Hydroxy- und Aminophenoxygruppen aufweisenden Verbindungen der allgemeinen Formel
    Figure imgb0002

    in der ¹R, ²R, m und n die vorgenannte Bedeutung haben, dadurch gekennzeichnet, daß man
    • a)
      • (i) m-wertige höhermolekulare Polyhydroxylverbindungen der allgemeinen Formel

                ¹R(OH)m

      • (ii) n-Molen der Verbindungen der allgemeinen Formel
        Figure imgb0003
        in Gegenwart von alkalisch reagierenden Verbindungen umsetzt und
    • b) die so erhaltenen (m-n)-Hydroxy, n-Nitrophenoxyaddukte der allgemeinen Formel
      Figure imgb0004
      in an sich bekannter Weise zu den entsprechenden (m-n)-Hydroxy-, n-Aminophenoxy-Verbindungen hydriert, wobei in diesen Formeln ¹R, ²R, m und n die in den Ansprüchen oben angegebene Bedeutung haben und x für Fluor oder Chlor steht.
  • Gegenstand der Erfindung ist schließlich auch die Verwendung der letztgenannten erfindungsgemäßen Hydroxy- und Aminophenoxygruppen aufweisenden Verbindungen als Aufbaukomponente bei der Herstellung von Polyurethankunststoffen nach dem Isocyanat-Polyadditionsverfahren.
  • Ausgangsmaterialien für das erfindungsgemäße Verfahren sind (i) höhermolekulare Polyhydroxylverbindungen und (ii) gegebenenfalls methylsubstituierte Nitrohalogenbenzole.
  • Geeignete Polyhydroylverbindungen (i) sind vorzugsweise höhermolekulare Verbindungen mit einem mittleren Molgewicht von 400 bis 8000, welche mindestens 2 bis 4 reaktive Hydroxylgruppen pro mol aufweisen.
  • In Frage kommen beispielsweise die in der Polyurethanchemie üblichen, hydroxylgruppentragenden Polyacetale, Polythioether, Polycarbonate, Polyamide, Polysiloxane und/oder Polybutadiene, Polyester, Polylactone sowie Polyether; insbesondere aber Hydroxylgruppen tragende Polyether.
  • Die erfindungsgemäß in Frage kommenden Hydroxylgruppen aufweisenden Polyether sind solche der an sich bekannten Art und werden z. B. durch Polymerisation von Epoxiden wie Ethylenoxid, Propylenoxid, Butylenoxid, Tetrahydrofuran, Styroloxid oder Epichlorhydrin mit sich selbst, z. B . in Gegenwart von BF₃, oder durch Anlagerung dieser Expoxide, gegebenenfalls im Gemisch oder nacheinander, an Startkomponenten mit reaktionsfähigen Wasserstoffatomen wie Wasser, Alkohole oder Amine, z. B. Ethylenglykol, Propylenglykol-(1,3) oder -(1,2), Trimethylolpropan, 4,4′-Dihydroxy-diphenylpropan, Anilin, Ammoniak, Ethanolamin oder Ethylendiamin hergestellt. Auch Sucrosepolyether, wie sie z. B. in den deutschen Auslegeschriften 1 176 358 und 1 064 938 beschrieben werden, kommen erfindungsgemäß in Frage. Vielfach sind solche Polyether bevorzugt, die überwiegend (bis zu 90 Gew.-%, bezogen auf alle vorhandenen OH-Gruppen im Polyether) primäre OH-Gruppen aufweisen. Auch durch Vinylpolymerisate modifizierte Polyether, wie sie z. B. durch Polymerisation von Styrol und Acrylnitril in Gegenwart von Polyethern entstehen (amerikanische Patentschriften 3 383 351, 3 304 273, 3 523 093, 3 110 659, deutsche Patentschrift 1 152 536), sind geeignet, ebenso OH-Gruppen aufweisende Polybutadiene.
  • Als Polyacetale kommen z. B. die aus Glykolen, wie Dioder Tri-ethylenglykol, 4,4′-Dihydroxyethoxydiphenylmethan, Hexandiol und Formaldehyd oder durch Polymerisation cyclischer Acetale, wie z. B. Trioxan, herstellbare Verbindungen in Frage.
  • Als Hydroxylgruppen aufweisende Polycarbonate kommen solche der an sich bekannten Art in Betracht, die z. B. durch Umsetzung von Diolen wie Propandiol-1,3, Butandiol-1,4 und/oder Hexandiol-1,6, Di-, Tri- oder Tetraethylenglykol oder Thiodiglykol mit Diarylcarbonaten, z. B. Diphenylcarbonat, oder Phosgen hergestellt werden können (DE-B 1 694 080, 1 915 908 und 2 221 751; DE-A 2 605 024).
  • Als Polyester aus Dicarbonsäuren und Diolen kommen solche aus Adipinsäure- und Isophthalsäure und geradkettigen und/oder verzweigten Diolen in Betracht, ebenso Lactonpolyester, vorzugsweise auf Basis von Caprolacton und Starterdiolen.
  • Unter den Polythioethern seien insbesondere die Kondensationsprodukte von Thiodiglykol mit sich selbst und/oder mit anderen Glykolen angeführt.
  • Auch bereits Urethan- oder Harnstoffgruppen enthaltende Polyhydroxylverbindungen sowie gegebenenfalls modifizierte natürliche Polyole sind verwendbar. Auch Anlagerungsprodukte von Alkylenoxiden an Phenol-Formaldehyd-Harze oder auch an Harnstoff-Formaldehyd-Harze sind erfindungsgemäß einsetzbar. Es ist auch möglich, z. B. gemäß DE-A 2 559 372, in die Polyhydroxylverbindungen Amidgruppen einzuführen.
  • Erfindungsgemäß können gegebenenfalls auch Polyhydroxylverbindungen eingesetzt werden, in welchen hochmolekulare Polyaddukte bzw. Polykondensate oder Polymerisate in feindisperser oder gelöster Form enthalten sind. Derartige Polyhydroxylverbindungen werden z. B. erhalten, wenn man Polyadditionsreaktionen (z. B. Umsetzungen zwischen Polyisocyanaten und aminofunktionellen Verbindungen) bzw. Polykondensationsreaktionen (z. B. zwischen Formaldehyd und Phenolen und/oder Aminen) in situ in den o. G., Hydroxylgruppen aufweisenden Verbindungen ablaufen läßt. Derartige Verfahren sind beispielsweise in den DE-B 1 168 075 und 1 260 142, sowie den DE-A 2 324 134, 2 423 984, 2 512 385, 2 513 815, 2 550 796, 2 550 797, 2 550 833, 2 550 862, 2 633 293 und 2 639 254 beschrieben. Es ist aber auch möglich, gemäß US-PS 3 869 413 bzw. 2 550 860 eine fertige wäßrige Polymerdispersion mit einer Polyhydroxylverbindung zu vermischen und anschließend aus dem Gemisch das Wasser zu entfernen.
  • Auch durch Vinylpolymerisate modifizierte Polyhydroxylverbindungen, wie sie z. B. durch Polymerisation von Styrol und Acrylnitril in Gegenwart von Polyethern (US-PS 3 383 351, 3 304 273, 3 523 093, 3 110 695, DE-B 1 152 536) oder Polycarbonatpolyolen (DE-PS 1 769 795, US-PS 3 637 909) erhalten werden, sind für das erfindungsgemäße Verfahren geeignet. Bei Verwendung von Polyetherpolyolen, welche gemäß DE-A 2 442 101, 2 644 922 und 2 646 141 durch Pfropfpolymerisation mit Vinylphosphonsäureestern sowie gegebenenfalls (Meth)acrylnitril, (Meth)acrylamid oder OH-funktionellen (Meth)acrylsäureestern modifiziert wurden, erhält man Kunststoffe von besonderer Flammwidrigkeit.
  • Beim Einsatz von modifizierten Polyhydroxylverbindungen der oben genannten Art als Ausgangsmaterialien für die Polyamine entstehen Ausgangskomponenten, die im Polyisocyanat-Polyadditionsverfahren in vielen Fällen Polyurethankunststoffe mit wesentlich verbesserten mechanischen Eigenschaften ergeben.
  • Geeignete, wenn auch weniger bevorzugte Polyhydroxylkomponenten (i) sind auch organofunktionelle Polysil oxane, die zwei endständige, gegenüber Isocyanatgruppen reaktionsfähige Gruppen und Struktureinheiten der Formel -O-Si(R)₂- aufweisen, wobei in dieser Formel R für einen C₁-C₄-Alkyl- oder einen Phenylrest, vorzugsweise jedoch für einen Methylrest, steht. Erfindungsgemäß eignen sich als Ausgangsmaterialien sowohl die an sich bekannten, endständige organofunktionelle Gruppen aufweisenden reinen Polysiloxane als auch die an sich bekannten endständig organofunktionellen Siloxanpolyoxyalkylencopolymeren.
  • Die erfindungsgemäß besonders bevorzugten Organopolysiloxane entsprechen der allgemeinen Formel
    Figure imgb0005
  • Sie werden in an sich bekannter Weise durch Äquilibrierung von 1,1,3,3-Tetramethyl-1,3-hydroxymethyldisiloxan der Formel
    Figure imgb0006

    mit Octamethylcyclotetrasiloxan in Gegenwart von Schwefelsäure bzw. nach dem Verfahren der DE-B 1 236 505 hergestellt.
  • Zu den erfindungsgemäß in Betracht kommenden Ausgangsmaterialien (ii) gehören gegebenenfalls methylsubstituierte Halogennitrobenzole der allgemeinen Formel
    Figure imgb0007

    für welche
       ²R für Wasserstoff oder eine Methylgruppe, vorzugsweise für Wasserstoff steht,
       X für Fluor oder vorzugsweise Chlor steht,
    und in welcher die Halogen- und Nitrosubstituenten vorzugsweise ortho- oder paraständig zueinander angeordnet sind. In Betracht kommen beispielsweise 2-Nitrochlorbenzol, 2-Nitrofluorbenzol, 4-Nitrochlorbenzol, 4-Nitrofluorbenzol, 1-Methyl-2-nitro-3-chlorbenzol, 1-Methyl-2-nitro-3-fluorbenzol, 1-Methyl-4-nitro-5-chlorbenzol, 1-Methyl-4-nitro-5-fluorbenzol, 1-Methyl-2-nitro-6-chlorbenzol oder 1-Methyl-2-nitro-6-fluorbenzol. Besonders bevorzugte Ausgangsmaterialien (ii) sind 2-Nitrochlorbenzol oder 4-Nitrochlorbenzol.
  • Als alkalisch reagierende Verbindung, die zur Umsetzung der Polyhydroxylverbindungen (i) mit den Halogennitrobenzolen (ii) erforderlich sind, kommen beispielsweise Metallhydride, Metallalkoxide und bevorzugt Metallhydroxide in Frage. Besonders bevorzugt werden Natriumhydroxid und Kaliumhydroxid.
  • Bei der Durchführung der Stufe a) des erfindungsgemäßen Verfahrens werden die Ausgangsmaterialien (ii) bezogen auf die Komponente (i) im Unterschuß eingesetzt.
  • Der bei der Reaktion frei werdende Halogenwasserstoff kann, wie schon erwähnt, durch Zusatz von Metallhydriden, Metallalkoxiden und Metallhydroxiden gebunden werden. Bevorzugt werden Natrium- oder Kalium-hydroxid in fein verteilter Form eingesetzt. Dabei wird ihre Menge zumindest so bemessen, daß sie zur Neutralisation des abgespaltenen Chlorwasserstoffs ausreicht. Besonders bevorzugt werden sie in einer Menge verwendet, daß 1 bis 3 mol Basenäquivalente pro mol Komponenten (ii) zur Verfügung stehen.
  • Die Stufe a) des erfindungsgemäßen Verfahrens wird in Substanz oder zweckmäßig in einem organischen Lösungsmittel, gegegebenenfalls in Gegenwart eines Phasentransferkatalysators durchgeführt. Dabei können die Reaktionspartner in homogener Phase oder zweiphasig, gelöst, emulgiert oder suspendiert vorliegen.
  • Geeignete organische Lösungsmittel sind beispielsweise: Benzol, Toluol, Xylol, Chlorbenzol, Dichlorbenzol, Trichlorbenzol, Diethylether, Diisopropylether, tert.-Butylmethylether, Tetrahydrofuran, Dioxan, Ethylenglykoldimethylether, Essigester, Aceton, Methylethylketon, Acetonitril, Furfurol, Methylenchlorid, Chloroform, Trichlorethylen, Tetrachlorethylen, Nitromethan, Nitropropan, Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon, Tetramethylharnstoff, N-Methylcaprolactam, Dimethylsulfoxid, Tetramethylensulfon, Hexamethylenphosphorsäuretriamid usw.
  • Selbstverständlich können auch beliebige Gemische derartiger Lösungsmittel eingesetzt werden.
  • Die Menge des Lösungsmittels wird hierbei im allgemeinen so bemessen, daß sie ausreicht, um die Ausgangsmaterialien (i) und (ii) klar zu lösen. In der Praxis bedeutet dies, daß die Lösungsmittel im allgemeinen in einer Menge von 50 bis 1.000, bevorzugt 100 bis 500 Gew.-Teilen Lösungsmittel pro 100 Gew.-Teilen des Gemisches aus den Komponenten (i) und (ii) zum Einsatz gelangen.
  • Es kann in manchen Fällen vorteilhaft sein, die Umsetzung in Gegenwart eines Phasentransferkatalysators durchzuführen. Solche Katalysatoren werden z. B. in E. V. und S. S. Dehmlow, Phase Transfer Catalysis, 2. Auflage, Verlag Chemie 1983, beschrieben. Geeignete Katalysatoren sind quaternäre Ammonium- oder Phosphoniumsalze der Formel
    Figure imgb0008

    in welcher
       Z für Stickstoff oder Phosphor steht,
       R′, R˝, R˝ ′ und R˝ ˝ für gleiche oder verschiedene Reste stehen und Alkylgruppen mit 1 bis 18 Kohlenstoffatomen bedeuten, wobei einer der Reste auch für einen araliphatischen Rest mit 7 bis 16 Kohlenstoffatomen stehen kann, und wobei die Summe der Kohlenstoffatome der vier Reste vorzugsweise bei 12 bis 31 liegt.
  • Typische Beispiele geeigneter Katalysatoren sind N-Benzyl-N,N,N-triethyl-ammoniumchlorid oder -bromid, N-Benzyl-N-dodecyl-N,N-dimethyl-ammoniumchlorid oder -bromid, N,N,N,N-Tetra-n-hexyl-ammoniumchlorid oder -bromid, N-Benzyl-N,N,N-tri-n-octyl-ammoniumchlorid oder -bromid oder die diesen Ammoniumsalzen entsprechenden Phosphoniumsalze, vorzugsweise N,N,N-Trimethyl-N-benzylammoniumchlorid oder N-Hexadecyl-N,N,N-trimethylammoniumbromid.
  • Die beispielhaft genannten quarternären Ammonium- oder Phosphoniumsalze werden bei der Durchführung des erfindungsgemäßen Verfahrens vorzugsweise in Substanz oder in Form ihrer wäßrigen Lösungen (beispielsweise mit einem Feststoffgehalt von 30 bis 60 Gew.-%) und vorzugsweise in einer Menge von 1 bis 10 Mol-%, bezogen auf die Molzahl der vorhandenen Hydroxylgruppen eingesetzt.
  • Die Stufe a) des erfindungsgemäßen Verfahrens wird im allgemeinen bei 10 bis 100°C, bevorzugt bei 20 bis 80°C mit Überdruck, Unterdruck oder zweckmäßig drucklos, kontinuierlich oder diskontinuierlich durchgeführt.
  • Die Verweilzeit beträgt im allgemeinen 0,5 bis 24 Stunden; bevorzugt werden 0,5 bis 12 Stunden.
  • Zur Durchführung der Stufe a) des erfindungsgemäßen Verfahrens kann man beispielsweise so vorgehen, daß man die Ausgangsmaterialien und gegebenenfalls den Phasentransferkatalysator im gewählten Lösungsmittel vorlegt und die Base in gelöster oder suspendierter Form, bevorzugt in fester, möglichst fein gemahlener Form, unter Rühren, gegebenenfalls unter Kühlung portionsweise oder kontinuierlich zugibt. Anschließend rührt man bei Raumtemperatur oder gegebenenfalls erhöhter Temperatur so lange nach, bis dünnschichtchromatographisch ein vollständiger Umsatz des Nitrophenylierungsmittel (ii) angezeigt wird.
  • Die Aufarbeitung der Nitrophenoxyaddukte erfolgt in an sich bekannter Weise. Zweckmäßig verdünnt man das Reaktionsgemisch mit einem mit Wasser nicht mischbaren inerten Lösungsmittel, wäscht mit Wasser oder Salzlösung neutral, destilliert die Lösungsmittel gegebenenfalls im Vakuum ab und trocknet im Vakuum. Die Neutralisation des Reaktionsgemisches kann auch durch Behandeln mit CO₂ erfolgen. Als inerte Lösungsmittel kommen beispielsweise Tuluol, Methylenchlorid, Chlorbenzol, Dichlorbenzol, 1,2-Dichlorethan, Trichlorethylen u.a. in Betracht. Eine weitere Möglichkeit der Aufarbeitung besteht darin, daß nach Zusatz von 1-20 % Wasser, zum Reaktionsgemisch mit Mineralsäure, bevorzugt Salzsäure oder Schwefelsäure, gegegebenenfalls unter Vakuum, entfernt und die Mischung bei Temperaturen von 10-120°C, bevorzugt 25-90°C, filtriert. Das so erhaltene Rohprodukt kann im allgemeinen ohne weitere Reinigung weiterverarbeitet werden.
  • Grundsätzlich denkbar, jedoch weniger bevorzugt, wäre auch eine Arbeitsweise, die darin besteht, das in der Stufe a) anfallende Reaktionsgemisch, gegebenenfalls nach Neutralisation des überschüssigen Alkalihydroxids ohne Zwischenisolierung direkt der Stufe b) zuzuführen.
  • Die in der Stufe a) des erfindungsgemäßen Verfahrens erhaltenen endständige Nitrophenoxygruppen aufweisenden Verbindungen werden in der Stufe b) in an sich bekannter Weise durch Reduktion mit nascierendem oder katalytischem, beispielsweise mittels Raney-Nickel oder Palladium auf Kohle angeregtem Wasserstoff in die entsprechenden Polyamine überführt. Die Hydrierung kann in Gegenwart oder Abwesenheit von inerten Lösungsmitteln bei 20 - 120°C und einem Druck von 20 bis 80 bar erfolgen. Geeignete Lösungsmittel sind beispielsweise Methanol, Ethanol, i-Propanol, Toluol, DMF u. a. Bevorzugt wird Methanol oder Toluol. Die Diamine werden als Destillationsrückstand bei der destillativen Entfernung des Lösungsmittels gewonnen und können ohne weitere Reinigungsschritte zur Herstellung von Polyurethankunststoffen verwendet werden.
  • Die nach Aufarbeitung erhaltenen erfindungsgemäßen Polyhydroxypolyamine stellen im allgemeinen hellgelbe bis bräunlich gefärbte Produkte dar und zeichnen sich gegenüber den bisher bekannten aromatischen Aminopolyethern durch ihre niedrigere Viskosität aus. Sie erhalten neben den bereits in den zugrunde liegenden Polyhydroxylverbindungen vorhandenen funktionellen Gruppen wie z. B. Ether- und/oder Thioether- und/oder Dialkylsiloxan und/oder Carbonatgruppen und/oder Reste von Polybutadienen nur noch eine ihrer Funktionalität entsprechende Anzahl von Ethergruppen und Hydroxygruppen. Die erfindungsgemäßen aromatischen Polyhydroxypolyamine eignen sich als Reaktionspartner für gegebenenfalls blockierte Polyisocyanate bei der Herstellung von Polyurethanen (Polyurethanharnstoffen), gegebenenfalls zelligen Polyurethankunststoffen oder Polyurethanschaumstoffen, wobei sie gegebenenfalls auch mit anderen niedermolekularen (Molekulargewicht 32 bis 399) und/oder höhermolekularen (Molekulargewicht 400 bis ca. 12.000 Verbindungen mit gegenüber Isocyanaten reaktiven Gruppen kombiniert werden können. Geeignete Ausgangskomponenten für die Herstellung von Polyurethankunststoffen werden beispielsweise in DE-A 2 302 564, DE-A 2 432 764 (US-PS 3 903 679) sowie in den DE-A 2 639 083, 2 512 385, 2 513 815, 2 550 796, 2 550 797, 2 550 833, 2 550 860 und 2 550 862 genannt. Dort finden sich auch Hinweise auf bei der Polyurethanherstellung gegebenenfalls mitzuverwendenden Hilfs- und Zusatzstoffe.
  • Besonders geeignet sind die erfindungsgemäßen Polyhydroxypolyamine für eine Anwendung in Kombination mit festen Polyisocyanaten. Gemäß DE-A 3 230 757 können mit diesen Komponenten bei RT oder gegebenenfalls erhöhter Temperatur beliebig lang lagerfähige Reaktionssysteme hergestellt werden, die erst bei stärkerer Hitzeeinwirkung aushärten. Derartige Systeme werden allgemein als Einkomponentensysteme bezeichnet. Geeignete feste Polyisocyanate sind beispielsweise dimeres 2,4-Diisocyanatotoluol (TT) oder 3,3′-Dimethyl-4,4′-diisocyanatodiphenylharnstoff (TDIH).
  • Die Herstellung von Polyurethan(harnstoff)en mittels der erfindungsgemäß hergestellten Polyamine ist ebenfalls Gegenstand der vorliegenden Erfindung. Ihre Anwendung kann z. B. für Elastomere, Beschichtungen, Fäden in der Applikation aus Schmelzen, Lösungen, Dispersionen oder als Reaktivkomponentenmischung erfolgen. Weitere Verwendungszwecke der erfindungsgemäß hergestellten Polyamine sind z. B. Kupplungskomponenten für Diazofarbstoffe, Härter für Epoxid und Phenolharze, sowie alle anderen an sich bekannten Reaktionen von Aminen wie Amid- oder Imidbildung und andere.
  • Die Erfindung soll anhand der folgenden Beispiele näher erläutert werden (%-Angaben sind - soweit nicht anders vermerkt ist - Gew.-%).
  • a) Nitrophenylierung Beispiel 1
  • 1000 g (0,17 mol) eines entwässerten Trimethylolpropan (TMP) gestarteten Polypropylenoxid-(82,5 %)ethylenoxid-(17,5 %)-ethertriols der OH-Zahl 29, versetzt mit 26 g (0,16 mol) 4-Chlornitrobenzol, 14 g (0,25 mol) gepulverten Kaliumhydroxid und 9,25 g (0,05 mol) Trimethylbenzylammoniumchlorid werden 12 h bei 70°C gerührt. Bei Raumtemperatur werden 200 ml Wasser zugesetzt, die Mischung mit 50 %iger H₂SO₄ neutral gestellt, das Wasser abdestilliert und die anfallenden Salze abfiltriert.
       Ausbeute: 800 g (79 % d.Th.)
       Viskosität: 1500 mPas/26°C
       OH-Zahl: 18
       Gaschromatogramm: 0,0 % 4-Chlornitrobenzol
  • Beispiel 2
  • 1000 g (0,17 mol) entwässertes Trimethylolpropan gestarteten Polypropylenoxid-(82,5 %)-ethylenoxid-(17,5 %)-ethertriol der OH-Zahl 29, 42 g (0,26 mol) 4-Chlornitrobenzol, 22,4 g (0,40 mol) Kaliumhydroxid und 9,25 g (0,05 mol) Trimethylbenzylammoniumchlorid werden analog Beispiel 1 umgesetzt.
       Ausbeute: 840 g (81 5 d.Th.)
       Viskosität: 1600 mPas/26°C
       OH-Zahl: 14
       Gascromatogramm: 0,0 % 4-Chlornitrobenzol
  • Beispiel 3
  • 1000 g (0,17 mol) entwässertes TMP gestarteten Polypropylenoxid-(82,5 %)-ethylenoxid-(17,5 %)-ethertriol der OH-Zahl 29, 57,5 g (0,36 mol) 4-Chlornitrobenzo, 30,8 g (0,55 mol) Kaliumhydroxid und 9,25 g (0,05 mol) Trimethylbenzylammoniumchlorid werden analog Beispiel 1 umgesetzt.
       Ausbeute: 820 g (78 % d.Th.)
       Viskosität: 1900 mPas/26°C
       OH-Zahl: 9
       Gascrhomatogramm: 0,0 % 4-Chlornitrobenzol
  • Beispiel 4
  • 1000 g (0,17 mol) eines entwässerten TMP gestarteten Polypropylenoxid-(82,5 %)-ethylenoxid-(17,5 %)-ethertriols der OH-Zahl 29, gelöst in 1000 ml Toluol, werden mit 26 g (0,16 mol) 4-Chlornitrobenzol, 14 g (0,25 mol) Kaliumhydroxid und 9,25 g (0,05 ml) Trimethylbenzylammoniumchlorid versetzt und 12 h bei 70°C gerührt.
  • Bei Raumtemperatur werden 200 ml Wasser zugesetzt und die Mischung mit 50 %iger H₂SO₄ neutral gestellt. Anschließend wird das Lösungsmittel und das Wasser abdestilliert und die ausfallenden Salze abfiltriert.
       Ausbeute: 898 g (88 % d.Th.)
       Viskosität: 1500 mPas/20°C
       OH-Zahl: 18
       Gaschromatogramm: 0,0 % 4-Chlornitrobenzol
  • Beispiel 5
  • 1000 g (0,17 mol) entwässertes TMP gestarteten Polypropylenoxid-(82,5 %)-ethylenoxid-(17,5 %)-ethertriol der OH-Zahl 29 gelöst in 1000 ml Toluol, 42 g (0,26 mol) 4-Chlornitrobenzol, 22,4 g (0,40 mol) Kaliumhydroxid und 9,25 g (0,05 % mol) Trimethylbenzylammoniumchlorid werden analog Beispiel 4 umgesetzt.
       Ausbeute: 955 g (92 % d.Th.)
       Viskosität: 1400 mPas/27°C
       OH-Zahl: 14
       Gaschromatogramm: 0,0 % 4-Chlornitrobenzol
  • Beispiel 6
  • 1000 g (0,17 mol) entwässertes TMP gestarteten Polypropylenoxid-(82,5 %)-ethylenoxid-(17,5 %)-ethertriol der OH-Zahl 29 gelöst in 1000 ml Toluol, 57,5 g (0,36 mol) 4-Chlornitrobenzol, 30,8 g (0,55 mol) Kaliumhydroxid und 9,25 g (0,05 mol) Trimethylbenzylammoniumchlorid werden analog Beispiel 4 umgesetzt.
       Ausbeute: 1028 g (100 % d.Th.)
       Viskosität: 1700 mPas/20°C
       OH-Zahl: 9
       Gaschromatogramm: 0,1 % 4-Chlornitrobenzol
  • Beispiel 7
  • 1400 g (1 mol) entwässertes Polyethylenoxidetherdiol der OH-Zahl 80 gelöst in 1500 ml Toluol, werden mit 167 g (1,06 mol) 4-Chlornitrobenzol, 90 g (1,6 mol) Kaliumhydroxid und 11,1 g (0,06 mol) Trimethylbenzylammoniumchlorid versetzt und 12 h bei 70°C gerührt.
  • Bei Raumtemperatur werden 300 ml Wasser zugesetzt und mit 50%iger H₂SO₄ neutral gestellt. Anschließend wird das Lösungsmittel und das Wasser abdestilliert und die ausfallenden Salze abfiltriert.
       Ausbeute: 1440 g (94 % d.Th.)
       Viskosität: 140 mPas/70°C
       OH-Zahl: 35
       Gaschromatogramm: 0,0% 4-Chlornitrobenzol
  • Beispiel 8
  • 1000 g (0,17 mol) eines entwässerten TMP gestarteten Polypropylenoxid-(82,5 %)-ethylenoxid-(17,5 %)-ethertriols der OH-Zahl 29 werden mit 57,5 g (0,36 mol) 4-Chlornitrobenzol und 30,8 g (0,55 mol) Kaliumhydroxid versetzt und 12 h unter Durchleiten von Luft bei 70°C gerührt. Bei Raumtemperatur werden 200 ml Wasser zugesetzt und mit 50 %iger H₂SO₄ neutral gestellt. Anschließend wird das Wasser abdestilliert und die ausfallenden Salze abfiltriert.
       Ausbeute: 756 g (74 % d.Th.)
       Viskosität: 2000 mPas/26°C
       OH-Zahl: 10
       Gaschromatogramm: 0,0 % 4-Chlornitrobenzol
  • Beispiel 9
  • 1000 g (0,17 mol) eines entwässerten TMP gest. Polypropylenoxid-(82,5 %)ethylenoxid-(17,2 %)-ethertriols der OH-Zahl 29 wurden it 42 g (0,26 mol) 2-Chlornitrobenzol, 22,4 g (0,40 mol) Trimethylbenzylammoniumchlorid versetzt und 12 h unter Durchleiten von Luft bei 70°C gerührt.
  • Bei Raumtemperatur werden 200 ml Wasser zugesetzt und mit 50%iger H₂SO₄ neutral gestellt. Anschließend wird das Wasser abdestilliert und die ausfallende Salze abfiltriert.
       Ausbeute: 770 g (75 % d.Th.)
       Viskosität: 2500 mPas/26°C
       OH-Zahl: 16
       Gaschromatogramm: 0,0 % 2-Chlornitrobenzol
  • Beispiel 10
  • 1000 g (0,21 mol) eines TMP gestarteten Polypropylenoxid-(82,5 %)-ethylenoxid-(17,2 %)-ethertriols der OH-Zahl 35 wurden mit 105 g (0,94 mol) 50 %iger wäßriger Kaliumhydroxidlösung und 100 ml Toluol versetzt. Die Wasser/Toluol-Mischung wirde durch Vakuumdestillation (70°C/20 mbar) entfernt.
  • Der entwässerte Polyether wurde mit 69 g (0,44 mol) p-Chlornitrobenzol, gelöst in 170 ml Toluol, versetzt und unter Vakuum (20 mbar) 17 h bei 40°C gerührt. Nach Zugabe von 115 ml Wasser zu Reaktionsmischungstellte man mit 50 %iger Schwefelsäure neutral. Anschließend wurde das Wasser abdestilliert und die ausgefallenen Salze bei 80°C abfiltriert.
       Ausbeute: 940 g (88 % d.Th.)
       Viskosität: 1600 mPas/24°C
       OH-Zahl: 12
       Gel: 0,0 % 4-Chlornitrobenzol
  • b) Hydrierung Allgemeine Vorschrift (für Beispiel 11-18)
  • 100 Teile Polyhydroxypolynitroverbindung werden in 100 Teilen Lösungsmittel gelöst und mit 10 Teilen Raney-Nickel versetzt. Die Hydrierung erfolgt in einem Druckkessel bei einem Wasserstoffdruck von 60 bar zu Beginn der Reaktion und einer Temperatur von 70°C.
  • Die Daten der Beispiele 11 bis 18 sind Tabelle 1 zu entnehmen.
    Figure imgb0009
  • c) Anwendungsbeispiele Beispiel 19
  • 200 g des in Beispiel 15 beschriebenen Aminopolyethers der Aminzahl 22 werden 15 Minuten bei Raumtemperatur im Wasserstrahlvakuum entgast und mit 19,0 g feingemahlenem dimeren 2,4-Diisocyanat (TT) der mittleren Korngröße 10 bis 30 µ versetzt. Anschließend wird durch kurzzeitiges intensives Rühren (ca. 1 Minute) eine möglichst feinteilige Suspension hergestellt und innerhalb von 2 bis 3 Minuten in eine mit Trennmittel behandelte, auf 100°C vorgeheizte Form gegossen. Nach ca. 30 bis 60 Minuten bei 120-130°C wird der inzwischen verfestigte Prüfkörper entformt und weitere 3 bis 4 Stunden bei dieser Temperatur getempert.
  • Reißfestigkeit:
    6,0 kp/abs
    Reißdehnung:
    250 %
    Modul 100 %:
    3,16 mPa
    Weiterreißwiderstand:
    81 N/cm
    Shore Härte A:
    74
    Elastizität:
    46 %
    d) Vergleichsbeispiel mit vollständiger Nitrophenylierung Beispiel 20
  • 400 g (0,07 mol) eines entwässerten Polypropylenoxidethertriols der OH-Zahl 29, versetzt mit 30 g (0,19 mol) 4-Chlornitrobenzol, 16,8 (0,3 mol) Kaliumhydroxid und 3,7 g (0,02 mol) Trimethylbenzylammoniumchlorid werden 22 h bei 70°C gerührt. Bei Raumtemperatur werden 100 ml Wasser zugesetzt, die Mischung mit 50 %iger H₂SO₄ neutral gestellt, das Wasser abdestilliert und die anfallenden Salze abfiltriert.
  • Ausbeute:
    383 g (91 % d.Th.)
    Viskosität:
    2000 mPas/26°C
    OH-Zahl:
    5
    Gaschromatogramm:
    1,0 % 4-Chlornitrobenzol
  • Aus dem Vergleichsbeispiel 20 ist ersichtlich, daß bei geringem Unterschuß an Nitrophenylierungsmittel (4-Chlornitrobenzol) ein Rest verbleibt (1,0 % 4-Chlornitrobenzol), der vor der weiteren Umsetzung aufwendig entfernt werden muß.
  • e) Anwendungsgegenbeispiel Beispiel 21
  • Analog Beispiel 19 werden 200 g Aminopolyether, erhalten durch Hydrierung von Nitroverbindung analog Beispiel 20 nach vorheriger Entfernung des Restgehalts an 4-Chlornitrobenzol, der Aminzahl 26 mit 19,0 g feingemahlenem dimeren 2,4-Diisocyanat (TT) der mittleren Korngröße 10 bis 30 µ umgesetzt.
  • Reißfestigkeit:
    6,9 kp/abs
    Reißdehnung:
    250 %
    Modul 100 %:
    5,2 mPa
    Weiterreißwiderstand:
    78 N/cm
    Shore Härte A:
    79
    Elastizität:
    47 %
  • Das Anwendungsgegenbeispiel 21 zeigt, daß bei fast vollständiger Aminierung des Polyols kein wesentlich besseres Werteniveau der daraus hergestellten Kunststoffe erreicht wird.

Claims (12)

1. Endständige Aminophenoxy- und Hydroxylgruppen aufweisende Verbindungen der allgemeinen Formel
Figure imgb0010
in welcher
   1R für einen m-wertigen Rest steht, wie er durch teilweise Entfernung der Hydroxylgruppen von einer m-wertigen Polyhydroxylverbindung des Molgewichts 400 - 8000 entsteht,
   2R für Wasserstoff oder eine Methylgruppe steht,
   m eine ganze Zahl von 2 bis 4 bedeutet,
   n ein Durchschnittswert und eine positive Zahl von 0,05·m bis 0,73·m bedeutet, vorzugsweise 0,15·m bis 0,70·m.
Aromatische Polyhydroxypolyamine nach Anspruch 1, dadurch gekennzeichnet, daß ¹R für einen Polyalkylenpolyetherrest steht.
Aromatische Polyhydroxypolyamine nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß ²R für Wasserstoff steht und der Ethersauerstoff und die Aminogruppe ortho- oder paraständig zueinander angeordnet sind.
Aromatische Polyhydroxypolyamine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß n ein Durchschnittswert und eine positive Zahl von 0,3·m bis 0,6·m bedeutet.
Aromatische Polyhydroxypolyamine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß m einen Durchschnittswert von 2 bis 3 bedeutet.
Verfahren zur Herstellung von Polyhydroxyaminen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man
a)
(i) m-wertige höhermolekulare Polyhydroxylverbindungen der allgemeinen Formel

        ¹R(OH)m mit

(ii) n-Molen der Verbindungen der allgemeinen Formel
Figure imgb0011
in Gegenwart von alkalisch reagierenden Verbindungen umsetzt und
b) die so erhaltenen (m-n)-Hydroxy, n-Nitrophenoxyaddukte der allgemeinen Formel
Figure imgb0012
in an sich bekannter Weise zu den entsprechenden (m-n)-Hydroxy-, n-Aminophenoxy-Verbindungen hydriert, wobei in diesen Formeln ¹R, ²R, m und n die in den Ansprüchen 1 bis 5 angegebene Bedeutung haben und x für Fluor oder Chlor steht.
Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß man die Stufe a) des Verfahrens in Gegenwart von gepulvertem Natrium- und/oder Kaliumhydroxid in einer zur Neutralisation des abgespaltenen Halogenwasserstoffs mindestens ausreichenden Menge und gegebenenfalls mit Lösungsmittel und gegebenenfalls mit Phasentransferkatalysator durchführt.
Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, daß man die Stufe a) des Verfahrens lösungsmittelfrei durchführt.
Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß man die Stufe a) des Verfahrens in Gegenwart von DMSO oder aromatischen Kohlenwasserstoffen durchführt.
Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß man die Stufe a) des Verfahrens in Gegenwart von Trimethylbenzylammoniumchlorid, Triethylbenzylammoniumchlorid oder Hexadecyltrimethylammoniumbromid durchführt.
Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß x für Chlor steht.
Verwendung der Polyhydroxypolyamine nach einem der Ansprüche 1 bis 5 als Aufbaukomponenten bei der Herstellung von Polyurethankunststoffen nach dem Isocyanat-Polyadditionsverfahren.
EP89118111A 1988-10-12 1989-09-29 Aromatische Polyhydroxypolyamine, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Polyurethan-Kunststoffen Expired - Lifetime EP0363758B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89118111T ATE83231T1 (de) 1988-10-12 1989-09-29 Aromatische polyhydroxypolyamine, ein verfahren zu ihrer herstellung und ihre verwendung zur herstellung von polyurethan-kunststoffen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3834749 1988-10-12
DE3834749A DE3834749A1 (de) 1988-10-12 1988-10-12 Aromatische polyhydroxypolyamine, ein verfahren zu ihrer herstellung und ihre verwendung zur herstellung von polyurethan-kunststoffen

Publications (3)

Publication Number Publication Date
EP0363758A2 EP0363758A2 (de) 1990-04-18
EP0363758A3 EP0363758A3 (de) 1991-05-02
EP0363758B1 true EP0363758B1 (de) 1992-12-09

Family

ID=6364958

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89118111A Expired - Lifetime EP0363758B1 (de) 1988-10-12 1989-09-29 Aromatische Polyhydroxypolyamine, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Polyurethan-Kunststoffen

Country Status (11)

Country Link
EP (1) EP0363758B1 (de)
JP (1) JPH02169614A (de)
KR (1) KR900006400A (de)
AT (1) ATE83231T1 (de)
AU (1) AU619903B2 (de)
BR (1) BR8905157A (de)
CA (1) CA1334104C (de)
DD (1) DD288385A5 (de)
DE (2) DE3834749A1 (de)
ES (1) ES2053901T3 (de)
ZA (1) ZA897690B (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4022931A1 (de) * 1990-07-19 1992-01-23 Bayer Ag Verfahren zur herstellung von aminophenoxygruppen aufweisenden polyethern, die nach diesem verfahren erhaltenen verbindungen und ihre verwendung als reaktionspartner fuer organische polyisocyanate
JPH05156002A (ja) * 1991-06-04 1993-06-22 Natl Starch & Chem Investment Holding Corp ポリエーテルアミン化合物及びエポキシ系接着剤組成物
US5637119A (en) * 1995-12-29 1997-06-10 Chevron Chemical Company Substituted aromatic polyalkyl ethers and fuel compositions containing the same
US5849048A (en) * 1997-09-30 1998-12-15 Chevron Chemical Company Llc Substituted biphenyl poly (oxyalkylene) ethers and fuel compositions containing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038412B2 (ja) * 1982-09-21 1985-08-31 東洋ゴム工業株式会社 ポリエ−テルポリオ−ル誘導体及びその製造法
DE3622784A1 (de) * 1986-07-07 1988-01-21 Wella Ag Neue 5-alkoxy-2,4-diamino-alkylbenzole sowie haarfaerbemittel mit 5-alkoxy-2,4-diamino-alkyl-benzolen
US4847416A (en) * 1986-10-27 1989-07-11 The Dow Chemical Company Capping of polyols with aromatic amines
DE3713858A1 (de) * 1987-04-25 1988-11-17 Bayer Ag Aromatische polyamine, ein verfahren zu ihrer herstellung und ihre verwendung zur herstellung von polyurethankunststoffen
EP0371248A1 (de) * 1988-11-03 1990-06-06 Miles Inc. Mittels des Reaktionsspritzguss-Verfahrens hergestellte Polyharnstoffsysteme

Also Published As

Publication number Publication date
DE3834749A1 (de) 1990-04-19
DE58902962D1 (de) 1993-01-21
JPH02169614A (ja) 1990-06-29
EP0363758A2 (de) 1990-04-18
BR8905157A (pt) 1990-05-15
ES2053901T3 (es) 1994-08-01
DD288385A5 (de) 1991-03-28
EP0363758A3 (de) 1991-05-02
AU4274489A (en) 1990-04-26
AU619903B2 (en) 1992-02-06
ATE83231T1 (de) 1992-12-15
ZA897690B (en) 1990-07-25
CA1334104C (en) 1995-01-24
KR900006400A (ko) 1990-05-08

Similar Documents

Publication Publication Date Title
DE2550860C2 (de) Verfahren zur Herstellung von stabilen Dispersionen
EP0097290B1 (de) Einstufenverfahren zur Herstellung von Polyaminen aus NCO-Prepolymeren, Polyamine und deren Verwendung zur Herstellung von Polyurethanen
EP0097298B1 (de) Polyamine, Verfahren zur Herstellung von Polyaminen und deren Verwendung zur Herstellung von Polyurethanen
DE2948419A1 (de) Verfahren zur herstellung von polyaminen und deren verwendung in einem verfahren zur herstellung von polyurethankunststoffen
DE2019432A1 (de) Neue,endstaendige Minogruppen aufweisende Polyaether und ihre Verwendung zur Herstellung von Kunststoffen
EP0288825A2 (de) Aromatische Polyamine, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Polyurethankunststoffen
EP0071834B1 (de) Verfahren zur Herstellung von Polyaminen und deren Verwendung zur Herstellung von Polyurethanen
EP0097299B1 (de) Polyamine, Verfahren zur Herstellung von Polyaminen und deren Verwendung zur Herstellung von Polyurethanen
DE10156014A1 (de) Verfahren zur Herstellung von Polyetheralkoholen
EP0099537B1 (de) Einstufenverfahren zur Herstellung von Polyaminen aus NCO-Prepolymeren
EP0363758B1 (de) Aromatische Polyhydroxypolyamine, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Polyurethan-Kunststoffen
EP0747411B1 (de) Verfahren zur Herstellung von Aromaten enthaltenden Polyetherpolyolen
DE3144874A1 (de) Verfahren zur herstellung von polyaminen aus n-monoaryl-n', n'-dialkylharnstoff-verbindungen und ihre verwendung zum aufbau von polyurethanen
EP0079536B1 (de) Verfahren zur Herstellung modifizierter Polyamine
EP0217247A2 (de) Verfahren zur Herstellung von Polyaminen, Polyamine und deren Verwendung zur Herstellung von Polyurethanen
EP0045892B1 (de) Verfahren zur Herstellung von Oxazolin-2-on-Ringe aufweisenden Kunststoffvorläufern und ihre Verwendung zur Herstellung von hochmolekularen Kunststoffen
EP0148462B1 (de) Verfahren zur in situ-Herstellung von Harnstoffgruppen-enthaltenden Diisocyanaten in Polyolen, dem Verfahren entsprechende Dispersionen oder Lösungen sowie ihre Verwendung
EP0013923A1 (de) Suspensionen von Isocyanatoharnstoffen in Isocyanat-Präpolymeren, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung bei der Herstellung von hochmolekularen Polyurethankunststoffen
DE3437632A1 (de) Verfahren zur herstellung hoehermolekularer aminoverbindungen mit vermindertem monomeramingehalt, sowie deren verwendung
EP0050780B1 (de) Isocyanato-oxazolinone, ein Verfahren zur Herstellung von Oxazolin-2-on-Ringe aufweisenden Kunststoffvorläufern und deren Verwendung zur Herstellung von hochmolekularen Kunststoffen
DE4022931A1 (de) Verfahren zur herstellung von aminophenoxygruppen aufweisenden polyethern, die nach diesem verfahren erhaltenen verbindungen und ihre verwendung als reaktionspartner fuer organische polyisocyanate
DE3824287A1 (de) N,n-disubstituierte oligo- und polyurethane, verfahren zu ihrer herstellung sowie ihre verwendung bei der herstellung von kunststoffen
EP0071138A2 (de) Neue aromatische und aliphatische, schwefelhaltige primäre Amine, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Polyurethanen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890929

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19920520

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 83231

Country of ref document: AT

Date of ref document: 19921215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58902962

Country of ref document: DE

Date of ref document: 19930121

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930111

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2053901

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 89118111.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950811

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950816

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950907

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950913

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950920

Year of fee payment: 7

Ref country code: BE

Payment date: 19950920

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950921

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950922

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950929

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960929

Ref country code: AT

Effective date: 19960929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960930

Ref country code: LI

Effective date: 19960930

Ref country code: FR

Effective date: 19960930

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19960930

Ref country code: CH

Effective date: 19960930

Ref country code: BE

Effective date: 19960930

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19960930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960929

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970603

EUG Se: european patent has lapsed

Ref document number: 89118111.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050929