DE19735574A1 - Neue [C1(Carboxa)-C6]-Fragmente, Verfahren zu ihrer Herstellung und ihre Verwendung zur Synthese von Epothilon und Epothilonderivaten - Google Patents

Neue [C1(Carboxa)-C6]-Fragmente, Verfahren zu ihrer Herstellung und ihre Verwendung zur Synthese von Epothilon und Epothilonderivaten

Info

Publication number
DE19735574A1
DE19735574A1 DE19735574A DE19735574A DE19735574A1 DE 19735574 A1 DE19735574 A1 DE 19735574A1 DE 19735574 A DE19735574 A DE 19735574A DE 19735574 A DE19735574 A DE 19735574A DE 19735574 A1 DE19735574 A1 DE 19735574A1
Authority
DE
Germany
Prior art keywords
hydrogen
alkyl
aralkyl
aryl
aldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19735574A
Other languages
English (en)
Inventor
Ulrich Dr Klar
Wolfgang Dr Schwede
Werner Dr Skuballa
Bernd Dr Buchmann
Michael Dr Schirner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Pharma AG
Original Assignee
Schering AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering AG filed Critical Schering AG
Priority to DE19735574A priority Critical patent/DE19735574A1/de
Priority to CA002299608A priority patent/CA2299608A1/en
Priority to JP2000506196A priority patent/JP2001512723A/ja
Priority to PCT/EP1998/005064 priority patent/WO1999007692A2/de
Priority to EP98946309A priority patent/EP1005465B1/de
Priority to US09/485,292 priority patent/US7407975B2/en
Priority to IL13441998A priority patent/IL134419A0/xx
Priority to AT98946309T priority patent/ATE368036T1/de
Priority to DE59814067T priority patent/DE59814067D1/de
Priority to DK98946309T priority patent/DK1005465T3/da
Priority to PT98946309T priority patent/PT1005465E/pt
Priority to AU93409/98A priority patent/AU9340998A/en
Priority to ES98946309T priority patent/ES2290993T3/es
Priority to EP07013545A priority patent/EP1847540A1/de
Publication of DE19735574A1 publication Critical patent/DE19735574A1/de
Priority to US12/178,039 priority patent/US20090018342A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/56Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/673Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/185Saturated compounds containing keto groups bound to acyclic carbon atoms containing —CHO groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/29Saturated compounds containing keto groups bound to rings
    • C07C49/337Saturated compounds containing keto groups bound to rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/29Saturated compounds containing keto groups bound to rings
    • C07C49/355Saturated compounds containing keto groups bound to rings containing —CHO groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/185Saturated compounds having only one carboxyl group and containing keto groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/55Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/18Oxygen atoms
    • C07D263/20Oxygen atoms attached in position 2
    • C07D263/22Oxygen atoms attached in position 2 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to other ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/24Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/08Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/10Oxygen atoms
    • C07D309/12Oxygen atoms only hydrogen atoms and one oxygen atom directly attached to ring carbon atoms, e.g. tetrahydropyranyl ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/141,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

Die Erfindung betrifft den in den Patentansprüchen gekennzeichneten Gegenstand, daß heißt neue [C-1(Carboxy)-C-6]-Fragmente, Verfahren zu ihrer Herstellung und ihre Verwendung zur Synthese von Epothilon und Epothilonderivaten.
Von Höfle et al. wird die cytotoxische Wirkung von Epothilon A (R = Wasserstoff) und Epothilon B (R = Methyl)
z. B. in Angew. Chem. 1996, 108, 1671-1673 beschrieben. Wegen der in-vitro-Selektivi­ tät gegenüber Brust- und Darmzelllinien und ihrer im Vergleich zu Taxol deutlich hö­ heren Aktivität gegen P-Glycoprotein-bildende, multiresistente Tumorlinien sowie ihre physikalischen Eigenschaften erscheint diese Strukturklasse für die Entwicklung eines Arzneimittels besonders interessant.
In Angew. Chem. 1997, 109, Nr. 1/2, S. 170-172 wird die Synthese eines (C1-C6)- Bausteins mit einer Carboxylgruppe an C-1, der für die Synthese von Epothilon oder Epothilonderivaten verwendet werden kann,
von Nicolaou et al. beschrieben. Die Stereochemie am C3 wird durch die Reation mit dem Browns Reagenz Allylisopinocamphenylboran (+)-Ipc2B(allyl) gesteuert.
Für eine industriell verwertbare Synthese ist es von Vorteil, wenn die Synthese ohne teure chirale Auxiliare durchgeführt werden kann.
Es bestand daher die Aufgabe, eine geeignete Synthese zu finden, die ohne teure chirale Auxiliare durchgeführt werden kann.
Es wurde nun gefunden, daß die Verbindung (Ia) ohne Verwendung von chiralen Auxiliaren aus dem in großen Mengen verfügbaren Pantolacton hergestellt werden kann.
Somit betrifft die Erfindung ein Verfahren zur Herstellung von Verbindungen der all­ gemeinen Formel (Ia)
worin R1 Wasserstoff, OH, OR7
R7 C1-C20-Alkyl, Aryl oder C7-C10-Aralkyl, bedeutet,
R2 Wasserstoff oder eine geeignete Schutzgruppe,
R5 Wasserstoff, C1-C10-Alkyl, Aryl oder C7-C20-Aralkyl und
R6 Wasserstoff, C1-C10-Alkyl, Aryl oder C7-C20-Aralkyl
bedeuten und die Konfiguration am C3 (R), (S) oder ein Gemisch aus beiden sein kann, je nachdem welches Pantolacton oder Pantolacton-Gemisch für das Verfahren eingesetzt wird,
dadurch gekennzeichnet, daß
in einem Schritt 1
die freie Hydroxygruppe des Pantolactons (II) unter wasserfreien Bedingungen mit 3,4-Dihydro-2H-pyran/p-Toluolsulfonsäure-Pyridiniumsalz (a) in den Tetrahydropyranylether (III) oder mit einem entsprechenden Reagenz in eine andere geeignete Schutzgruppe R2 überführt und das Lacton bei -70°C mit Diisobutylaluminiunihydrid (b) zum Lactol (IV) reduziert wird,
in einem Schritt 2
das Lactol (IV) mit Methyltriphenylphosphoniumbromid/Butyllithium (c) geöffnet und gleichzeitig Wasser eliminiert wird zur offenkettigen Verbindung (V),
in einem Schritt 3
der primäre Alkohol mit Oxalylchlorid/Dimethylsulfoxid in Dichlormethan (d) zum Aldehyd (VI) oxidiert wird und der Aldehyd (VI) mit einer Organometallverbindung der Formel
R5CH2Y (e)
worin Y Lithium oder MgX,
X Chlor, Brom oder Iod sein kann, und
R5 Wasserstoff, C1-C10-Alkyl, Aryl oder C7-C20-Aralkyl bedeutet,
umgesetzt wird, und
entweder
in einem Schritt 4
der geschützte Allylalkohol einer Hydroborierung unter üblichen Bedingungen unterwor­ fen wird und beide Hydroxygruppen mit N-Methylmorphohno-N-Oxid/Tetrapropyl­ animoniumperruthenat oxidiert werden, und
in einem Schritt 5
der gegebenenfalls aus Schritt 4 erhaltene Aldehyd noch zur Säure (X) oxidiert wird und gegebenenfalls die Säure verestert wird,
oder
in einem Schritt 4a
zuerst die Hydroxyfunktion oxidiert wird, dann mit Lithiumdiisopropylamid/R6Z
wobei R6 C1-C10-Alkyl, Aryl oder C7-C20-Aralkyl und
Z eine geeignete Abgangsgruppe bedeutet,
alkyliert wird, und dann wie in Schritt 4 die Hydroborierung (f) und die Oxidation (g) durchgeführt wird zum Aldehyd und gegebenenfalls der erhaltene Aldehyd (IXa) wie in Schritt 5 beschrieben oxidiert wird, und die Verbindungen der Formel (Ia)
erhalten werden, die gegebenenfalls verestert werden können.
Als Alkoholteile im Ester sind neben den oben erwähnten Estern auch zum Beispiel die Verbindungen der Formeln A, B oder C
von Schinzer et al., Nicolaou et al. und Danishefsky et al. geeignet, die als Baustein für die Epothilonsynthese verwendet werden können und über die Hydroxygruppe mit der Carbonsäure der Formel Ia verestert werden können.
Eine geeignete Abgangsgruppe Z kann ein Halogenatom, p-Toluolsulfonat, oder die Gruppe -OSO2B sein, wobei B für C1-C4-Alkyl oder C1-C4-Perfluoralkyl steht.
Ein Halogenatom kann Fluor, Chlor, Brom oder Iod sein, wobei Brom und Iod als gute Abgangsgruppen bevorzugt werden.
Unter C1-C4-Perfluoralkyl sind geradkettige oder verzweigte vollständig fluorierte Al­ kylreste wie zum Beispiel CF3, C2F5, C3F7, C4F9 zu verstehen.
Die Erfindung betrifft außerdem Verbindungen der allgemeinen Formel (I)
worin R1 Wasserstoff, OH, OR7 wobei
R7 C1-C20-Alkyl, Aryl oder C7-C10-Aralkyl, bedeutet,
R2 Wasserstoff oder eine geeignete Schutzgruppe,
R3 und R4 gleich oder verschieden sind und Wasserstoff, C1-C10-Alkyl, C7-C10-Aralkyl oder gemeinsam eine (CH2)m-Gruppe mit m = 2 bis 6,
R5 Wasserstoff, C1-C10-Alkyl, Aryl oder C7-C20-Aralkyl und
R6 Wasserstoff, C1-C10-Alkyl, Aryl oder C7-C20-Aralkyl bedeuten
wobei nicht R1 = OH sein darf, wenn R2 = tert.Butyldimethylsilyl, R3 = R4 = Methyl, R5 = Methyl und R6 = Wasserstoff sind,
und ihre Verwendung zur Synthese von Epothilon oder Epothilonderivaten.
Der Disclaimer schließt die bereits von Nicolaou et al. beschriebene Struktur aus.
Als Alkylgruppen R3, R4, R5, und R6 sind gerad- oder verzweigtkettige Alkylgruppen mit 1-10 Kohlenstoffatomen zu betrachten, wie beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, tert.-Butyl, Pentyl, Isopentyl, Neopentyl, Heptyl, Hexyl, De­ cyl.
Als Alkylgruppen R7 sind geradkettige oder verzweigte Alkylgruppen mit 1-20 Kohlen­ stoffatomen zu betrachten, wie beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, tert.-Butyl, Pentyl, Isopentyl, Neopentyl, Heptyl, Hexyl, Decyl.
Die geeignete Schutzgruppe R2 kann zum Beispiel ein Ether oder Acylrest sein. Als Ether- und Acylreste kommen die dem Fachmann bekannten Reste in Betracht. Bevor­ zugt sind leicht abspaltbare Etherreste, wie beispielsweise der Methoxymethyl-, Tetrahydropyranyl-, Tetrahydrofuranyl-, Tri-isopropyl- oder Trimethylsilyl-, tert.- Butyldimethylsilyl-, tert.-Butyldiphenylsilyl-, Tribenzylsilylrest. Als Acylreste kommen z. B. Acetyl, Propionyl, Butyryl, Benzoyl, eine durch z. B. Amino- und/oder Hydroxygruppen substituierte Alkanoylgruppe oder auch die Benzyl- und p-Nitobenzylgruppen in Frage.
Als Arylrest R5, R6 und R7 kommen substituierte und unsubstituierte carbocyclische oder heterocyclische Reste wie z. B. Phenyl, Naphtyl, Furyl, Thienyl, Thiazolyl-, Pyridyl, Pyrazolyl, Pyrimidinyl, Oxazolyl, Pyridazinyl, Pyrazinyl, Chinolyl, die mehrfach substituiert sein können durch Halogen, -NO2, -N3, -CN, -NH2, -COOH, -COOR, -OH, Alkyl, C1-C20-Acyl, C1-C20-Acyloxy-Gruppen, in Frage.
Die Aralkylgruppen in R3, R4, R5, R6 und R7 können im Ring bis 14 C-Atome enthalten, bevorzugt 6 bis 10 und in der Alkylkette 1 bis 6, bevorzugt 1 bis 4 Atome. Bevorzugte Aralkylreste sind z. B. Benzyl, Phenylethyl, Naphtylmethyl bzw. Naphtylethyl. Die Ringe können mehrfach substituiert sein durch Halogen, -NO2, -N3, -CN, Alkyl, C1-C20-Acyl, C1-C20-Acyloxy-Gruppen. Als Epothilonderivate sind alle offenkettigen cyclischen, makroliden oder auch nicht makroliden, zusätzlich substituierten oder nicht substituierten Strukturen zu verstehen, die sich von Epothilon ableiten lassen.
In zu den Beispielen 8-8e analoger Weise sind die Verbindungen der allgemeinen Formel I mit R3, R4 in der Bedeutung von gemeinsam einer (CH2)m-Gruppe mit m = 2 bis 6, darstellbar.
Die nachfolgenden Beispiele dienen der näheren Erläuterung der Erfindungsgegenstandes, ohne ihn auf diese beschränken zu wollen.
Beispiel 1 (3S)-1-Oxa-2-oxo-3-(tetrahydropyran-2(RS)-yloxy)-4,4-dimethyl-cyclopentan
Die Lösung von 74,1 g (569 mmol) D-(-)-Pantolacton in 1 l wasserfreiem Dichlormethan versetzt man unter einer Atmosphäre aus trockenem Argon mit 102 ml 3,4-Dihydro-2H- pyran, 2 g p-Toluolsulfonsäure-Pyridiniumsalz und rührt 16 Stunden bei 23°C. Man gießt in eine gesättigte Natriumhydrogencarbonatlösung, trennt die organische Phase ab und trocknet über Natriumsulfat. Nach Filtration und Lösungsmittelabzug chromatographiert man den Rückstand an ca. 5 kg feinem Kieselgel mit einem Gemisch aus n-Hexan und Ethylacetat. Isoliert werden 119,6 g (558 mmol, 98%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 1,13 (3H), 1,22 (3H), 1,46-1,91 (6H), 3,50-3,61 (1H), 3,86 (1H), 3,92 (1H), 4,01 (1H), 4,16 (1H), 5,16 (1H) ppm.
Beispiel 2 (2RS,3S)-1-Oxa-2-hydroxy-3-(tetrahydropyran-2(RS)-yloxy)-4,4-dimethyl-cyclo­ pentan
Die Lösung von 117,5 g (548 mmol) der nach Beispiel 1 dargestellten Verbindung in 2,4 l wasserfreiem Toluol kühlt man unter einer Atmosphäre aus trockenem Argon auf -70°C, versetzt innerhalb 1 Stunde mit 540 ml einer 1,2 molaren Lösung von Diisobutyl­ aluminiumhydrid in Toluol und rührt noch 3 Stunden bei -70°C. Man läßt auf -20°C erwärmen, versetzt mit gesättigter Ammoniumchloridlösung, Wasser und trennt die aus­ gefallenen Aluminiumsalze durch Filtration über Celite ab. Das Filtrat wird mit Wasser und gesättigter Natriumchloridlösung gewaschen und über Magnesiumsulfat getrocknet. Isoliert werden nach Filtration und Lösungsmittelabzug 111,4 g (515 mmol, 94%) der Titelverbindung als farbloses Öl, das man ohne Reinigung weiter umsetzt.
IR (CHCl3): 3480, 3013, 2950, 2874, 1262, 1133, 1074, 1026 und 808 cm-1.
Beispiel 3 (3S)-2,2-Dimethyl-3-(tetrahydropyran-2(R)-yloxy)-pent-4-en-1-ol und (3S)-2,2-Di­ methyl-3-(tetrahydropyran-2(S)-yloxy)-pent-4-en-1-ol
Die Aufschlämmung von 295 g Methyl-triphenylphosphoniumbromid in 2,5 l wasser­ freiem Tetrahydrofuran versetzt man unter einer Atmosphäre aus trockenem Argon bei -60°C mit 313 ml einer 2,4 molaren Lösung von n-Butyllithium in n-Hexan, läßt auf 23°C erwärmen, eine Stunde nachrühren und kühlt auf 0°C. Man versetzt mit der Lösung von 66,2 g (306 mmol) der nach Beispiel 2 dargestellten Verbindung in 250 ml Tetrahydrofuran, läßt auf 23°C erwärmen und 18 Stunden rühren. Man gießt in eine gesättigte Natriumhydrogencarbonatlösung, extrahiert mehrfach mit Dichlormethan und trocknet die vereinigten organischen Extrakte über Natriumsulfat. Nach Filtration und Lösungsmittelabzug chromatographiert man den Rückstand an ca. 5 l feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 36,5 g (170 mmol, 56%) des unpolaren, 14,4 g (67,3 mmol, 22%) des polaren THP-Isomeren der Titelverbindung, sowie 7,2 g (33,3 mmol; 11%) des Ausgangsmaterials jeweils als farbloses Öl.
1H-NMR (CDCl3), unpolares Isomer: δ = 0,78 (3H), 0,92 (3H), 1,41-1,58 (4H), 1,63- 1,87 (2H), 3,18 (1H), 3,41 (1H), 3,48 (1H), 3,68 (1H), 3,94 (1H), 4,00 (1H), 4,43 (1H), 5,19 (1H), 5,27 (1H), 5,75 (1H) ppm.
1H-NMR (CDCl3), polares Isomer: δ = 0,83 (3H), 0,93 (3H), 1,42-1,87 (6H), 2,76 (1H), 3,30 (1H), 3,45 (1H), 3,58 (1H), 3,83 (1H), 3,89 (1H), 4,65 (1H), 5,12-5,27 (2H), 5,92 (1H) ppm.
Beispiel 4 (3S)-4,4-Dimethyl-5-oxo-3-(tetrahydropyran-2-yloxy)-pent-1-en
Die Lösung von 2,8 ml Oxalylchlorid in 125 ml wasserfreiem Dichlormethan kühlt man unter einer Atmosphäre aus trockenem Argon auf -70°C, versetzt mit 4,6 ml Dimethyl­ sulfoxid, der Lösung von 5,0 g (23,3 mmol) der nach Beispiel 3 dargestellten Verbindung in 125 ml wasserfreiem Dichlormethan und rührt 0,5 Stunden. Anschließend versetzt man mit 14,3 ml Triethylamin, läßt 1 Stunde bei -30°C reagieren und versetzt mit n-Hexan und gesättigter Natriumhydrogencarbonatlösung. Die organische Phase wird abgetrennt, die wäßrige noch mehrfach mit n-Hexan extrahiert, die vereinigten organischen Extrakte mit Wasser gewaschen und über Magnesiumsulfat getrocknet. Man isoliert nach Aufarbeitung 6,1 g der Titelverbindung als farbloses Öl, die man ohne Reinigung weiter umsetzt.
Beispiel 5 (3S,5RS)-4,4-Dimethyl-5-hydroxy-3-(tetrahydropyran-2-yloxy)-hept-1-en
Die Lösung von 6,1 g (max. 23,3 mmol) der nach Beispiel 5 dargestellten Verbindung in 68 ml wasserfreiem Diethylether versetzt man unter einer Atmosphäre aus trockenem Argon bei 0°C mit 11,67 ml einer 2,4 molaren Lösung von Ethylmagnesiumbromid in Diethylether, läßt auf 23°C erwärmen und 16 Stunden rühren. Man versetzt mit gesättig­ ter Ammoniumchloridlösung, trennt die organische Phase ab und trocknet über Natrium­ sulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 1,59 g (6,56 mmol, 28%) des unpolaren Diastereomers sowie 1,67 g (6,89 mmol, 30%) des polaren Diastereomers jeweils als farbloses Öl.
1H-NMR (CDCl3) unpolares Isomer: δ = 0,79 (3H), 0,84 (3H), 1,03 (3H), 1,23-1,62 (6H), 1,62-1,88 (2H), 3,41-3,58 (2H), 3,88-4,01 (2H), 4,08 (1H), 4,47 (1H), 5,20 (1H), 5,29 (1H), 5,78 (1H) ppm.
1H-NMR (CDCl3) polares Isomer: δ = 0,78 (3H), 0,93 (3H), 1,01 (3H), 1,38 (1H), 1,47- 1,85 (7H), 3,39-3,57 (3H), 3,90 (1H), 4,04 (1H), 4,62 (1H), 5,21 (1H), 5,32 (1H), 5,69 (1H) ppm.
Beispiel 6 Beispiel 7b (3S,5S)-4,4-Dimethyl-3-(tetrahydropyran-2-yloxy)-heptan-1,5-diol und/oder (3S,5R)-4,4-Dimethyl-3-(tetrahydropyran-2-yloxy)-heptan-1,5-diol
Die Lösung von 1,67 g (6,89 mmol) bzw. 1,59 g (6,56 mmol) des nach Beispiel 5 dar­ gestellten polaren bzw. unpolaren Alkohols in 83 ml bzw. 79 ml Tetrahydrofuran versetzt man unter einer Atmosphäre aus trockenem Argon bei 23°C mit 13,2 ml bzw. mit 12,6 ml einer 1 molaren Lösung von Boran in Tetrahydrofuran und läßt 1 Stunde reagieren. Anschließend versetzt man unter Eiskühlung mit 16,5 ml bzw. mit 15,7 ml einer 5%-igen Natronlauge sowie 8,3 ml bzw. 7,8 ml einer 30%-igen Wasserstoffper­ oxidlösung und rührt weitere 30 Minuten. Man gießt in Wasser, extrahiert mehrfach mit Ethylacetat, wäscht die vereinigten organischen Extrakte mit Wasser, gesättigter Natri­ umchloridlösung und trocknet über Magnesiumsulfat. Den nach Filtration und Lö­ sungsmittelabzug erhaltenen Rückstand reinigt man durch Chromatographie an feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat. Isoliert werden 1,14 g (4,38 mmol, 67%) der Titelverbindungen jeweils als farbloses Öl.
1H-NMR (CDCl3) polares Isomer: δ = 0,78 (6H), 1,01 (3H), 1,28 (1H), 1,36-1,64 (6H), 1,64-1,94 (4H), 3,41-3,55 (2H), 3,60-3,82 (2H), 3,87 (1H), 3,99 (1H), 4,28 (1H), 4,56 (1H) ppm.
Beispiel 7 Beispiel 7a (3S)-4,4-Dimethyl-5-oxo-3-(tetrahydropyran-2-yloxy)-heptanal
Die Lösung von 100 mg (0,38 mmol) eines Gemisches der nach Beispiel 6 dargestellten Verbindungen in 6,2 ml wasserfreiem Dichlormethan versetzt man mit Molekularsieb (4A, ca. 80 Kugeln), 66,7 mg N-Methylmorpholino-N-oxid, 6,7 mg Tetrapropylammo­ niumperruthenat und rührt 16 Stunden bei 23°C unter einer Atmosphäre aus trockenem Argon. Man engt ein und reinigt das erhaltene Rohprodukt durch Chromatographie an ca. 200 ml feinem Kieselgel mit einem Gradientensystem aus n-Hexan und Ethylacetat.
Beispiel 8 (S)-3-[1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutyl]-3-[(tetrahydro- 2H-pyran-2-yl)oxy]propansäure
420 mg (3,75 mmol) Kaliumtert.butylat werden in 5 ml Diethylether suspendiert. Man addiert 16 µl Wasser und läßt 5 Minuten nachrühren. Anschließend wird eine Lösung von 398 mg (0,75 mmol) 8a in 5 ml Diethylether addiert. Man läßt 3 Stunden nachrühren. Danach wird die Reaktionslösung mit Wasser verdünnt und mit 10%iger Salzsäure neutralisiert. Man extrahiert mit Dichlormethan, wäscht die organische Phase mit gesät­ tigter wäßriger Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Säulenchromatographie des Rohprodukts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat ergibt 112 mg (0,3 mmol).
1H-NMR (CDCl3): δ = 0,01 (6H), 0,90 (9H), 1,30-2,25 (10H), 3,12 (1H), 3,50 (2H), 3,58 (1H), 3,98 (1H), 4,45 (1H) ppm.
Das Reaktionsprodukt kann nach Spaltung der Silylschutzgruppe durch Oxidation analog zu Beispiel 4 in den Aldehyd überführt, analog zu Beispiel 5 mit einer Grignardver­ bindung, beispielsweise mit Ethylmagnesiumbromid, zur Reaktion gebracht und durch anschließende Oxidation des erhaltenen Alkohols analog zu Beispiel 7 in eine Verbindung gemäß Anspruch 1 überführt werden, beispielsweise in (s)-3-[1-[1- Oxopropyl]cyclobutyl]-3-[(tetrahydro-2H-pyran-2-yl)oxy]propansäure.
Analog können folgende Verbindungen erhalten werden:
Beispiel 8a [1R-[1α(3S*),2β]]-2-Phenylcyclohexyl 3-[1-[[[dimethyl(1,1-dimethylethyl)silyl]­ oxy]methyl]cyclobutyl]-3-[(tetrahydro-2H-pyran-2-yl)oxy]propanoat
In Analogie zu Beispiel 1 setzt man 460 mg (1,03 mmol) der nach Beispiel 8b darge­ stellten Verbindung um und isoliert nach Aufarbeitung und Reinigung 398 mg (0,75 mmol, 73%) der Titelverbindung als farbloses Öl.
1H-NMR (CDCl3): δ = 0,01 (6H), 0,89 (9H), 1,24-1,97 (19H), 2,15-2,27 (3H), 2,66 (1H), 3,12 (1H), 3,50 (2H), 3,58 (1H), 3,98 (1H), 4,52 (1H), 4,87 (1H), 7,09-7,27 (5H) ppm.
Beispiel 8b [1R-[1a(R*),2b]]-2-Phenylcyclohexyl 3-[1-[[[dimethyl(1,1-dimethylethyl)silyl]­ oxy]methyl]cyclobutyl]-3-hydroxypropanoat (A) und [1R-[1a(S*),2b]]-2-Phenylcyclohexyl 3-[1-[[[dimethyl(1,1-dimethylethyl)silyl]­ oxy]methyl]cyclobutyl]-3-hydroxypropanoat (B)
Aus 7,2 ml Diisopropylamin und Butyllithium (32 ml einer 1,6 molaren Lösung in Hexan) wird in absolutem Tetrahydrofuran Lithiumdiisopropylamid hergestellt. Dann addiert man bei -78°C eine Lösung von 11,2 g (1R-trans)-2-Phenylcyclohexyl acetat in 100 ml absolutem Tetrahydrofuran und läßt 30 Minuten bei dieser Temperatur nachrühren. Anschließend wird eine Lösung von 7,7 g (33,7 mmol) der nach Beispiel 8c dargestellten Verbindung in 50 ml Tetrahydrofuran addiert. Man läßt 1,5 Stunden bei -78°C nachrühren und gießt danach das Reaktionsgemisch auf gesättigte wäßrige Ammonium­ chloridlösung. Man extrahiert mit Ethylacetat, wäscht die organische Phase mit gesättig­ ter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Säulenchromatographie des Rohprodukts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat erhält man 6,34 g (14,2 mmol, 42%) der Titelverbindung A und 4,22 g (9,4 mmol, 28%) der Titelverbindung B.
1H-NMR (CDCl3) von A: δ = 0,04 (6H), 0,98 (9H), 2,69 (1H), 3,08 (1H), 3,60 (1H), 3,67 (1H), 3,78-3,84 (1H), 4,97 (1H), 7,15-7,30 (5H) ppm.
1H-NMR (CDCl3) von B: δ = 0,03 (6H) 0,90 (9H), 2,68 (1H), 2,80 (1H), 3,56 (2H), 3,68-3,72 (1H), 4,99 (1H), 7,18-7,30 m (5H) ppm.
Beispiel 8c 1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutancarbaldehyd
8 ml Oxalylchlorid werden in 100 ml Dichlormethan gelöst. Man kühlt auf -78°C und addiert 13 ml Dimethylsulfoxid. Man läßt 3 Minuten nachrühren und addiert dann eine Lösung von 13,5 g (58,6 mmol) der nach Beispiel 8d dargestellten Verbindung in 80 ml Dichlormethan. Nach weiteren 15 Minuten Nachrührzeit werden 58 ml Triethylamin hinzugetropft. Anschließend läßt man auf 0°C erwärmen. Dann wird das Reaktionsge­ misch auf gesättigte Natriumhydrogencarbonatlösung gegossen. Man extrahiert mit Dichlormethan, wäscht die organische Phase mit gesättigter Natriumchloridlösung, trocknet über Natriumsulfat und engt im Vakuum ein. Nach Chromatographie des Roh­ produkts an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat erhält man 7,7 g (33,7 mmol, 58%) der Titelverbindung.
1H-NMR (CDCl3): δ = 9,70 s (1H), 3,83 s (2H), 2,20-2,30 m (2H), 1,85-2,00 m (4H), 0,90 s (9H), 0,03 s (6H) ppm.
Beispiel 8d 1-[[[Dimethyl(1,1-dimethylethyl)silyl]oxy]methyl]cyclobutanmethanol
Zu einer Suspension von 3,4 g Natriumhydrid (60%ig in Öl) in 35 ml absolutem Tetrahydrofuran wird bei 0°C eine Lösung von 9,9 g (85 mmol) der nach Beispiel 8e dargestellten Verbindung in 100 ml absolutem Tetrahydrofuran gegeben. Man läßt 30 Minuten nachrühren und addiert dann eine Lösung von 12,8 g tert.Butyldimethylsilylchlorid in 50 ml Tetrahydrofuran. Man läßt eine Stunde bei 25°C nachrühren und gießt dann das Reaktionsgemisch auf gesattigte waßrige Natriumhydro­ gencarbonatlösung. Es wird mit Ethylacetat extrahiert. Die organische Phase wird mit gesättigter Natriumchloridlösung gewaschen und über Natriumsulfat getrocknet. Nach Abziehen des Lösungsmittels im Vakuum wird das erhaltene Rohprodukt durch Säulen­ chromatographie an Kieselgel mit einem Gemisch aus Hexan/Ethylacetat gereinigt. Man erhält 13,5 g (58,6 mmol, 69%) der Titelverbindung.
1H-NMR (CDCl3): δ = 0,04 (6H), 0,90 (9H), 1,70-2,00 (6H), 3,70 (4H) ppm.
Beispiel 8e 1,1-Cyclobutandimethanol
Zu einer Lösung von 20 g (99,9 mmol) 1,1-Cyclobutandicarbonsäurediethylester in 200 ml absolutem Tetrahydrofuran werden bei 0°C 170 ml einer 1,2 molaren Lösung von Diisobutylaluminiumhydrid getropft. Man läßt eine Stunde bei 0°C nachrühren und ad­ diert dann 30 ml Wasser. Es wird über Celite filtriert. Das Filtrat wird mit Natriumsulfat getrocknet und im Vakuum eingeengt. Das erhaltene Rohprodukt (9,9 g, 85,2 mmol, 85%) wird ohne Aufreinigung in die Folgestufe in Beispiel 8d eingesetzt.
Analoge Beispiele zu 8-8e
Setzt man in die Reaktionssequenz anstelle von 1,1-Cyclobutandicarbonsäurediethylester die homologen Cyclopropyl-, Cycylopentyl-, Cyclohexyl- oder Cycloheptylderivate ein und setzt diese weiter mit den betreffenden Grignard-Reagenzien um, werden die Derivate der Tabelle nach Beispiel 8 erhalten.

Claims (3)

1. Verbindungen der allgemeinen Formel (I)
worin R1 Wasserstoff, OH, oder OR7, wobei
R7 C1-C20-Alkyl, Aryl oder C7-C10-Aralkyl, bedeutet,
R2 Wasserstoff oder eine geeignete Schutzgruppe,
R3 und R4 gleich oder verschieden sind und Wasserstoff, C1-C10-Alkyl, C7-C10-Aralkyl oder gemeinsam eine -(CH2)m-Gruppe mit m = 2 bis 6,
R5 Wasserstoff, C1-C10-Alkyl, Aryl oder C7-C20-Aralkyl und
R6 Wasserstoff, C1-C10-Alkyl, Aryl oder C7-C20-Aralkyl bedeuten,
wobei nicht R1 = OH sein darf, wenn R2 = tert.Butyldimethylsilyl, R3 = R4 = Methyl, R5 = Methyl und R6 = Wasserstoff sind.
2. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (Ia)
worin R1 Wasserstoff, OH, OR7, wobei
R7 C1-C20-Alkyl, Aryl oder C7-C10-Aralkyl, bedeutet,
R2 Wasserstoff oder eine geeignete Schutzgruppe,
R5 Wasserstoff, C1-C10-Alkyl, Aryl oder C7-C20-Aralkyl und
R6 Wasserstoff- C1-C10-Alkyl, Aryl oder C7-C20-Aralkyl
bedeuten und die Konfiguration am C3 (R),(S) oder ein Gemisch aus beiden sein kann, je nachdem, welches Pantolacton oder Pantolacton-Gemisch für das Verfahren eingesetzt wird,
dadurch gekennzeichnet, daß
in einem Schritt 1
die freie Hydroxygruppe des Pantolactons (II) unter wasserfreien Bedingungen mit 3,4- Dihydro-2H-pyran/p-Toluolsulfonsäure-Pyridiniumsalz (a) in den Tetrahydropyranylether (III) oder mit einem entsprechenden Reagenz in eine andere geeignete Schutzgruppe R überführt und das Lacton bei -70°C mit Diisobutylaluminiumhydrid (b) zum Lactol (IV) reduziert wird,
in einem Schritt 2
das Lactol (IV) mit Methyltriphenylphosphoniumbromid/Butyllithium (c) geöffnet und gleichzeitig Wasser eliminiert wird zur offenkettigen Verbindung (V), und
in einem Schritt 3
der primäre Alkohol mit Oxalylchlorid/Dimethylsulfoxid in Dichlormethan (d) zum Aldehyd (VI) oxidiert wird und der Aldehyd (VI) mit einer Organometallverbindung der Formel
R5CH2Y (e)
worin Y Lithium oder MgX,
X Chlor, Brom oder Iod sein kann, und
R5 die oben genannte Bedeutung hat,
umgesetzt wird, und
entweder
in einem Schritt 4
der geschützte Allylalkohol einer Hydroborierung unter üblichen Bedingungen unterwor­ fen wird und beide Hydroxygruppen mit N-Methylmorpholino-N-Oxid/­ Tetrapropylammoniumperruthenat oxidiert werden, und
in einem Schritt 5
der gegebenenfalls aus Schritt 4 erhaltene Aldehyd noch zur Säure (X) oxidiert wird und gegebenenfalls die Säure verestert wird,
oder
in einem Schritt 4a
zuerst die Hydroxyfunktion oxidiert wird, dann mit Lithiumdiisopropylamid/R6Z
wobei R6 C1-C10-Alkyl, Aryl oder C7-C20-Aralkyl und
Z eine geeignete Abgangsgruppe bedeutet,
alkyliert wird, und dann wie in Schritt 4 die Hydroborierung (f) und die Oxidation (g) durchgeführt wird zum Aldehyd und gegebenenfalls der erhaltene Aldehyd (Ixa) wie in Schritt 5 beschrieben oxidiert wird, und die Verbindungen der Formel (Ia)
erhalten werden, die gegebenenfalls verestert werden können.
3. Verwendung von Verbindungen gemäß Anspruch 1 zur Synthese von Epothilon oder Epothilonderivaten.
DE19735574A 1997-08-09 1997-08-09 Neue [C1(Carboxa)-C6]-Fragmente, Verfahren zu ihrer Herstellung und ihre Verwendung zur Synthese von Epothilon und Epothilonderivaten Withdrawn DE19735574A1 (de)

Priority Applications (15)

Application Number Priority Date Filing Date Title
DE19735574A DE19735574A1 (de) 1997-08-09 1997-08-09 Neue [C1(Carboxa)-C6]-Fragmente, Verfahren zu ihrer Herstellung und ihre Verwendung zur Synthese von Epothilon und Epothilonderivaten
AT98946309T ATE368036T1 (de) 1997-08-09 1998-08-10 Neue epothilon-derivate, verfahren zu deren herstellung und ihre pharmazeutische verwendung
DE59814067T DE59814067D1 (de) 1997-08-09 1998-08-10 Neue epothilon-derivate, verfahren zu deren herstellung und ihre pharmazeutische verwendung
PCT/EP1998/005064 WO1999007692A2 (de) 1997-08-09 1998-08-10 Neue epothilon-derivate, verfahren zu deren herstellung und ihre pharmazeutische verwendung
EP98946309A EP1005465B1 (de) 1997-08-09 1998-08-10 Neue epothilon-derivate, verfahren zu deren herstellung und ihre pharmazeutische verwendung
US09/485,292 US7407975B2 (en) 1997-08-09 1998-08-10 Epothilone derivatives, method for producing same and their pharmaceutical use
IL13441998A IL134419A0 (en) 1997-08-09 1998-08-10 Epothilone derivatives, process for the preparation thereof and pharmaceutical compositions containing the same
CA002299608A CA2299608A1 (en) 1997-08-09 1998-08-10 New epothilone derivatives, method for producing same and their pharmaceutical use
JP2000506196A JP2001512723A (ja) 1997-08-09 1998-08-10 新規エポチロン誘導体、その製法およびその薬学的使用
DK98946309T DK1005465T3 (da) 1997-08-09 1998-08-10 Nye epothilon-derivater, fremgangsmåde til fremstilling heraf og deres farmaceutiske anvendelse
PT98946309T PT1005465E (pt) 1997-08-09 1998-08-10 Novos derivados da epotilona, processo para a sua preparação e sua utilização farmacêutica
AU93409/98A AU9340998A (en) 1997-08-09 1998-08-10 New epothilone derivatives, method for producing same and their pharmaceutical use
ES98946309T ES2290993T3 (es) 1997-08-09 1998-08-10 Nuevos derivados de epotilona, proceso para su produccion y su utilizacion farmaceutica.
EP07013545A EP1847540A1 (de) 1997-08-09 1998-08-10 Neue Epothilonderivate, Herstellungsverfahren dafür und ihre pharmazeutische Verwendung
US12/178,039 US20090018342A1 (en) 1997-08-09 2008-07-23 New epothiolone derivatives, process for their production, and their pharmaceutical use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19735574A DE19735574A1 (de) 1997-08-09 1997-08-09 Neue [C1(Carboxa)-C6]-Fragmente, Verfahren zu ihrer Herstellung und ihre Verwendung zur Synthese von Epothilon und Epothilonderivaten

Publications (1)

Publication Number Publication Date
DE19735574A1 true DE19735574A1 (de) 1999-02-11

Family

ID=7839187

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19735574A Withdrawn DE19735574A1 (de) 1997-08-09 1997-08-09 Neue [C1(Carboxa)-C6]-Fragmente, Verfahren zu ihrer Herstellung und ihre Verwendung zur Synthese von Epothilon und Epothilonderivaten

Country Status (1)

Country Link
DE (1) DE19735574A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7649006B2 (en) 2002-08-23 2010-01-19 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US7750164B2 (en) 1996-12-03 2010-07-06 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof
US7875638B2 (en) 2002-08-23 2011-01-25 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750164B2 (en) 1996-12-03 2010-07-06 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof
USRE41990E1 (en) 1996-12-03 2010-12-07 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof
US8481575B2 (en) 1996-12-03 2013-07-09 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof
US7649006B2 (en) 2002-08-23 2010-01-19 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US7759374B2 (en) 2002-08-23 2010-07-20 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US7875638B2 (en) 2002-08-23 2011-01-25 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof
US8110590B2 (en) 2002-08-23 2012-02-07 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US8513429B2 (en) 2002-08-23 2013-08-20 Sloan-Kettering Insitute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof

Similar Documents

Publication Publication Date Title
EP0633258B1 (de) Verbessertes Verfahren zur Herstellung von Astaxanthin, neue Zwischenprodukte hierfür sowie ein Verfahren zu deren Herstellung
DE2653838C2 (de)
DE3153390C2 (de)
JPH11240891A (ja) 19−ノル−ビタミンd化合物の中間体及びその製造方法
DE19645361A1 (de) Zwischenprodukte innerhalb der Totalsynthese von Epothilon A und B, Teil II
DE19645362A1 (de) Verfahren zur Herstellung von Epothilon A und B und Derivaten
DE10164592A1 (de) C1-C6-Epothilon-Fragmente und Verfahren für die Herstellung von C1-C6-Fragmenten von Epothilonen und deren Derivaten
DE2539116C2 (de) ω-Nor-cycloalkyl-13,14-dehydro-prostaglandine, Verfahren zu ihrer Herstellung sowie sie enthaltende pharmazeutische Mittel
DE19735574A1 (de) Neue [C1(Carboxa)-C6]-Fragmente, Verfahren zu ihrer Herstellung und ihre Verwendung zur Synthese von Epothilon und Epothilonderivaten
Samajdar et al. Stereocontrolled approach to highly substituted cyclopentanones. Application in a formal synthesis of Δ9 (12)-capnellene
DE2610503C2 (de) Optisch aktive 13,14-Dehydro-11- desoxy-prostaglandine, Verfahren zu ihrer Herstellung und sie enthaltendes pharmazeutisches Mittel
EP0585104B1 (de) Verfahren zum Herstellen einer gesättigten monocyclischen Kohlenwasserstoffverbindung und ein Zwischenprodukt für dieses
EP0766660B1 (de) Cyclohexanon-derivate, verfahren zu deren herstellung und zwischenprodukte des verfahrens
DE19735578A1 (de) Neue (C1-C6)-Fragmente, Verfahren zur Herstellung und ihre Verwendung zur Synthese von Epothilon und Epothilonderivaten
CH651033A5 (de) Fluorprostacycline.
CH623570A5 (de)
DE19749717A1 (de) Neue C1-C6-Bausteine zur Totalsynthese neuer Epothilon-Derivate sowie Verfahren zur Herstellung dieser Bausteine
DE19735575A1 (de) Neue (C13-C15)-Fragmente, Verfahren zur Herstellung und ihre Verwendung zur Synthese von Epothilon und Epothilonderivaten
DE60316456T2 (de) Neues verfahren zur herstellung von epothilone-derivaten
JP3446225B2 (ja) シクロペンタン誘導体及びその製造方法
AT392071B (de) Neue prostacycline
CH659472A5 (de) Epoxycarbacyclinderivate, ihre herstellung und verwendung.
EP0008077B1 (de) Neue Prostaglandinderivate in der Delta-2-PGF2 und Delta-2-PGE2-Reihe, Verfahren zu deren Herstellung und ihre Verwendung als Arzneimittel
EP0247202B1 (de) Isokarbacyklinabkömmlinge und deren herstellungsverfahren
DE19748928A1 (de) C13-C16-Epothilon-Bausteine zur Totalsynthese neuer Epothilon-Derivate sowie Verfahren zur Herstellung dieser Bausteine

Legal Events

Date Code Title Description
8141 Disposal/no request for examination