DE102013204194A1 - Regelungssystem für eine Synchronmaschine und Verfahren zum Betreiben einer Synchronmaschine - Google Patents

Regelungssystem für eine Synchronmaschine und Verfahren zum Betreiben einer Synchronmaschine Download PDF

Info

Publication number
DE102013204194A1
DE102013204194A1 DE102013204194.2A DE102013204194A DE102013204194A1 DE 102013204194 A1 DE102013204194 A1 DE 102013204194A1 DE 102013204194 A DE102013204194 A DE 102013204194A DE 102013204194 A1 DE102013204194 A1 DE 102013204194A1
Authority
DE
Germany
Prior art keywords
synchronous machine
rotor
operating point
point trajectory
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102013204194.2A
Other languages
English (en)
Inventor
Sebastian Paulus
Gunther Goetting
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102013204194.2A priority Critical patent/DE102013204194A1/de
Priority to US14/774,860 priority patent/US9444375B2/en
Priority to EP14704365.7A priority patent/EP2973988B1/de
Priority to PCT/EP2014/052931 priority patent/WO2014139754A2/de
Priority to CN201480014241.XA priority patent/CN105191114B/zh
Priority to KR1020157025000A priority patent/KR102207375B1/ko
Publication of DE102013204194A1 publication Critical patent/DE102013204194A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/34Modelling or simulation for control purposes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben einer Synchronmaschine, mit den Schritten des Ermittelns jeweils eines Differenzwertes zwischen der Rotorinduktivität der Synchronmaschine in Polachsenrichtung und der Rotorinduktivität der Synchronmaschine in Pollückenrichtung für eine Vielzahl von unterschiedlichen 2-Tupeln aus im rotorfesten Koordinatensystem der Synchronmaschine eingestellten Nutzbestromungswerten, des Erstellens eines Kennfelds für die ermittelten Differenzwerte in Abhängigkeit von den 2-Tupeln der Nutzbestromungswerten, des Festlegens einer drehmomentabhängigen Arbeitspunkttrajektorie für die 2-Tupel der Nutzbestromungswerte unter Berücksichtigung der Höhe der ermittelten Differenzwerte entlang der festzulegenden Arbeitspunkttrajektorie, und des Betreibens der Synchronmaschine gemäß der festgelegten Arbeitspunkttrajektorie.

Description

  • Die Erfindung betrifft ein Regelungssystem für eine Synchronmaschine und ein Verfahren zum Betreiben einer Synchronmaschine.
  • Stand der Technik
  • Bei der Regelung einer Synchronmaschine, beispielsweise in einem elektrischen Antriebssystem eines elektrisch betriebenen Fahrzeugs, spielt die Kenntnis über die relative Position des Rotors zum Stator der Synchronmaschine eine zentrale Rolle. Um ein gefordertes Drehmoment mit einer Synchronmaschine bereitzustellen, wird im Stator der Maschine ein rotierendes elektrisches Feld erzeugt, welches sich synchron mit dem Rotor dreht. Für die Erzeugung dieses Feldes wird der aktuelle Winkel des Rotors für die Regelung benötigt.
  • Eine Möglichkeit für die Bestimmung des Rotorwinkels besteht darin, Testspannungssignale in eine oder mehrere der Phasen der Synchronmaschine einzuspeisen und die Systemantwort durch Auswertung der Phasenströme im Sternpunkt der Synchronmaschine zu messen, um daraus Rückschlüsse auf den aktuellen Rotorwinkel zu ziehen.
  • Beispielsweise offenbart die Druckschrift WO 2009/136381 A2 ein Verfahren zur Bestimmung des Rotorwinkels einer Synchronmaschine, bei der durch Verschiebung von Taktmustern einer pulsbreitenmodulierten Phasenansteuerung Messperioden zur Messung von Spannungen im Sternpunkt optimiert werden. Ein beispielhaftes Testsignalinjektionsverfahren für Drehstrommaschinen ist in Linke, M. et al.: „Sensorless speed and position control of synchronous machines using alternating carrier injection", Electric Machines and Drives Conference, IEMDC 2003, IEEE International gezeigt. Die Druckschrift DE 10 2006 046 638 A1 offenbart schließlich ein weiteres Testsignalverfahren zur Ermittlung von Phasenlageninformationen eines Rotors einer Synchronmaschine.
  • Viele dieser geberlosen Verfahren basieren auf einer Einspeisung von phasenversetzten Spannungspulsen, die die Anisotropie einer Synchronmaschine ausnutzen, um aus den unterschiedlichen Systemantworten eine Rotorlageinformation zu gewinnen. In Abhängigkeit von der Nutzbestromung der Synchronmaschine kann es an gewissen Arbeitspunkten zu einer Abnahme dieser Anisotropie kommen, so dass die Rotorlageinformation nicht mehr oder zumindest nicht mehr zuverlässig genug aus den Messwerten extrahiert werden kann. Um den Einsatzbereich geberloser Verfahren erweitern zu können, besteht daher ein Bedarf an Lösungen in der Ansteuerung einer Synchronmaschine, die bessere Randbedingungen für die Zuverlässigkeit und Stabilität von Verfahren zum Ermitteln von Rotorwinkeln schaffen können.
  • Offenbarung der Erfindung
  • Die vorliegende Erfindung schafft gemäß einem Aspekt ein Verfahren zum Betreiben einer Synchronmaschine, mit den Schritten des Ermittelns jeweils eines Differenzwertes zwischen der Rotorinduktivität der Synchronmaschine in Polachsenrichtung und der Rotorinduktivität der Synchronmaschine in Pollückenrichtung für eine Vielzahl von unterschiedlichen 2-Tupeln aus im rotorfesten Koordinatensystem der Synchronmaschine eingestellten Nutzbestromungswerten, des Erstellens eines Kennfelds für die ermittelten Differenzwerte in Abhängigkeit von den 2-Tupeln der Nutzbestromungswerten, des Festlegens einer drehmomentabhängigen Arbeitspunkttrajektorie für die 2-Tupel der Nutzbestromungswerte unter Berücksichtigung der Höhe der ermittelten Differenzwerte entlang der festzulegenden Arbeitspunkttrajektorie, und des Betreibens der Synchronmaschine gemäß der festgelegten Arbeitspunkttrajektorie.
  • Gemäß einem weiteren Aspekt schafft die vorliegende Erfindung ein Regelungssystem für eine Synchronmaschine, mit einer Regelungseinrichtung, welche dazu ausgelegt ist, eine feldorientierte Regelung für die Synchronmaschine durchzuführen, und mit einer Steuereinrichtung, welche dazu ausgelegt ist, eine Arbeitspunkttrajektorie für die feldorientierte Regelung der Regelungseinrichtung gemäß dem erfindungsgemäßen Verfahren festzulegen.
  • Vorteile der Erfindung
  • Eine Idee der vorliegenden Erfindung ist es, den Einsatzbereich geberloser Rotorwinkelbestimmungsverfahren für Synchronmaschinen, insbesondere bei niedrigen Drehzahlen, zu erweitern. Die Erfindung beruht auf der Erkenntnis, dass durch eine Anpassung der Arbeitspunkttrajektorie einer Synchronmaschine die Amplitude von auf ein gebeloses Rotorwinkelbestimmungsverfahren hin erzeugten und ermittelten Systemantworten gesteigert und damit die Zuverlässigkeit und Genauigkeit des Rotorwinkelbestimmungsverfahrens verbessert werden kann. Dazu wird die Arbeitspunkttrajektorie der Synchronmaschine so eingestellt, dass die Differenz zwischen d- und q-Induktivität der Synchronmaschine im rotorfesten Koordinatensystem möglichst hoch ist. Die Festlegung der Arbeitspunkttrajektorie der Synchronmaschine erfolgt anhand eines vorab zu bestimmenden Kennfelds über alle möglichen 2-Tupel an Nutzbestromungswerten im rotorfesten Koordinatensystem, in welchem die Amplituden der Systemantworten als Isohypsen aufgetragen sind. Anhand einer Ausbalancierung zwischen Wirkungsgrad der Synchronmaschine und möglichst hoher Differenz zwischen d- und q-Induktivität der Synchronmaschine kann die Arbeitspunkttrajektorie als Kompromiss zwischen Genauigkeit der Rotorwinkelbestimmung und Effizienz des Maschinenbetriebs festgelegt werden.
  • Ein erheblicher Vorteil dieser Vorgehensweise besteht darin, dass der Arbeitsbereich des Rotorwinkelbestimmungsverfahrens für die Synchronmaschine erweitert werden kann. Beispielsweise kann im Bereich höherer Drehmomente die Sättigung der Synchronmaschine durch die Nutzbestromung entsprechend gesenkt werden, wodurch die Signifikanz der Rotorlageinformation gesteigert wird.
  • Gemäß einer Ausführungsform des erfindungsgemäßen Verfahrens kann das Ermitteln jeweils eines Differenzwertes zwischen der Rotorinduktivität der Synchronmaschine in Polachsenrichtung und der Rotorinduktivität der Synchronmaschine in Pollückenrichtung die Schritte des Erzeugens einer Vielzahl von Testspannungspulsen mit einer Arbeitsfrequenz, des Einspeisens der Vielzahl von Testspannungspulsen mit jeweils über eine volle Rotorumdrehung des Rotors der Synchronmaschine verteilten unterschiedlichen Phasenversätzen zur Rotorlage des Rotors der Synchronmaschine, des Messens der Phasenströme der Synchronmaschine als Systemantwort auf die Vielzahl der eingespeisten Testspannungspulse, des Ermittelns der Amplitude des Phasenstromverlaufs der gemessenen Phasenströme in Abhängigkeit der eingestellten Phasenversätze zum Ermitteln des Differenzwertes, und des Iterierens der Schritte des Erzeugens, des Einspeisens, des Messens und des Ermittelns jeweils für eine Vielzahl von unterschiedlichen 2-Tupeln aus im rotorfesten Koordinatensystem der Synchronmaschine eingestellten Nutzbestromungswerten umfassen. Viele Rotorwinkelbestimmungsverfahren beruhen gerade auf der Einspeisung von Testsignalen in den Rotor der Synchronmaschine. Besonders für diese Verfahren ist das erfindungsgemäße Verfahren sehr gut geeignet.
  • Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens kann das Festlegen der Arbeitspunkttrajektorie unter gleichzeitiger Berücksichtigung des Wirkungsgrads der Synchronmaschine erfolgen. Dies ermöglicht eine Ausbalancierung zwischen effizientem Betrieb der Synchronmaschine und Verbesserung der Genauigkeit des Rotorwinkelbestimmungsverfahrens.
  • Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens kann das Festlegen der Arbeitspunkttrajektorie derart erfolgen, dass die ermittelten Differenzwerte entlang der Arbeitspunkttrajektorie möglichst gering sind und der Wirkungsgrad der Synchronmaschine entlang der Arbeitspunkttrajektorie einen vorbestimmbaren Schwellwert nicht unterschreitet. Dadurch kann die Arbeitspunkttrajektorie in einem Randwertproblem möglichst einfach optimiert werden.
  • Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens kann das Festlegen der Arbeitspunkttrajektorie derart erfolgen, dass die Gesamtamplitude der Nutzbestromungswerte entlang der Arbeitspunkttrajektorie möglichst gering ist.
  • Gemäß einer Ausführungsform des erfindungsgemäßen Regelungssystems kann das Regelungssystem weiterhin eine Synchronmaschine aufweisen, welche dazu ausgelegt ist, durch die Regelungseinrichtung gemäß der festgelegten Arbeitspunkttrajektorie der Steuereinrichtung betrieben zu werden.
  • Weitere Merkmale und Vorteile von Ausführungsformen der Erfindung ergeben sich aus der nachfolgenden Beschreibung mit Bezug auf die beigefügten Zeichnungen.
  • Kurze Beschreibung der Zeichnungen
  • Es zeigen:
  • 1 eine schematische Darstellung eines Regelungssystems für eine Synchronmaschine gemäß einer Ausführungsform der vorliegenden Erfindung;
  • 2 ein schematisches Kennfeld für die Abhängigkeit der Induktivitätsdifferenz zwischen q- und d-Induktivität einer Synchronmaschine von den Nutzbestromungwerten gemäß einer weiteren Ausführungsform der vorliegenden Erfindung; und
  • 3 eine schematische Darstellung eines Verfahrens zum Einstellen des Arbeitspunkts einer Synchronmaschine gemäß einer weiteren Ausführungsform der vorliegenden Erfindung.
  • Gleiche Bezugszeichen bezeichnen im Allgemeinen gleichartige oder gleich wirkende Komponenten. Die in den Figuren gezeigten schematischen Signal- und Parameterverläufe sind nur beispielhafter Natur, die aus Gründen der Übersichtlichkeit idealisiert abgebildet sind. Es versteht sich, dass sich in der Praxis aufgrund von abweichenden Randbedingungen abweichende Signal- und Parameterverläufe ergeben können, und dass die dargestellten Signal- und Parameterverläufe lediglich zur Veranschaulichung von Prinzipien und funktionellen Aspekten der vorliegenden Erfindung dienen.
  • Synchronmaschinen im Sinne der vorliegenden Erfindung sind elektrische Maschinen, bei der ein konstant magnetisierter Läufer oder Rotor synchron von einem zeitabhängigen magnetischen Drehfeld im umgebenden Ständer oder Stator durch magnetische Wechselwirkung angetrieben wird, so dass der Rotor eine zu den Spannungsverhältnissen im Stator synchrone Bewegung ausführt, das heißt, dass die Drehzahl über die Polpaarzahl von der Frequenz der Statorspannung abhängig ist. Synchronmaschinen im Sinne der vorliegenden Erfindung können beispielsweise Drehstrom-Synchronmaschinen sein, die zum Beispiel als Außen- oder Innenpolmaschinen ausgebildet sind, die über einen Rotor und einen Stator verfügen. Weiterhin können Synchronmaschinen im Sinne der vorliegenden Erfindung Schenkelpolmaschinen oder Vollpolmaschinen umfassen. Vollpolmaschinen besitzen eine achsunabhängige Induktivität des Rotors, während Schenkelpolmaschinen eine ausgezeichnete Polachse, auch d-Achse genannt, aufweisen, in Richtung derer aufgrund des geringeren Luftspalts die Hauptinduktivität größer ist als in Richtung der Pollücke, auch q-Achse genannt. Die nachstehend genannten Verfahren und Steuereinrichtungen lassen sich prinzipiell gleichermaßen für Vollpolmaschinen und Schenkelpolmaschinen einsetzen, es sei denn, es wird im Folgenden explizit auf unterschiedliche Behandlung von Synchronmaschinentypen Bezug genommen.
  • 1 zeigt eine schematische Darstellung eines Regelungssystems 10 für eine elektrische Antriebseinheit 5 mit einem Wechselrichter 5a, der eine Synchronmaschine 5b mit Drehstrom speist.
  • Die Synchronmaschine 5b kann beispielsweise eine dreiphasige Synchronmaschine sein. Es ist jedoch prinzipiell auch möglich, eine andere Anzahl von Phasen für die Synchronmaschine vorzusehen. Dabei spielt die Regelung der Synchronmaschine 5b in der elektrischen Antriebseinheit 5 eine zentrale Rolle. Um ein gefordertes Drehmoment mit einer Synchronmaschine 5b bereitzustellen, wird im Stator der Maschine ein rotierendes elektrisches Feld erzeugt, welches sich synchron mit dem Rotor dreht. Für die Erzeugung dieses Feldes wird der aktuelle Winkel des Rotors für die Regelung benötigt.
  • Das Regelungssystem 10 umfasst daher eine Regelungseinrichtung 2, welche eine feldorientierte Regelung der Synchronmaschine 5b bzw. des Wechselrichters 5a der Antriebseinheit im rotorfesten d, q-Koordinatensystem durchführt. Dazu wird die Regelungseinrichtung 2 mit einem Solldrehmoment Ts gespeist und greift auf die momentanen Nutzbestromungswerte Iq, Id im rotorfesten d, q-Koordinatensystem zurück, die durch eine erste Transformationseinrichtung 1 bereitgestellt werden. Die erste Transformationseinrichtung 1 misst dazu die Phasenströme Ip der Synchronmaschine 5b und transformiert die Phasenströme Ip in die Nutzbestromungswerte Iq, Id.
  • Die Regelungseinrichtung 2 gibt Ansteuerspannungen Udq im rotorfesten d, q-Koordinatensystem der Synchronmaschine 5b an eine zweite Transformationseinrichtung 4 ab, die eine entsprechende Transformation der Ansteuerspannungen Udq in Phasenansteuerspannungen Up für die Synchronmaschine 5b vornimmt. Sowohl die erste Transformationseinrichtung 1 als auch die zweite Transformationseinrichtung 4 greifen zur Transformation auf den zeitabhängigen Rotorwinkel φo des Rotors der Synchronmaschine 5b in Bezug auf den Stator der Synchronmaschine 5b zurück. Dieser Rotorwinkel φo wird durch einen Beobachter 8 generiert, der wiederum auf einen ermittelten Rotorwinkel φs eines Lagesensors 6 und/oder auf eine Rotorwinkeldifferenz Δφ, welche durch einen Winkelschätzalgorithmus 7 in Abhängigkeit von gemessenen Systemantworten der Synchronmaschine 5b ermittelt wird, zurückgreifen kann.
  • Der Lagesensor 6 kann beispielsweise elektrische Betriebsparameter der Synchronmaschine 5b erfassen, beispielsweise durch Erfassung der Spannung am Sternpunkt der Synchronmaschine 5b. Der Beobachter 8 kann beispielsweise einen Kalman-Beobachter, einen Luenberger-Beobachter, einen Hautus-Beobachter oder einen Gilbert-Beobachter zur Stützung und Plausibilisierung der Winkelbeobachtung φo aufweisen.
  • Für die Speisung des Winkelschätzalgorithmus 7 ist zwischen Regelungseinrichtung 2 und zweiter Transformationseinrichtung 4 ein Summierglied 3 vorgesehen, mithilfe dessen beispielsweise Testspannungspulse ud, uq einer bestimmten Arbeitsfrequenz ωc auf die Ansteuerspannungen Udq aufmoduliert werden können. Diese Testspannungspulse ud, uq können an einem Eingangsanschluss 3a durch eine Steuereinrichtung 9 eingespeist werden, die die beobachtete Winkeldifferenz des Winkelschätzalgorithmus 7 entgegennehmen kann.
  • Das Regelungssystem 10 eignet sich jedoch für jede andere Art von geberlosen Rotorwinkelbestimmungsverfahren ebenfalls, das heißt, alternativ zur Einspeisung von Testspannungspulsen ud, uq können auch andere Methoden genutzt werden, um die Messung von Systemantworten zu ermöglichen. Beispielsweise können durch Messungen von Spannungen im Sternpunkt zu geeigneten Zeitpunkten in einer pulsbreitenmodulierten Phasenansteuerung Systemantworten zur Rotorwinkelbestimmung herangezogen werden. Es kann auch möglich sein, Testsignalverfahren zur Rotorwinkelbestimmung heranzuziehen, wobei Testsignale einer hohen Arbeitsfrequenz auf das Ansteuersignal aufmoduliert werden. Generell ist jedes geberlose Bestimmungsverfahren, welches auf einer Differenz zwischen Rotorinduktivität Ld in Polachsenrichtung und der Rotorinduktivität Lq in Pollückenrichtung der Synchronmaschine 5b beruht, dazu geeignet, den Winkelschätzalgorithmus 7 zur Auswertung der Winkeldifferenz zu speisen.
  • Die Systemantwort der Synchronmaschine 5b hängt unter anderem von der Nutzbestromung ab, deren Wert die Differenz zwischen Rotorinduktivität Ld in Polachsenrichtung und der Rotorinduktivität Lq in Pollückenrichtung beeinflusst. Die Längsströme Id und Querströme Iq einer permanent erregten Synchronmaschine verhalten sich abhängig von der Rotorinduktivität Ld in Polachsenrichtung und der Rotorinduktivität Lq in Pollückenrichtung und der anliegenden Spannung Ud bzw. Uq wie folgt: dId/dt = Ld –1·Ud – R·Ld –1·Id + Lq·Ld –1·ωe·Iq dIq/dt = Lq –1·Uq – R·Lq –1·Iq + Ld·Lq –1·ωe·Id – Lq –1·up
  • Dies gilt bei der Winkelgeschwindigkeit ωe des Rotors der Synchronmaschine 5b, des Ohm'schen Widerstands R sowie der Polradspannung up. Darüber hinaus wird davon ausgegangen, dass der bzw. die Polschuhe nicht in Sättigung betrieben werden, das heißt, dass die Beziehung zwischen Strom und magnetischen Fluss linear ist und die jeweilige Induktivität nicht von der Stromstärke abhängig ist.
  • Bei hoher Nutzbestromung der Synchronmaschine 5b jedoch kann es zu einer fortschreitenden Sättigung des Rotorkerns der Synchronmaschine 5b kommen, so dass die Beziehung zwischen Strom und magnetischem Fluss eine Nichtlinearität aufweist. Insbesondere kann es bei bestimmten 2-Tupeln der Nutzbestromung Id, Iq im rotorfesten Koordinatensystem passieren, dass die Differenz zwischen Rotorinduktivität Ld in Polachsenrichtung und der Rotorinduktivität Lq in Pollückenrichtung verschwindet. Geberlose Rotorwinkelbestimmungsverfahren, welche auf diese Induktivitätsdifferenz angewiesen sind, um aussagekräftige Messwerte zu erhalten, können bei derartigen Arbeitspunkten an Relevanz verlieren.
  • Ein beispielhaftes solcher Rotorwinkelbestimmungsverfahren sei im Folgenden illustriert. Zur Bestimmung des Winkelfehlers Δφ wird das folgende Testsignal [ud, uq] an die Synchronmaschine 5b angelegt: [ud, uq] = uc·cos(ωct)·[cos(Δφ), sin(Δφ)]
  • Da das elektrische Verhalten der Synchronmaschine 5b für hohe Frequenzen als rein induktive Last beschrieben werden kann, ergibt sich als Systemantwort auf das Testsignal [ud, uq] folgender Stromvektor [id, iq] [id, iq] = (ucc)·sin(ωct)·[cos(Δφ)/Ld, sin(Δφ)/Lq]
  • Um aus diesen Strömen per Signalverarbeitung eine Winkelinformation zu extrahieren, wird der Zusammenhang zwischen den gemessenen Phasenströmen im statorfesten Koordinatensystem der Synchronmaschine 5b und den Strömen im rotorfesten Koordinatensystem benötigt. In Abhängigkeit von der geschätzten d-Richtung der Synchronmaschine 5b ergibt sich für die Ströme im rotorfesten Koordinatensystem: [id, iq] = uc/(4ωcLqLd)·[(Lq – Ld)(sin(ωct – 2Δφ) + sin(ωct + 2Δφ)) + 2(Lq + Ld)(sin(2ωct), (Lq – Ld)(sin(ωct – 2Δφ) + sin(ωct + 2Δφ)) + 2(Lq + Ld)(sin(2ωct)]
  • Um die gewünschten Terme mit der Winkeldifferenzinformation Δφ aus den gemessenen Werten der Ströme [id, iq] im rotorfesten Koordinatensystem zu extrahieren, kann nach einer Hochpassfilterung, einer Konvolution mit der Arbeitsfrequenz ωc, und einer darauffolgenden Tiefpassfilterung derjenige Term erhalten werden, welcher die Winkeldifferenzinformation Δφ enthält: [id, iq] = uc/(4ωcLqLd)·[(Lq – Ld)(sin(2Δφ)), (Lq – Ld)(cos(2Δφ) + (Lq + Ld)]
  • Wie sich leicht erkennen lässt, hängt die Aussagekraft der gemessenen Phasenströme im Hinblick auf die Winkeldifferenzinformation Δφ von der Differenz der Induktivitäten Lq und Ld ab – je geringer die Differenz, desto ungenauer die Bestimmung der Winkeldifferenz Δφ.
  • Um diesem Phänomen entgegenzuwirken, ist es vorteilhaft, die Arbeitspunkte der Synchronmaschine 5b möglichst so zu wählen, dass die Differenz der Induktivitäten Lq und Ld möglichst groß bleibt, das heißt, dass die Synchronmaschine 5b nach Möglichkeit auch bei hohen Drehmomenten nicht in Sättigung betrieben wird.
  • 2 zeigt hierzu eine schematische Darstellung eines Kennfelds K für die Abhängigkeit der Induktivitätsdifferenz zwischen q- und d-Induktivität einer Synchronmaschine von den Nutzbestromungwerten Iq und Id.
  • Zum Einstellen des Arbeitspunkts der Synchronmaschine 5b kann die Steuereinrichtung 9 in 1 beispielsweise eine Vielzahl von Testspannungspulsen erzeugen, diese mit jeweils über eine volle Rotorumdrehung des Rotors der Synchronmaschine 5b verteilten unterschiedlichen Phasenversätzen zur Rotorlage des Rotors der Synchronmaschine 5b auf die Ansteuerspannungen Udq aufmodulieren, die Phasenströme Ip der Synchronmaschine 5b als Systemantwort auf die Vielzahl der eingespeisten Testspannungspulse mithilfe des Winkelschätzalgorithmus 7 messen, und die Amplitude des Phasenstromverlaufs der gemessenen Phasenströme Ip in Abhängigkeit der eingestellten Phasenversätze ermitteln.
  • Diese Schritte werden jeweils für eine Vielzahl von unterschiedlichen 2-Tupeln aus im rotorfesten d, q-Koordinatensystem der Synchronmaschine 5b eingestellten Nutzbestromungswerten Id und Iq durch die Steuereinrichtung 9 iteriert. Das Kennfeld K wird dann durch die zweidimensionale Auftragung der 2-Tupel der Nutzbestromungswerte Id und Iq generiert. In 2 ist beispielhaft eine Normierung auf die Gesamtamplitude der Nutzbestromung vorgenommen worden, wobei jedoch eine Normierung nicht zwingend vorgenommen werden muss.
  • In diesem Kennfeld K können dann die ermittelten Amplituden der Systemantworten, das heißt die Differenzen der Induktivitäten Lq und Ld dargestellt werden, beispielsweise als Isohypsen ΔL1, ΔL2, ΔL3 und ΔL4. Beispielsweise zeigt die Isohypse ΔL1 eine geringe Induktivitätsdifferenz, und die Isohypsen ΔL2 bis ΔL4 jeweils stetig ansteigende Induktivitätsdifferenzen.
  • Generell können die Isohypsen ΔL1, ΔL2, ΔL3 und ΔL4 mit jedem beliebigen geberlosen Rotorwinkelbestimmungsverfahren generiert werden, indem jeweils ein Differenzwert zwischen der Rotorinduktivität Ld der Synchronmaschine 5b in Polachsenrichtung und der Rotorinduktivität Lq der Synchronmaschine 5b in Pollückenrichtung für eine Vielzahl von unterschiedlichen 2-Tupeln aus im d, q-Koordinatensystem der Synchronmaschine 5b eingestellten Nutzbestromungswerten Id und Iq ermittelt wird. Diese Differenzwerte dienen dann als Grundlage für die Auftragung der Isohypsen ΔL1, ΔL2, ΔL3 und ΔL4 im Kennfeld K.
  • Für jeweils vorgegebene Drehmomente können verschiedene Subkombinationen aus 2-Tupeln der Nutzbestromungswerte Id und Iq ausgewählt werden, wie durch die jeweiligen gepunkteten Linien T1, T2 und T3 angedeutet. Für die drehmomentabhängigen Arbeitspunkte ist üblicherweise eine Arbeitspunkttrajektorie A1 vorgesehen, welche gemäß dem MTPA-Verfahren („maximum torque per ampere“, maximales Drehmoment pro Ampere) festgelegt wird. Entlang dieser Arbeitspunkttrajektorie A1 kann der optimale Wirkungsgrad der Synchronmaschine 5b erreicht werden.
  • Wie sich allerdings aus dem Verlauf der Arbeitspunkttrajektorie A1 ergibt, verläuft diese in großen Teilen durch Arbeitspunktbereiche mit geringer Induktivitätsdifferenz, beispielsweise innerhalb des mit ΔL1 gekennzeichneten Bereichs. Um nun die Zuverlässigkeit und Signifikanz von Rotorwinkelbestimmungsverfahren, die auf dieser Induktivitätsdifferenz beruhen, zu verbessern, kann eine andere drehmomentabhängige Arbeitspunkttrajektorie A2 für die 2-Tupel der Nutzbestromungswerte Id und Iq festgelegt werden, welche die Höhe der ermittelten Amplituden berücksichtigt. Dabei ist ein gewisser Tradeoff zwischen Wirkungsgrad der Synchronmaschine 5b und ausreichend hoher Induktivitätsdifferenz in Kauf zu nehmen.
  • Beispielsweise kann die Arbeitspunkttrajektorie A2 unter gleichzeitiger Berücksichtigung des Wirkungsgrads der Synchronmaschine 5b erfolgen, so dass die ermittelten Differenzwerte entlang der Arbeitspunkttrajektorie A2 möglichst gering sind und der Wirkungsgrad der Synchronmaschine 5b entlang der Arbeitspunkttrajektorie A2 einen vorbestimmbaren Schwellwert nicht unterschreitet. Ferner kann darauf geachtet werden, dass die Gesamtamplitude der Nutzbestromungswerte Id und Iq entlang der Arbeitspunkttrajektorie A2 möglichst gering ist. Die Arbeitspunkttrajektorie A2 ist in 2 dabei nur beispielhafter Natur und es ist klar, dass viele andere Arbeitspunkttrajektorien ebenso gewählt werden können, je nach Anforderungen an die Regelung der Synchronmaschine 5b. Beispielsweise kann mit der festzulegenden Arbeitspunkttrajektorie die Isohypse ΔL2 im Kennfeld K verfolgt werden.
  • 3 zeigt eine schematische Darstellung eines Verfahrens 20 zum Einstellen des Arbeitspunkts einer Synchronmaschine, insbesondere einer Synchronmaschine 5b wie in 1 beispielhaft dargestellt. Dabei kann das Verfahren 20 auf die im Zusammenhang mit den 1 und 2 erläuterten Zusammenhänge zurückgreifen.
  • Zunächst erfolgt in einem generell mit Bezugszeichen 25 bezeichneten Schritt 25 ein Ermitteln jeweils eines Differenzwertes zwischen der Rotorinduktivität Ld der Synchronmaschine in Polachsenrichtung und der Rotorinduktivität Lq der Synchronmaschine in Pollückenrichtung für eine Vielzahl von unterschiedlichen 2-Tupeln aus im rotorfesten d, q-Koordinatensystem der Synchronmaschine eingestellten Nutzbestromungswerten.
  • Dies kann beispielsweise dadurch erreicht werden, dass in einem ersten Schritt 21 ein Erzeugen einer Vielzahl von Testspannungspulsen mit einer Arbeitsfrequenz erfolgt. In einem Schritt 22 kann dann ein Einspeisen der Vielzahl von Testspannungspulsen mit jeweils über eine volle Rotorumdrehung des Rotors der Synchronmaschine verteilten unterschiedlichen Phasenversätzen zur Rotorlage des Rotors der Synchronmaschine erfolgen. Danach kann in Schritt 23 ein Messen der Phasenströme der Synchronmaschine als Systemantwort auf die Vielzahl der eingespeisten Testspannungspulse erfolgen. Schließlich kann in einem Schritt 24 die Amplitude des Phasenstromverlaufs der gemessenen Phasenströme in Abhängigkeit der eingestellten Phasenversätze ermittelt werden.
  • Die Schritte 21 bis 24 können dann jeweils für eine Vielzahl von unterschiedlichen 2-Tupeln aus im rotorfesten d, q-Koordinatensystem der Synchronmaschine eingestellten Nutzbestromungswerten iteriert werden.
  • Unabhängig davon, wie die Differenzwerte zwischen der Rotorinduktivität Ld der Synchronmaschine in Polachsenrichtung und der Rotorinduktivität Lq der Synchronmaschine in Pollückenrichtung in Schritt 25 bestimmt werden, wird in einem Schritt 26 ein Kennfeld K für die ermittelten Differenzwerte in Abhängigkeit von den 2-Tupeln der Nutzbestromungswerten bestimmt. Danach kann in Schritt 27 ein Festlegen einer drehmomentabhängigen Arbeitspunkttrajektorie für die 2-Tupel der Nutzbestromungswerte unter Berücksichtigung der Höhe der ermittelten Amplituden entlang der festzulegenden Arbeitspunkttrajektorie erfolgen. Diese festgelegte drehmomentabhängige Arbeitspunkttrajektorie kann dann in Schritt 28 dazu genutzt werden, die Synchronmaschine anzusteuern.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2009/136381 A2 [0004]
    • DE 102006046638 A1 [0004]
  • Zitierte Nicht-Patentliteratur
    • Linke, M. et al.: „Sensorless speed and position control of synchronous machines using alternating carrier injection“, Electric Machines and Drives Conference, IEMDC 2003, IEEE International [0004]

Claims (7)

  1. Verfahren (20) zum Betreiben einer Synchronmaschine (5b), mit den Schritten: Ermitteln (25) jeweils eines Differenzwertes zwischen der Rotorinduktivität Ld der Synchronmaschine (5b) in Polachsenrichtung und der Rotorinduktivität Lq der Synchronmaschine (5b) in Pollückenrichtung für eine Vielzahl von unterschiedlichen 2-Tupeln aus im rotorfesten Koordinatensystem (d, q) der Synchronmaschine (5b) eingestellten Nutzbestromungswerten (Id; Iq); Erstellen (26) eines Kennfelds (K) für die ermittelten Differenzwerte (ΔL1; ΔL2; ΔL3; ΔL4) in Abhängigkeit von den 2-Tupeln der Nutzbestromungswerten (Id; Iq); Festlegen (27) einer drehmomentabhängigen Arbeitspunkttrajektorie (A2) für die 2-Tupel der Nutzbestromungswerte (Id; Iq) unter Berücksichtigung der Höhe der ermittelten Differenzwerte entlang der festzulegenden Arbeitspunkttrajektorie (A2); und Betreiben (28) der Synchronmaschine (5b) gemäß der festgelegten Arbeitspunkttrajektorie (A2).
  2. Verfahren (20) nach Anspruch 1, wobei das Ermitteln (25) jeweils eines Differenzwertes zwischen der Rotorinduktivität Ld der Synchronmaschine (5b) in Polachsenrichtung und der Rotorinduktivität Lq der Synchronmaschine (5b) in Pollückenrichtung die folgenden Schritte umfasst: Erzeugen (21) einer Vielzahl von Testspannungspulsen mit einer Arbeitsfrequenz; Einspeisen (22) der Vielzahl von Testspannungspulsen mit jeweils über eine volle Rotorumdrehung des Rotors der Synchronmaschine (5b) verteilten unterschiedlichen Phasenversätzen zur Rotorlage des Rotors der Synchronmaschine (5b); Messen (23) der Phasenströme der Synchronmaschine (5b) als Systemantwort auf die Vielzahl der eingespeisten Testspannungspulse; Ermitteln (24) der Amplitude des Phasenstromverlaufs der gemessenen Phasenströme in Abhängigkeit der eingestellten Phasenversätze zum Ermitteln des Differenzwertes; und Iterieren der Schritte des Erzeugens (21), des Einspeisens (22), des Messens (23) und des Ermittelns (24) jeweils für eine Vielzahl von unterschiedlichen 2-Tupeln aus im rotorfesten Koordinatensystem (d, q) der Synchronmaschine (5b) eingestellten Nutzbestromungswerten (Id; Iq).
  3. Verfahren (20) nach einem der Ansprüche 1 und 2, wobei das Festlegen (27) der Arbeitspunkttrajektorie (A2) unter gleichzeitiger Berücksichtigung des Wirkungsgrads der Synchronmaschine (5b) erfolgt.
  4. Verfahren (20) nach Anspruch 3, wobei das Festlegen (27) der Arbeitspunkttrajektorie (A2) derart erfolgt, dass die ermittelten Differenzwerte entlang der Arbeitspunkttrajektorie (A2) möglichst gering sind und der Wirkungsgrad der Synchronmaschine (5b) entlang der Arbeitspunkttrajektorie (A2) einen vorbestimmbaren Schwellwert nicht unterschreitet.
  5. Verfahren (20) nach einem der Ansprüche 1 bis 4, wobei das Festlegen (27) der Arbeitspunkttrajektorie (A2) derart erfolgt, dass die Gesamtamplitude der Nutzbestromungswerte (Id; Iq) entlang der Arbeitspunkttrajektorie (A2) möglichst gering ist.
  6. Regelungssystem (10) für eine Synchronmaschine (5b), mit: einer Regelungseinrichtung (2), welche dazu ausgelegt ist, eine feldorientierte Regelung für die Synchronmaschine (5b) durchzuführen; und einer Steuereinrichtung (9), welche dazu ausgelegt ist, eine Arbeitspunkttrajektorie (A2) für die feldorientierte Regelung der Regelungseinrichtung (2) gemäß dem Verfahren nach einem der Ansprüche 1 bis 5 festzulegen.
  7. Regelungssystem (10) nach Anspruch 6, weiterhin mit: einer Synchronmaschine (5b), welche dazu ausgelegt ist, durch die Regelungseinrichtung (2) gemäß der festgelegten Arbeitspunkttrajektorie (A2) der Steuereinrichtung (9) betrieben zu werden.
DE102013204194.2A 2013-03-12 2013-03-12 Regelungssystem für eine Synchronmaschine und Verfahren zum Betreiben einer Synchronmaschine Ceased DE102013204194A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102013204194.2A DE102013204194A1 (de) 2013-03-12 2013-03-12 Regelungssystem für eine Synchronmaschine und Verfahren zum Betreiben einer Synchronmaschine
US14/774,860 US9444375B2 (en) 2013-03-12 2014-02-14 Control system for a synchronous machine and method for operating a synchronous machine
EP14704365.7A EP2973988B1 (de) 2013-03-12 2014-02-14 Regelungssystem für eine synchronmaschine und verfahren zum betreiben einer synchronmaschine
PCT/EP2014/052931 WO2014139754A2 (de) 2013-03-12 2014-02-14 Regelungssystem für eine synchronmaschine und verfahren zum betreiben einer synchronmaschine
CN201480014241.XA CN105191114B (zh) 2013-03-12 2014-02-14 用于同步电机的调节***以及用于运行同步电机的方法
KR1020157025000A KR102207375B1 (ko) 2013-03-12 2014-02-14 동기기용 조절 시스템 및 동기기의 작동 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013204194.2A DE102013204194A1 (de) 2013-03-12 2013-03-12 Regelungssystem für eine Synchronmaschine und Verfahren zum Betreiben einer Synchronmaschine

Publications (1)

Publication Number Publication Date
DE102013204194A1 true DE102013204194A1 (de) 2014-09-18

Family

ID=50101911

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013204194.2A Ceased DE102013204194A1 (de) 2013-03-12 2013-03-12 Regelungssystem für eine Synchronmaschine und Verfahren zum Betreiben einer Synchronmaschine

Country Status (6)

Country Link
US (1) US9444375B2 (de)
EP (1) EP2973988B1 (de)
KR (1) KR102207375B1 (de)
CN (1) CN105191114B (de)
DE (1) DE102013204194A1 (de)
WO (1) WO2014139754A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016202625A1 (de) * 2015-06-18 2016-12-22 Robert Bosch Gmbh Steuerschaltung und verfahren zum plausibilisieren eines rotorlagewinkels
DE102016220891A1 (de) 2016-10-24 2018-04-26 Robert Bosch Gmbh Regelsystem für eine Synchronmaschine und Verfahren zum Betreiben einer Synchronmaschine
DE102018222439A1 (de) 2018-12-20 2020-06-25 Robert Bosch Gmbh Vorrichtung und Verfahren zur Ermittlung einer Rotorposition und elektrisches Antriebssystem
DE102021006057A1 (de) 2021-01-26 2022-07-28 Sew-Eurodrive Gmbh & Co Kg Verfahren zum Bestimmen von unterschiedlichen Arbeitspunkten eines Elektromotors zugeordneten Werte einer physikalischen Größe des Elektromotors

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101855764B1 (ko) * 2016-04-08 2018-05-09 현대자동차 주식회사 차량용 모터 제어 장치 및 방법
US9831808B1 (en) * 2016-07-20 2017-11-28 Semiconductor Components Industries, Llc Rotor position sensing system for three phase motors and related methods
US9876452B1 (en) 2016-12-16 2018-01-23 Semiconductor Components Industries, Llc Rotor position sensing system for permanent magnet synchronous motors and related methods
KR102578380B1 (ko) 2020-12-17 2023-09-13 주식회사 포스코 용강량 예측 장치 및 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006046638A1 (de) 2005-12-15 2007-06-21 Strothmann, Rolf, Dr.rer.nat. Vorrichtung und Verfahren zur Ermittlung der Drehlage des Rotors einer elektrischen Maschine
WO2009136381A2 (en) 2008-05-08 2009-11-12 Trw Automotive Us Llc Position sensorless motor control

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10037972B4 (de) * 1999-08-05 2005-09-15 Sharp K.K. Vorrichtung und Verfahren zur Elektromotorsteuerung
WO2009024835A1 (en) * 2007-08-20 2009-02-26 Freescale Semiconductor, Inc. Motor controller for determining a position of a rotor of an ac motor, ac motor system, and method of determining a position of a rotor of an ac motor
US6492788B1 (en) 2000-11-10 2002-12-10 Otis Elevator Company Method and apparatus for encoderless operation of a permanent magnet synchronous motor in an elevator
US8217605B2 (en) * 2000-11-10 2012-07-10 Freescale Semiconductor, Inc. Motor controller for determining a position of a rotor of an AC motor, AC motor system, and method of determining a position of a rotor of an AC motor
US7161324B1 (en) * 2003-07-16 2007-01-09 Mitsubishi Denki Kabushiki Kaisha Device for estimating pole position of synchronous motor
ITMO20040218A1 (it) * 2004-08-31 2004-11-30 C A R E R Carrellificio Elettronico Metodo per il controllo di un motore sincrono a rotare avvolto.
KR100680778B1 (ko) * 2004-11-09 2007-02-08 현대자동차주식회사 매입형 영구자석 동기 전동기의 최적 전류 맵 추출 방법
JP4716118B2 (ja) * 2006-03-29 2011-07-06 株式会社ジェイテクト モータ制御装置
KR101469993B1 (ko) * 2008-06-16 2014-12-05 현대자동차주식회사 전기자동차의 구동모터 제어방법
KR101005432B1 (ko) * 2008-08-29 2011-01-05 주식회사 동아일렉콤 토크 제어용 pⅰ제어기를 이용하여 유도전동기를 모델링하는 방법
WO2011077829A1 (ja) * 2009-12-24 2011-06-30 株式会社安川電機 モータ制御装置及びその磁極位置検出方法
KR101761740B1 (ko) * 2011-02-01 2017-07-26 삼성전자 주식회사 영구자석 동기모터의 인덕턴스 추정 장치 및 방법
KR101562419B1 (ko) * 2011-07-05 2015-10-22 엘에스산전 주식회사 매입형 영구자석 동기 전동기의 구동장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006046638A1 (de) 2005-12-15 2007-06-21 Strothmann, Rolf, Dr.rer.nat. Vorrichtung und Verfahren zur Ermittlung der Drehlage des Rotors einer elektrischen Maschine
WO2009136381A2 (en) 2008-05-08 2009-11-12 Trw Automotive Us Llc Position sensorless motor control

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Bianchi, N.; Fornasiero, E.; Bolognani, S.: "Effect of stator and rotor saturation on sensorless rotor position detection" in Energy Conversion Congress and Exposition (ECCE), 2011 IEEE , pp.1528,1535, 17-22 Sept. 2011 *
Linke, M. et al.: "Sensorless speed and position control of synchronous machines using alternating carrier injection", Electric Machines and Drives Conference, IEMDC 2003, IEEE International
Linke, M.; Kennel, R.; Holtz, J.: "Sensorless speed and position control of synchronous machines using alternating carrier injection" in Electric Machines and Drives Conference, 2003. IEMDC'03. IEEE International , vol.2, pp.1211,1217, 1-4 June 2003 *
Zhu, Z.Q.; Gong, L.M.: "Investigation of Effectiveness of Sensorless Operation in Carrier-Signal-Injection-Based Sensorless-Control Methods" in Industrial Electronics, IEEE Transac-tions on , vol.58, no.8, pp.3431,3439, Aug. 2011 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016202625A1 (de) * 2015-06-18 2016-12-22 Robert Bosch Gmbh Steuerschaltung und verfahren zum plausibilisieren eines rotorlagewinkels
CN107709934A (zh) * 2015-06-18 2018-02-16 罗伯特·博世有限公司 用于对转子位置角度进行核实的控制线路和方法
EP3311119B1 (de) 2015-06-18 2019-10-16 Robert Bosch GmbH Steuerschaltung und verfahren zum plausibilisieren eines rotorlagewinkels
US10775209B2 (en) 2015-06-18 2020-09-15 Robert Bosch Gmbh Control circuit and method for checking the plausibility of a rotor position angle
DE102016220891A1 (de) 2016-10-24 2018-04-26 Robert Bosch Gmbh Regelsystem für eine Synchronmaschine und Verfahren zum Betreiben einer Synchronmaschine
WO2018077579A1 (de) 2016-10-24 2018-05-03 Robert Bosch Gmbh Regelsystem für eine synchronmaschine und verfahren zum betreiben einer synchronmaschine
US10804832B2 (en) 2016-10-24 2020-10-13 Robert Bosch Gmbh Control system for a synchronous machine and method for operating a synchronous machine
DE102018222439A1 (de) 2018-12-20 2020-06-25 Robert Bosch Gmbh Vorrichtung und Verfahren zur Ermittlung einer Rotorposition und elektrisches Antriebssystem
WO2020126553A1 (de) 2018-12-20 2020-06-25 Robert Bosch Gmbh Vorrichtung und verfahren zur ermittlung einer rotorposition und elektrisches antriebssystem
US11451176B2 (en) 2018-12-20 2022-09-20 Robert Bosch Gmbh Apparatus and method for ascertaining a rotor position, and electric drive system
DE102021006057A1 (de) 2021-01-26 2022-07-28 Sew-Eurodrive Gmbh & Co Kg Verfahren zum Bestimmen von unterschiedlichen Arbeitspunkten eines Elektromotors zugeordneten Werte einer physikalischen Größe des Elektromotors
WO2022161679A1 (de) 2021-01-26 2022-08-04 Sew-Eurodrive Gmbh & Co. Kg Verfahren zum bestimmen von unterschiedlichen arbeitspunkten eines elektromotors zugeordneten werte einer physikalischen grösse des elektromotors

Also Published As

Publication number Publication date
WO2014139754A3 (de) 2014-11-20
EP2973988A2 (de) 2016-01-20
EP2973988B1 (de) 2018-12-12
KR102207375B1 (ko) 2021-01-26
US9444375B2 (en) 2016-09-13
CN105191114B (zh) 2019-03-05
CN105191114A (zh) 2015-12-23
WO2014139754A2 (de) 2014-09-18
US20160028337A1 (en) 2016-01-28
KR20150127094A (ko) 2015-11-16

Similar Documents

Publication Publication Date Title
EP2973988B1 (de) Regelungssystem für eine synchronmaschine und verfahren zum betreiben einer synchronmaschine
EP3332476B1 (de) Verfahren zur identifikation der magnetischen anisotropie einer elektrischen drehfeldmaschine
DE102009051923A1 (de) Steuerungseinrichtung zum Berechnen einer elektrischen Leistungsaufnahme einer Industriemaschine
EP3288179B1 (de) Verfahren zur sensorlosen bestimmung der orientierung des rotors eines eisenlosen pmsm motors
DE102012215960A1 (de) Steuereinrichtung und Verfahren zum Ermitteln des Rotorwinkels einer Synchronmaschine
DE102012215962A1 (de) Steuereinrichtung und Verfahren zum Ermitteln des Rotorwinkels einer Synchronmaschine
DE102013019852B4 (de) Detektor für eine Magnetpolposition in einem Synchronmotor
WO2013164092A2 (de) Verfahren und vorrichtung zur positionsbestimmung eines bürstenlosen elektroantriebs
DE102008025408A1 (de) Steuer- oder Regelverfahren für einen Umrichter
DE102012222311A1 (de) Steuereinrichtung und Verfahren zum Ermitteln des Rotorwinkels einer Synchronmaschine
DE102013224243A1 (de) Verfahren und Vorrichtung zum Bestimmen einer Stellungsangabe eines Läufers einer elektrischen Maschine
DE102013222075A1 (de) Vorrichtung und Verfahren zum Initialisieren eines Regelkreises für einen Strom zum Betrieb einer Synchronmaschine
EP1856792B2 (de) Rotorlagendetektion
DE102012222315A1 (de) Steuereinrichtung und Verfahren zum Ermitteln des Rotorwinkels einer Synchronmaschine
EP2911293B1 (de) Drehfeldmaschine und Verfahren zum Bestimmen der Winkelposition ihres Rotors
DE102017012027A1 (de) Verfahren zur drehgeberlosen Rotorlagebestimmung einer Drehfeldmaschine und Vorrichtung zur drehgeberlosen Regelung eines Drehstrommotors
EP3724476B1 (de) Verfahren und vorrichtung zur bestimmung einer drehwinkelposition einer kurbelwelle einer brennkraftmaschine
DE102013204382A1 (de) Steuereinrichtung und Verfahren zum Ansteuern einer Drehfeldmaschine
WO2018072778A1 (de) Verfahren zur korrektur von messabweichungen eines sinus-cosinus-rotationssensors
EP3619805B1 (de) Verfahren und vorrichtung zum bestimmen des lagewinkels eines rotors einer elektrischen synchronmaschine
EP3529890B1 (de) Regelsystem für eine synchronmaschine und verfahren zum betreiben einer synchronmaschine
DE102014014933A1 (de) Resolver calibration for permanent magnet synchronous motor
EP3297153B1 (de) Verfahren und vorrichtung zum bestimmen einer läuferlage eines läufers einer elektronisch kommutierten elektrischen maschine
DE102017127410A1 (de) Verfahren und Schaltungsanordnung zur Ermittlung der Stellung eines Rotors eines Elektromotors
DE102009029396A1 (de) Verfahren zum Betreiben einer elektrischen Maschine sowie elektrische Maschine

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R002 Refusal decision in examination/registration proceedings
R409 Internal rectification of the legal status completed
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final