CN203274132U - Real-time monitoring device for evaporative cooling air conditioning unit - Google Patents
Real-time monitoring device for evaporative cooling air conditioning unit Download PDFInfo
- Publication number
- CN203274132U CN203274132U CN 201320217632 CN201320217632U CN203274132U CN 203274132 U CN203274132 U CN 203274132U CN 201320217632 CN201320217632 CN 201320217632 CN 201320217632 U CN201320217632 U CN 201320217632U CN 203274132 U CN203274132 U CN 203274132U
- Authority
- CN
- China
- Prior art keywords
- air
- evaporative cooling
- cooling air
- conditioning unit
- real
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004378 air conditioning Methods 0.000 title claims abstract description 63
- 238000001816 cooling Methods 0.000 title claims abstract description 60
- 238000012806 monitoring device Methods 0.000 title claims abstract description 23
- 230000003068 static effect Effects 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 description 16
- 238000009530 blood pressure measurement Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000011217 control strategy Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
本实用新型公开的一种蒸发冷却空调机组用的实时监控装置,包括有上位PC机,上位PC机的串口通过电缆与可编程控制器的RS-485接口连接,可编程控制器通过屏蔽双绞线网与蒸发冷却空调机组连接。本实用新型的蒸发冷却空调机组用的实时监控装置能够将室内空气参数控制在允许波动的范围之内,使空调达到节能高效的工作状态,同时可对空调各设备状态及各个空气参数实时监控。
The utility model discloses a real-time monitoring device for evaporative cooling air-conditioning units, which includes an upper PC, the serial port of the upper PC is connected to the RS-485 interface of the programmable controller through a cable, and the programmable controller is connected through a shielded twisted pair The wire mesh is connected to the evaporative cooling air conditioning unit. The real-time monitoring device for the evaporative cooling air-conditioning unit of the utility model can control the indoor air parameters within the allowable fluctuation range, so that the air-conditioning can achieve an energy-saving and efficient working state, and can monitor the status of each air-conditioning equipment and each air parameter in real time.
Description
技术领域technical field
本实用新型属于空调控制设备技术领域,涉及一种蒸发冷却空调机组用的实时监控装置。The utility model belongs to the technical field of air-conditioning control equipment, and relates to a real-time monitoring device for evaporative cooling air-conditioning units.
背景技术Background technique
蒸发冷却技术是以水作为制冷剂来代替CFCs,可大大减少温室气体的排放和对大气的污染;蒸发冷却空调***的设备中除了所需风机和水泵动力外,无需其他的输入能量,是一种环保高效且经济的冷却方式。蒸发冷却技术不仅可应用于居住建筑和公共建筑中以提高生活或工作环境的舒适性,还可应用于传统的工业领域中如:纺织厂、面粉厂、铸造车间、动力发电厂及其他热操作等工业建筑中,能提高操作人员工作环境的舒适性。The evaporative cooling technology uses water as the refrigerant instead of CFCs, which can greatly reduce the emission of greenhouse gases and the pollution of the atmosphere; the equipment of the evaporative cooling air-conditioning system does not require other input energy except for the required fan and water pump power. An environmentally friendly, efficient and economical cooling method. Evaporative cooling technology can be applied not only in residential buildings and public buildings to improve the comfort of living or working environment, but also in traditional industrial fields such as: textile mills, flour mills, casting workshops, power plants and other thermal operations In industrial buildings, etc., it can improve the comfort of the operator's working environment.
在实际运行中,室外气象条件的变化、空调房间人员的出入、照明装置的启闭、发热设备工作状态的变化会同时发生,这样会引起空调负荷的变化。蒸发冷却空调***需要配备自动控制装置来保证室内空气参数处于其允许波动的范围之内,避免不必要的能量浪费。蒸发冷却空调***中设置监测与控制***就显得尤为重要,其中监测与控制***中包括有参数监测、参数与设备状态显示、自动调节与控制、工况自动转换、设备联锁与自动保护、能量计算以及中央监控与管理。据统计,采用较为完善的监测与控制***后,全年空调***可节省大约20%的能耗。In actual operation, changes in outdoor meteorological conditions, entry and exit of personnel in air-conditioned rooms, opening and closing of lighting devices, and changes in the working status of heating equipment will occur simultaneously, which will cause changes in air-conditioning loads. The evaporative cooling air-conditioning system needs to be equipped with an automatic control device to ensure that the indoor air parameters are within its allowable fluctuation range and avoid unnecessary waste of energy. It is particularly important to set up a monitoring and control system in an evaporative cooling air-conditioning system. The monitoring and control system includes parameter monitoring, parameter and equipment status display, automatic adjustment and control, automatic conversion of working conditions, equipment interlocking and automatic protection, energy computing and central monitoring and management. According to statistics, after adopting a relatively complete monitoring and control system, the annual air conditioning system can save about 20% of energy consumption.
目前空调的控制***大多采用带监控界面的楼宇自控***,但却存在价格成本高,***大且复杂的缺陷。楼宇自控***适合整栋楼宇中所有空调及冷站的集中监控,但并不适合单台空调的应用。可编程逻辑控制器PLC的价格低廉,且应用灵活,将可编程逻辑控制器PLC和组态王人机界面控制软件结合用于空调机组的控制,可实现对单台空调机组的实时监控。At present, most air-conditioning control systems use building automation systems with monitoring interfaces, but there are defects such as high price and cost, large and complex systems. The building automation system is suitable for the centralized monitoring of all air conditioners and cold stations in the whole building, but it is not suitable for the application of a single air conditioner. Programmable logic controller PLC is cheap and flexible in application. Combining programmable logic controller PLC and configuration king man-machine interface control software for the control of air-conditioning units can realize real-time monitoring of a single air-conditioning unit.
实用新型内容Utility model content
本实用新型的目的在于提供一种蒸发冷却空调机组用的实时监控装置,该实时监控装置能够将室内空气参数控制在允许波动的范围之内,使空调达到节能高效的工作状态,同时可对空调各设备状态及各个空气参数实时监控。The purpose of this utility model is to provide a real-time monitoring device for evaporative cooling air-conditioning units. Real-time monitoring of each equipment status and each air parameter.
本实用新型所采用的技术方案是,一种蒸发冷却空调机组用的实时监控装置,包括有上位PC机,上位PC机的串口通过电缆线与可编程控制器的RS-485接口连接,所述可编程控制器通过屏蔽双绞线网与蒸发冷却空调机组连接。The technical solution adopted by the utility model is, a real-time monitoring device for evaporative cooling air-conditioning units, including an upper PC, the serial port of the upper PC is connected with the RS-485 interface of the programmable controller through a cable, and the The programmable controller is connected with the evaporative cooling air conditioning unit through the shielded twisted pair network.
本实用新型的特点还在于,The utility model is also characterized in that,
发冷却空调机组,按新风进入方向包括有通过新风管依次连接的新风口、新风阀、过滤网、热管间接蒸发冷却器、直接蒸发冷却器、加热装置及送风机,热管间接蒸发冷却器通过二次送风管连接有二次风机,加热装置内的加热器通过导线与电机连接,送风机通过送风管与房间连通,房间还连接有排风管,排风管上分别设置有回风机和排风阀,排风管与新风管之间通过回风管连接,回风管上设置有回风阀。According to the direction of fresh air entering, the air-conditioning unit includes fresh air outlet, fresh air valve, filter screen, heat pipe indirect evaporative cooler, direct evaporative cooler, heating device and blower, and heat pipe indirect evaporative cooler through two The secondary air supply pipe is connected with a secondary fan, the heater in the heating device is connected with the motor through a wire, the air supply fan is connected with the room through the air supply pipe, and the room is also connected with an exhaust pipe. The air valve, the air exhaust pipe and the fresh air pipe are connected through a return air pipe, and a return air valve is arranged on the return air pipe.
可编程控制器采用S7200系列PLC型号为CPU224的可编程控制器,包括有室外温度传感器、压差开关、室内温度传感器、室内温度控制器、变频器a、静压传感器、湿度传感器、变频器b、送风温度传感器、送风温度控制器、变频器c。The programmable controller adopts S7200 series PLC model CPU224 programmable controller, including outdoor temperature sensor, differential pressure switch, indoor temperature sensor, indoor temperature controller, frequency converter a, static pressure sensor, humidity sensor, frequency converter b , Air supply temperature sensor, air supply temperature controller, inverter c.
变频器a、变频器b及变频器c均为通用变频器。Frequency converter a, frequency converter b and frequency converter c are general frequency converters.
可编程控制器与蒸发冷却空调机组之间的屏蔽双绞线网结构为:The shielded twisted pair network structure between the programmable controller and the evaporative cooling air conditioning unit is:
可程控制器内的室外温度传感器通过屏蔽双绞线与所述蒸发冷却空调机组的新风口连接,可编程控制器内的压差开关通过屏蔽双绞线连接于所述蒸发冷却空调机组内过滤网的两端,蒸发冷却空调机组内的回风管通过屏蔽双绞线依次与室内温度传感器、室内温度控制器、变频器a及送风机连接,蒸发冷却空调机组内的送风管通过屏蔽双绞线依次与可编程控制器内的送风温度传感器、送风温度控制器连接,送风温度控制器通过屏蔽双绞线与电机连接,送风温度控制器还通过屏蔽双绞线依次与变频器c、二次风机连接,蒸发冷却空调机组内的回风机通过屏蔽双绞线依次与变频器b、静压传感器连接。The outdoor temperature sensor in the programmable controller is connected to the fresh air outlet of the evaporative cooling air conditioning unit through a shielded twisted pair, and the differential pressure switch in the programmable controller is connected to the filter in the evaporative cooling air conditioning unit through a shielded twisted pair. At both ends of the network, the return air pipe in the evaporative cooling air-conditioning unit is connected to the indoor temperature sensor, indoor temperature controller, frequency converter a and blower in turn through the shielded twisted pair, and the air supply pipe in the evaporative cooling air-conditioning unit is connected through the shielded twisted pair The wires are connected to the air supply temperature sensor and the air supply temperature controller in the programmable controller in turn. The air supply temperature controller is connected to the motor through a shielded twisted pair, and the air supply temperature controller is also connected to the inverter in turn through a shielded twisted pair. c. The connection of the secondary fan. The return fan in the evaporative cooling air conditioner unit is connected to the frequency converter b and the static pressure sensor in turn through the shielded twisted pair.
静压传感器包括有两个测压点,一个测压点分别设置于房间内部,另一个测压点设置于房间外部;室内屋顶处还设置有湿度传感器。The static pressure sensor includes two pressure measuring points, one pressure measuring point is set inside the room, and the other pressure measuring point is set outside the room; a humidity sensor is also set on the roof of the room.
上位PC机的串口通过PC电缆或PPI电缆与编程控制器的RS-485接口连接。The serial port of the upper PC is connected with the RS-485 interface of the programming controller through a PC cable or a PPI cable.
本实用新型的有益效果在于:The beneficial effects of the utility model are:
(1)本实用新型的蒸发冷却空调机组用的实时监控装置采用可编程逻辑控制器PLC,可编程逻辑控制器PLC具有价格低廉及应用灵活的优势,将可编程逻辑控制器PLC用于空调机组的控制,可实现对单台空调机组的实时监控。(1) The real-time monitoring device for the evaporative cooling air-conditioning unit of the present utility model adopts a programmable logic controller PLC, which has the advantages of low price and flexible application, and uses the programmable logic controller PLC for the air-conditioning unit The control can realize the real-time monitoring of a single air conditioning unit.
(2)本实用新型的蒸发冷却空调机组用的实时监控装置够将室内空气参数处于允许波动范围之内,使空调达到节能高效的工作状态,同时实现了对空调各设备状态及各个空气参数的实时监控。(2) The real-time monitoring device for the evaporative cooling air-conditioning unit of the present utility model can keep the indoor air parameters within the allowable fluctuation range, so that the air conditioner can reach an energy-saving and efficient working state, and at the same time realize the monitoring of the status of each air conditioner and each air parameter. real time monitoring.
附图说明Description of drawings
图1是本实用新型的蒸发冷却空调机组用的实时监控装置的结构图;Fig. 1 is the structural diagram of the real-time monitoring device that the evaporative cooling air-conditioning unit of the present invention is used;
图2是本实用新型的蒸发冷却空调机组用的实时监控装置的控制结构示意图。Fig. 2 is a schematic diagram of the control structure of the real-time monitoring device for the evaporative cooling air-conditioning unit of the present invention.
图中,1.上位PC机,2.可编程控制器,3.新风口,4.过滤网,5.热管间接蒸发冷却器,6.直接蒸发冷却器,7.加热装置,8.送风机,9.送风管,10.风管,11.新风管,12.回风管,13.排风阀,14.回风阀,15.室外温度传感器,16.压差开关,17.室内温度传感器,18.室内温度控制器,19.变频器a,20.静压传感器,21.湿度传感器,22.变频器b,23.送风温度传感器,24.送风温度控制器,25.变频器c,26.电机,27.回风机,28.二次风机,29.蒸发冷却空调机组,30.新风阀。In the figure, 1. Host PC, 2. Programmable controller, 3. Fresh air outlet, 4. Filter, 5. Heat pipe indirect evaporative cooler, 6. Direct evaporative cooler, 7. Heating device, 8. Blower, 9. Air supply pipe, 10. Air pipe, 11. Fresh air pipe, 12. Return air pipe, 13. Exhaust valve, 14. Return air valve, 15. Outdoor temperature sensor, 16. Differential pressure switch, 17. Indoor Temperature sensor, 18. Indoor temperature controller, 19. Inverter a, 20. Static pressure sensor, 21. Humidity sensor, 22. Inverter b, 23. Air supply temperature sensor, 24. Air supply temperature controller, 25. Inverter c, 26. Motor, 27. Return fan, 28. Secondary fan, 29. Evaporative cooling air conditioning unit, 30. Fresh air valve.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本实用新型进行详细说明。The utility model will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
本实用新型的蒸发冷却空调机组用的实时监控装置,其结构如图1所示,包括有上位PC机1,上位PC机1的串口通过电缆线与可编程控制器2的RS-485接口连接,可编程控制器2通过屏蔽双绞线网与蒸发冷却空调机组29连接。The real-time monitoring device for the evaporative cooling air-conditioning unit of the present utility model has a structure as shown in Figure 1, including a
蒸发冷却空调机组29,其结构如图2所示,按新风进入方向包括有通过新风管11依次连接的新风口3、新风阀30、过滤网4、热管间接蒸发冷却器5、直接蒸发冷却器6、加热装置7及送风机8,热管间接蒸发冷却器5通过二次送风管连接有二次风机28,加热装置7内的加热器通过导线与电机26连接,送风机8通过送风管9与房间连通,房间还连接有排风管10,排风管10上分别设置有回风机27和排风阀13,排风管10与新风管11之间通过回风管12连接,回风管12上设置有回风阀14。The evaporative cooling
可编程控制器2采用S7200系列PLC型号为CPU224的可编程控制器,该可编程控制器2还配有配一块4模拟量输入模块EM231和一块3模拟量输出模块EM232;编程控制器2包括有室外温度传感器15、压差开关16、室内温度传感器17、室内温度控制器18、变频器a19、静压传感器20、湿度传感器21、变频器b22、送风温度传感器23、送风温度控制器24、变频器c25。
变频器a19、变频器b22及变频器c25的型号均为日立SJ300系列的通用变频器。The models of frequency converter a19, frequency converter b22 and frequency converter c25 are general-purpose frequency converters of Hitachi SJ300 series.
可编程控制器2与蒸发冷却空调机组29之间的屏蔽双绞线网结构为:可程控制器2内的室外温度传感器15通过屏蔽双绞线与蒸发冷却空调机组的新风口3连接,可编程控制器2内的压差开关16通过屏蔽双绞线连接于蒸发冷却空调机组29内过滤网4的两端,蒸发冷却空调机组内的回风管12通过屏蔽双绞线依次与室内温度传感器17、室内温度控制器18、变频器a19及送风机8连接,蒸发冷却空调机组内的送风管9通过屏蔽双绞线依次与可编程控制器2内的送风温度传感器23、送风温度控制器24连接,送风温度控制器24通过屏蔽双绞线与电机26连接,送风温度控制器24还通过屏蔽双绞线依次与变频器c25、二次风机28连接,蒸发冷却空调机组内的回风机27通过屏蔽双绞线依次与变频器b22、静压传感器20连接,静压传感器20包括有两个测压点,一个测压点分别设置于房间内部,一个测压点设置与房间外部,湿度传感器21设置在室内屋顶处。The shielded twisted pair network structure between the
静压传感器20室内的测压点设置在远离门或任何可开启的孔洞处,更要远离电梯井,避开空气流动对室内测压的影响。室外的测压点应高出建筑屋面3米以上,防止室外风直接吹入测压管内。湿度传感器21设置在室内屋顶处,远离门窗。The indoor pressure measurement point of the
上位PC机1的串口通过电缆PC或电缆PPI与编程控制器2的RS-485接口连接。The serial port of the
本实用新型的蒸发冷却空调机组用的实时监控装置工作过程如下:The working process of the real-time monitoring device used by the evaporative cooling air-conditioning unit of the present utility model is as follows:
(1)在夏季具体工作过程为:(1) The specific work process in summer is:
在夏季,开启热管间接蒸发冷却器5和直接蒸发冷却器6,同时开启新风阀30、排风阀13和回风阀14。如图2所示,室外温度传感器15实时监测室外的空气温度,由于采用的是舒适性空调机组,一般不会受到送风温差的限制,故采用最大送风温差,即采用机器露点送风;In summer, the heat pipe indirect
新风经过新风入口3流入新风管11,并被滤网4过滤后进入热管间接蒸发冷却器5和直接蒸发冷却器6,其中送风温度传感器23可以检测到经热管间接蒸发冷却器5和直接蒸发冷却器6处理后的送风温度,并通过送风温度传感器23、送风温度控制器24和变频器c25来协调控制热管间接蒸发冷却器5连接的二次风机28的转动速度,实现送风温度恒定送风(即保持机器露点送风)。The fresh air flows into the
夏季采用房间内回风,此时房间内的一部分回风流经回风机21、排风管10、回风管12和回风阀14进入送风主风道内和新风混合,回风管12上连接的室内温度传感器17用于检测室内回风温度,并通过室内温度控制器18和变频器a19来改变并控制送风机8的转速来改变送风量大小,以保持室内温度恒定。In summer, the return air in the room is used. At this time, a part of the return air in the room flows through the
(2)在过渡季节采用全新风:(2) Adopt all-new wind in the transition season:
若室外温度比较高,要开启蒸发冷却空调机组内的直接蒸发冷却器6和送风机19即可对室外空气经行降温以满足室内的温度要求;If the outdoor temperature is relatively high, turn on the direct evaporative cooler 6 and the
若室外温度比较低,则只要开启蒸发冷却空调机组内的送风机19,即可满足室内的温度要。If the outdoor temperature is relatively low, then as long as the
(3)在冬季:热管式间接蒸发冷却器5关闭,开启直接蒸发冷却器6,采用定露点控制方式,即露点温度恒定(空气经过直接蒸发冷却器处理后的温度保持恒定)。(3) In winter: the heat pipe indirect
当室外温度较高时,此时新风不需要预热:开启直接蒸发冷却器6,调节新风阀30和回风阀14的开启大小来调节新风和回风的比例即可满足露点温度恒定,然后空气经过加热器7对空气进行加热处理。When the outdoor temperature is high, the fresh air does not need to be preheated at this time: open the direct evaporative cooler 6, adjust the opening size of the
当室外温度较低,将新风阀30开度设定为15%,对室外空气进行预热,使得空气经过直接蒸发冷却器处理后的温度保持恒定(即露点温度恒定),然后空气经过加热器7对空气进行加热处理。When the outdoor temperature is low, set the opening of the
送风温度传感器23检测到加热器7处理后的送风温度,并通过送风温度传感器23、送风温度控制器24和变频器c25来控制加热器7阀门开启大小,保持送风温度恒定。The air
室内温度传感器17用于检测室内回风温度,并通过室内温度控制器18和变频器a19来改变并控制送风机8的转速来改变送风量大小,以保持室内温度恒定。The
本实用新型的蒸发冷却空调机组用的实时监控装置使用可编程控制器2,可编程控制器2内编制PLC控制程序,同时结合上位PC机1内设置的组态王监控模块,组态王监控模块内集成有组态王人机界面控制软件以及上位PC机1来实现对蒸发冷却空调机组29的实时监控。The real-time monitoring device for the evaporative cooling air-conditioning unit of the present utility model uses the
首先本实用新型的蒸发冷却空调机组用的实时监控装置从理论上分析了蒸发冷却空调机组的工作原理,根据蒸发冷却空调机组在冬、夏以及过度季不同的空气处理过程焓湿图制定了相应季节的控制策略。First of all, the real-time monitoring device for the evaporative cooling air-conditioning unit of the utility model has theoretically analyzed the working principle of the evaporative cooling air-conditioning unit, and formulated corresponding Seasonal control strategy.
其次,本实用新型的蒸发冷却空调机组用的实时监控装置中监控装置其具体的控制策略需要由硬件及软件共同协调来实现;其中的可编程控制器2采用德国西门子可编程控制器S7200系列PLC型号为CPU224,配一块四模拟量输入模块EM231和一块三模拟量输出模块EM232;变频器a19、变频器b22、变频器c25的型号均为日立SJ300系列的通用变频器;上位PC机1依据模块化控制程序设计思路,控制程序主要包括:主程序、初始化程序、夏季控制程序、冬季控制程序、回差设定程序、变频器设定程序及中断程序。Secondly, in the real-time monitoring device used by the evaporative cooling air-conditioning unit of the present utility model, its specific control strategy of the monitoring device needs to be realized by the joint coordination of hardware and software; wherein the
最后,利用组态王软件对蒸发冷却空调机组进行人机界面优化设计,最终达到人机界面能清晰、准确、实时地监测热管间接蒸发冷却器与直接蒸发冷却器两级蒸发冷却单室变风量空调机组中各设备的运行情况并能及时处理故障的功能,并且界面中机组的各功能模块实现动画效果。Finally, use Kingview software to optimize the man-machine interface design of the evaporative cooling air-conditioning unit, and finally achieve a clear, accurate and real-time monitoring of the man-machine interface for the two-stage evaporative cooling single-chamber variable air volume of the heat pipe indirect evaporative cooler and direct evaporative cooler The operation status of each equipment in the air conditioning unit and the function of being able to deal with faults in time, and the animation effect of each functional module of the unit in the interface.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201320217632 CN203274132U (en) | 2013-04-25 | 2013-04-25 | Real-time monitoring device for evaporative cooling air conditioning unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201320217632 CN203274132U (en) | 2013-04-25 | 2013-04-25 | Real-time monitoring device for evaporative cooling air conditioning unit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203274132U true CN203274132U (en) | 2013-11-06 |
Family
ID=49504530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201320217632 Expired - Fee Related CN203274132U (en) | 2013-04-25 | 2013-04-25 | Real-time monitoring device for evaporative cooling air conditioning unit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203274132U (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105511325A (en) * | 2015-12-29 | 2016-04-20 | 珠海格力电器股份有限公司 | Data processing system, method and device for unit |
CN110243031A (en) * | 2019-04-04 | 2019-09-17 | 武汉理工大学 | A New Solar Evaporative Air Cooler |
CN110260481A (en) * | 2019-05-27 | 2019-09-20 | 江苏中烟工业有限责任公司 | A method of intervention control being carried out to air-conditioning PLC control system using computer |
CN112788926A (en) * | 2021-01-22 | 2021-05-11 | 北京首钢国际工程技术有限公司 | Pressure monitoring device of frequency converter evaporative cooling system |
-
2013
- 2013-04-25 CN CN 201320217632 patent/CN203274132U/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105511325A (en) * | 2015-12-29 | 2016-04-20 | 珠海格力电器股份有限公司 | Data processing system, method and device for unit |
CN105511325B (en) * | 2015-12-29 | 2018-06-01 | 珠海格力电器股份有限公司 | Data processing system, method and device for unit |
CN110243031A (en) * | 2019-04-04 | 2019-09-17 | 武汉理工大学 | A New Solar Evaporative Air Cooler |
CN110260481A (en) * | 2019-05-27 | 2019-09-20 | 江苏中烟工业有限责任公司 | A method of intervention control being carried out to air-conditioning PLC control system using computer |
CN112788926A (en) * | 2021-01-22 | 2021-05-11 | 北京首钢国际工程技术有限公司 | Pressure monitoring device of frequency converter evaporative cooling system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109612045A (en) | A Natural Ventilation and Mechanical Ventilation Conversion System Suitable for Building Transition Season | |
CN201302256Y (en) | Textile air conditioner used constant temperature and humidity variable air volume control system | |
CN206257781U (en) | A kind of laboratory multistage ventilated energy-saving control system | |
CN102878635B (en) | Intelligent energy-saving control system of combined air conditioner and control program thereof | |
CN103335363A (en) | Control device and control method for integral centralized air processing system | |
CN201992768U (en) | Ventilation energy-saving device of household air-conditioner | |
CN201191062Y (en) | Temperature controlled intelligent fresh-air ventilator | |
CN202074654U (en) | Closed-loop control system for controlling constant air volume of purification air conditioner system | |
CN201637037U (en) | Control device for air-conditioning unit | |
CN102425820A (en) | Split air conditioner capable of realizing night ventilation | |
CN203274132U (en) | Real-time monitoring device for evaporative cooling air conditioning unit | |
CN202183200U (en) | Air conditioning and fresh air teaching training device based on LonWorks technology | |
CN102635924A (en) | Automatically controlled energy saving system for 10kV power distribution station | |
CN211191353U (en) | Air exhaust control mechanism for air supplement of ventilation cabinet | |
CN202521796U (en) | Total heat recovering unit with by-pass pipe | |
CN202204106U (en) | Intelligent control cabinet for air cabinet of air conditioner | |
CN105674412A (en) | Household air conditioner capable of automatically adjusting fresh air volume | |
CN106382707A (en) | Ventilating energy-saving system for sliding window and use method therefor | |
CN202868922U (en) | Intelligent precise control small-sized central air conditioner system | |
CN102563820B (en) | Evaporative air cooler for communication base station/machine room, and anti-condensation method of evaporative air cooler | |
CN100445654C (en) | Air Conditioning Cooling Capacity Adaptive Energy Saving Control System | |
CN209310193U (en) | Laboratory energy-saving ventilation system | |
CN204460601U (en) | A kind of distributed bus integrated control system being applied to central air conditioning | |
CN207688359U (en) | A kind of multi-functional air conditioner temperature and humidity adjustment system | |
CN208419108U (en) | A kind of experimental laboratory air exhausting equipment variable air volume control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131106 Termination date: 20140425 |