CN1802036A - 超声波探头 - Google Patents

超声波探头 Download PDF

Info

Publication number
CN1802036A
CN1802036A CNA2005101046592A CN200510104659A CN1802036A CN 1802036 A CN1802036 A CN 1802036A CN A2005101046592 A CNA2005101046592 A CN A2005101046592A CN 200510104659 A CN200510104659 A CN 200510104659A CN 1802036 A CN1802036 A CN 1802036A
Authority
CN
China
Prior art keywords
substrate
mentioned
lead
ultrasonic
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005101046592A
Other languages
English (en)
Other versions
CN1802036B (zh
Inventor
手塚智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Publication of CN1802036A publication Critical patent/CN1802036A/zh
Application granted granted Critical
Publication of CN1802036B publication Critical patent/CN1802036B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0629Square array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

本发明涉及一种超声波探头,它包括:排列成2维阵列形状的超声波振子,对上述超声波振子进行连接的导线,具备用于连接上述超声波振子和集成电路的至少一个基板的回波基板,该基板包括:具有通过***上述导线来与上述导线电连接的通孔的第1部分,用于连接该第1部分和集成电路的、被形成为至少一部分可以弯曲的第2部分。

Description

超声波探头
技术领域
本发明涉及应用于超声波诊断装置的超声波探头。
背景技术
在超声波诊断装置中使用的超声波探头具有:在进行超声波收发的超声波振子和超声波诊断装置主体之间进行电子信号的收发的电缆组件(cableassembly)。
近年来,超声波束的偏转、汇聚正在向全方位过渡,大家都来开发可以利用超声波进行3维扫描的超声波探头。
作为这样的超声波探头包括:将构成超声转换器的超声波振子大量配置成矩阵形状的2维阵列超声波探头。作为用于将来自2维状排列的超声波振子的信号输出到超声波探头内集成电路和超声波诊断装置主体的技术,例如可以象美国专利第5267221号所提出的那样,使用在衬底材料上打出小孔,从中输出信号的结构。另外,在日本专利申请、特开昭62-2799号公报中,还展示出了将与超声波振子的排列对应的基板叠层,由此进行信号输出的结构。
这些揭示出的2维阵列超声波探头的结构都可以良好的保持每个元件的声音特性。
而且,在美国专利第5311095号中,还揭示了将用于信号输出的叠层基板80配置在超声波振子的正下方的结构。
另一方面,超声波探头是以将超声波振子和超声波诊断装置主体用线缆组件连接作为其基本结构的。然而,对于具有大量微小的超声波振子的2维阵列超声波探头来说,来自超声波振子的接收信号也比较小。因此,该接收信号如果直接通过连接到超声波诊断装置主体的线缆组件,则接收信号会由于线缆组件的静电电容而大幅度衰减。因此,必须将包括用于更好的读取来自超声波振子的接收信号的前置放大器等的集成电路等设置在超声转换器的附近。
另外,对于2维阵列超声波探头来说,超声波振子数量比1维阵列更多。因此,如果来自该大量超声波振子的信号分别独立的传输到超声波诊断装置主体的话,不得不使得线缆组件的缆芯数也随之增加。这就意味着:连接超声波探头和超声波诊断装置主体的线缆要变厚,变重。这样的结构对于必须能够自由操纵超声波探头的普通超声波诊断装置的使用方法来说是不合适的。
所以,在2维阵列超声波探头中,所使用的是将来自超声波振子的超声波信号共同连接到1根信号线,由此减少向超声波诊断装置主体传输的信号数量的结构。因此,在超声波探头内需要有用于通过将信号线共同连接来减少信号数量的集成电路等等。
换句话说,在2维阵列超声波探头中,需要将如上控制来自超声波振子组的信号线所导入的强度小而数量大的电信号的集成电路等安装在超声转换器附近。此外,从超声波探头操作性的观点出发,由于需要保持其大小在一定程度以下,所以需要以高密度组装集成电路等。
本申请的发明者们,提出了对应该要求的一种技术,正如在日本申请的特开2001-292496号公报中所揭示的那样,提出了将2种基板用连接导线按照大致正交的方式,电子且机械连接的结构。
本申请发明提供一种满足了上述要求且进行了进一步改良的超声波探头。
发明内容
本申请发明的超声波探头包括:排列成2维阵列形状的超声波振子,对上述超声波振子进行连接的导线,用于连接上述超声波振子和集成电路的基板,上述基板包括:具有通过***上述导线来与上述导线电连接的通孔的第1部分,用于连接上述第1部分和集成电路的、被形成为至少一部分可以弯曲的第2部分。
附图说明
图1是表示本发明的超声波探头的第1实施形态的超声转换器的结构的斜视图以及剖面图。
图2是表示本发明的超声波探头的第1实施形态的超声转换器以及连接到超声转换器的基板的结构的斜视图。
图3是表示连接本发明的超声波探头的第1实施形态的超声转换器和基板的结构的斜视图。
图4是表示本发明的超声波探头的第1实施形态的超声转换器以及IC基板和与基板之间的位置关系的前面图以及底面图。
图5是表示本发明的超声波探头的第1实施形态的结构的斜视图。
图6是表示本发明的超声波探头的第1实施形态的结构的斜视图。
图7是表示本发明的超声波探头的第2实施形态的超声波探头以及连接到超声波探头的基板的结构的斜视图。
图8是表示本发明的超声波探头的第2实施形态的各个基板上的结构的平面图。
图9是表示本发明的超声波探头的第2实施形态的结构的斜视图。
图10是表示本发明的超声波探头的第2实施形态的结构的斜视图。
图11是表示本发明的超声波探头的第3实施形态的超声转换器以及连接到超声转换器的基板的结构的斜视图。
图12是表示本发明的超声波探头的第3实施形态的各个基板上的结构的平面图。
图13是表示本发明的超声波探头的第4实施形态的中继基板的结构的斜视图。
图14是表示本发明的超声波探头的第4实施形态的结构的斜视图。
发明内容
下面参考附图对本发明的实施形态进行说明。
(第1实施形态)
图1是本发明第1实施形态的超声波探头所具备2维阵列超声转换器10的简略图。图1(a)是2维阵列超声转换器10的斜视图,图1(b)是从图1(a)中箭头方向看的A-A剖面图。
如图1(a)所示,2维阵列超声转换器10包括:声音耦合层12,接地电极14,超声波振子16,信号电极18,衬底材料20以及连接导线22。
声音耦合层12设置成位于被检测体(未图示)和超声波振子16之间,获取被检测体和超波振子16之间的声阻抗耦合。
接地电极14被设置在各个超声波振子16的一端。接地电极14接地。
超声波振子(压电体)16是用压电陶瓷等构成的压电元件,排列成2维阵列形状。由于该超声波振子16的2维阵列形状的排列方式,可以实现超声波全方位的调焦和3维扫描。另外,本实施形态的超声波振子16虽然是用压电元件构成,但是不限于此。例如:还可以是近年来所研究的,趋向于实用化的CMUT元件等。CMUT元件是按照在薄膜和底座之间夹有空隙的方式所设置的静电电容结合型超声波振子。根据该薄膜的振荡发送超声波。将由超声波反射波的接收导致的薄膜的振荡转换成电子信号的回波信号。
衬底材料20设在超声波振子16的背面。衬底材料20用于除去探头内不必要的由超声波振子16所发的超声波脉冲的反射及余声。
衬底材料20上形成用于将在与从信号电极18到超声波振子16的配置面垂直的方向上连接的导线22引出的路径。通过该路径引出的连接导线22的端部221与超声波振子16相同的成2维排列。
这样的衬底材料20可以通过如下方式制成:即,将板状的衬底材料和与其具有同样板厚度以及配置间距的薄衬底材料相重叠。
另外,该衬底材料20的厚度为:为了良好的保证超声转换器的声音特性,能够让所使用的超声波得到足够衰减的厚度。
连接导线22,具有其一端的连接导线22的端部221。另外,在另一端与各个超声波振子16的信号电极18连接。连接导线22在与超声波振子16的配置面垂直的方向上,通过从信号电极18到衬底材料20中的路径。因此,连接导线22的端部221,在超声波振子16和相反侧的衬底材料20的面上都成2维形状排列的结构。
而且,本实施形态的连接导线22的端部221的配置是以保持与超声波振子16相同的配置间距,即与电极配置具有同样的排列的例子来揭示的。可是,并不限于此,连接导线22的端部221的配线间距还可以比元件间距更大。例如:在使得上述板状衬底材料和信号线图形相粘贴,由此生成连接导线22的2维配置的情况下,能够实现随着粘贴的连接导线22的图形向着连接导线22端部221方向的前进,而使得图形变宽阔。
另外,本实施形态中,虽然是对相对于各个超声波振子16的每一个来设置连接导线22以及信号电极18的情况进行的说明,但是并不限于此。还可以将连接导线22或者信号电极18与多个超声波振子共同连接,并向一个端部221引出。
图2是表示本发明的超声波探头的第1实施形态的结构的斜视图。图2(a)是超声转换器10的斜视图,图2(b)是表示超声转换器10和基板30连接的时候的位置关系的斜视图。如图2(a)所示,2维排列的连接导线22电连接到分别从2维阵列超声转换器的超声波振子16引出的连接导线22。连接导线22用导电性金属形成,用焊接的方法连接到后述的基板30(电路板)上。
另外,如图2(b)所示,基板30由中央部31(本权利要求中所说的第1部分)和端部32(本权利要求中所说的第二部分)构成。中央部31具有对应于连接导线22而形成的通孔311,其能够***连接导线22。在各个通孔311之中还分别具备用于向端部32传输信号的信号线。端部32将来自各个通孔311的信号线,通过信号线33,连接到电极垫板321。
另外,端部32构成为在与中央部31的边界线(图中用“弯曲部分”来表示)处相对中央部31弯曲。更具体的说,基板30可以使用中央部31,端部32可柔软的弯曲的挠性基板。另外,也可以是相对坚硬的中央部31端部32能够弯曲和弯折的材料构成的基板,还可以是仅一部分能够弯曲和弯折的材料。
上述边界线(弯曲部分)并不一定需要是明确的进行了设定。换句话说,还可以是具有:通过通孔311来确保与连接基板22之间的电连接的区域(中央部31),相对上述区域弯曲或者弯折,形成了电极垫板321的区域(端部32),以及使得通孔311和电极垫板321导通的信号线33的基板。
电极垫板321将超声转换器10和集成电路45直接或者间接的连接起来。
在图3中示出了将超声转换器10连接到具有如此构成的基板30上的形态。另外,在图4中示出了安装了本实施形态的超声转换器10和IC等的集成电路的IC基板40与上述基板30之间的连接位置关系。
如图4(b)所示,安装了对接收的信号进行处理(放大、转换)的集成电路45的刚性基板等IC基板40与各个电极垫板321连接。本实施形态中,相对中央部31使得端部32在中央部31和端部32之间的边界部分(图中表示为“弯曲部分”)处弯曲,由此连接IC基板40。例如:采用了在中央部31的两个端部上设置了2个端部32的基板30的情况下,如图5所示,以将中央部31固定在超声转换器10上的状态,使得2个端部32弯曲,相对形成在2个端部32的端边附近的电极垫板321分别连接IC基板40。
而且,在图2(b),图3以及图4中虽然示出的是,从形成在中央部31上的通孔311中,仅从每两端3列中引出信号线33,并分别与各个电极垫板321线连接的结构,但是并不限于此。还可以从所有形成在中央部31上的通孔311中引出信号线33,并形成与它们对应的电极垫板321。
另外,在本实施形态中,虽然是从某个区域的所有通孔311中引出信号线的情况,但是并不限于此。还可以是并不从所有的通孔311中引出信号线,而是在某些随机位置上存在没有信号线引出的通孔。
如此,在下面记述随机连接结构的效果。形成矩降形状的2维阵列状超声转换器,并全部与连接导线22连接的情况,从加工方便的观点来看是很合适的。但是,从构成图像的观点来看,完全可以不用驱动所有的超声波振子16。即使在某个随机位置没有驱动超声波振子16,也可以构成图像。由于没有驱动的超声波振子16的配置是随机的,故在构成的图像上不会产生明显的影响。由于不用减少驱动的超声波振子16,就能够减少信号引出数量,故减少了处理信号数量。这样能够实现2维阵列超声波探头的小型化,以及能够使得线缆变细。
另外,通孔311和电极垫板321也没有必要以1对1的方式连接。例如:还可以将从多个通孔311引出的信号线33连接到1个电极垫板321上,或者将从1个通孔311引出的信号线33连接到多个电极垫板321上。
另外,在本实施形态中,虽然是将配置了集成电路45的IC基板40与电极垫板(多极连接器(connector))321相连接的结构,但是并不限于此。也不必一定要将IC基板40与电极垫板321连接,还可以将集成电路45直接连接到电极垫板321上。换句话说,还可以在端部32上配置集成电路45,或者在端部32上混合连接IC基板40和集成电路45。由于通过这样的结构能够缩小配置在端部32上的部件的配置空间,故能够实现超声波探头的小型化。
而且,本实施形态中,基板30的结构虽然是由1个中央部31和设置在其两侧端部上的2个端部32构成的,但是并不限于此。还可以相对1个中央部31在中央部31的侧端部上没置3个以上的端部32。通过这样的结构,即使在连接导线22增加了的情况下,也能够对来自穿过了形成在中央部31上的通孔311的连接导线22的信号线引出线进行分配。因此,在有效的利用了超声波探头内的空间的情况下能够高效率的进行集成电路45的设置。结果是能够实现超声波探头的小型化。
而且,在本实施形态中,基板30的结构虽然是由1个中央部31和设置在其两侧端部上的2个端部32构成的,但是不限于此。还可以相对1个中央部31在中央部31的侧端部上设置1个端部32。
图6是用于说明将连接本发明第1实施形态的超声波探头和超声波诊断装置主体的线缆60,和IC基板40相连接的结构的图。
如图6所示,线缆60是实现将超声波诊断装置主体和IC基板40等电连接的线缆。该线缆60由于是用线缆组件用FPC601(挠性印刷电路板)和覆盖该线缆组件用FPC601的覆层603构成,故具备挠性。
线缆连接基板50是用于连接上述的IC基板40和线缆60的基板。该线缆连接基板50用具备挠性的FPC来形成。该线缆连接基板的一端与IC基板40中设置了连接销(未示出)的一端的相对端电连接。
连接器62分别设置在线缆连接基板50的另一端以及线缆组件用FPC601的一端上。通过该连接器62,将线缆连接基板50和线缆组件用FPC601电连接。
相据上述说明的本实施形态,能够不依赖连接导线22的排列,从穿过了通孔311的连接导线22中引出细微化的信号线33。因此,有效的利用了超声波探头内的空间,故能够高效率的进行对集成电路45的设置。结果是,能够实现超声波探头的小型化。
另外,与采用了如特开2001-292496号公报所揭示的过去的例子所示那样的中继基板300以及连接销401的结构相比,用挠性基板作为基板30,通过利用其挠性,能够使得连接部分(连接导线22)的排列细化。因此,能够实现超声波探头的小型化。
另外,如果是用将基板30叠层而成的挠性印刷电路板的话,在其加工之际,可以适用蚀刻、溅射等各种薄膜加工技术。薄膜精密加工技术与板状体积的加工技术相比,具有非常高的精度。因此,在通孔和信号线33的连接中能够实现更精密的加工。如此,能够使得连接部分(连接导线22)的排列更细微,
而且,基板30由形成了通孔311的中央部31以及用于与集成电路等连接的端部32构成,由于将该基板30***设置在超声转换器10和集成电路45之间,故增加了形成在基板30上的信号线33的形成自由度,能够提供一种高密度的将集成电路45安装在超声转换器10的附近的超声波探头。
(第2实施形态)
接着,参照附图对本发明的超声波探头的第2实施形态进行说明。
本实施形态相对于上述第1实施形态来说,其特征在于设置了多个基板30。在本实施形态的说明中,以多个基板30的结构为中心进行说明,对于与第1实施形态重复的部分则省略了其说明。
图7是表示本发明的超声波探头的第2实施形态的结构的斜视图。如图7所示,按照在超声转换器10的连接导线22侧重叠的方式设置的多个基板(第1基板30a,第2基板30b,第3基板30c),其各个中央部31a,31b,31c的大小以及形成的通孔311的排列与端部32a,32b,32c的形状大致相同。
另一方面,在第1基板30a,第2基板30b,第3基板30c中不同的地方是形成在各个中央部31上的通孔311的形态。具体而言,就是还形成了通孔311,该通孔311是相对于中央部31a,31b,31c的至少任何一个连接导线22没有电连接的贯通孔。其另一边与各个基板30的至少一部分连接导线22导通。对于其整体来说,各个基板30相对被分到预定区域的(例如分成3份)所有连接导线22进行分配,并导通。
而且,还可以将设置在被重叠的所有基板30上的通孔与所有连接导线22分别导通。
例如如图8(a)~(c)所示,对应于12行×12列矩阵构成的连接导线22(未图示),在12行×12列矩阵构成的各个中央部31a,31b,31c的通孔311中,仅一部分通孔311被用信号线33引出。具体而言,可以参考图8(a)所示的情况。第1基板30a是从接近中央部31a弯曲部分的每3列通孔311中引出信号线。如图8(b)所示,第2基板30b是从中央部31b弯曲部分的第4列和第5列每2列的从通孔311中引出信号线。如图8(c)所示,第3基板30c是从中央部31c弯曲部分的第6列每1列的通孔中引出信号线。该情况下,作为没有引出形成在中央部31a上的信号线的贯通孔的通孔311对应于从弯曲部分开始的第4~6列的通孔311(在图中用阴影表示“非导通区域”)。另外,作为没有引出形成在中央部31b上的信号线的贯通孔的通孔311对应于从弯曲部分开始第1~3列通孔311和第6列通孔311(在图中用阴影表示“非导通区域”)。另外,作为没有引出形成在中央部31c上的信号线的贯通孔的通孔311对应于从弯曲部分开始第1~5列的通孔311(在图中用阴影表示”非导通区域”)。
而且,在本实施形态中,各个中央部31处属于上述”非导通区域”的通孔311,作为不引出信号线的简单的贯通孔这样的不与连接导线22电连接的结构,并不限于上述方式。还可以不用形成在各个端部32上的电极垫板321和信号线33连接在中央部31处属于“非导通区域”的通孔311。
如图9所示,通过用信号线33连接形成在各个基板30a,30b,30c上的通孔311,将与各个连接导线22电连接的各个电极垫板321连接到,安装了处理接收的信号(放大,转换等)的IC等集成电路45的刚性基板等IC基板40。这里,在本实施形态中,相对中央部31使得端部32弯曲,由此连接IC基板40。例如:在采用在中央部31的两个端部上设置了2个端部32的形态的基板30的情况下,以将中央部31固定在超声转换器10上的状态,使得2个端部32大约弯曲90°。相对该2个端部32的端边缘附近形成的电极垫板321分别连接IC基板40。
在基板30采用挠性基板的情况下,未必将中央部31以及端部32的弯曲部分设置为挠曲。
在本实施形态中,虽然是配置了集成电路45的IC基板40与电极垫板321连接的结构,但是不限于此。例如不必一定要将IC基板40与电极垫板321连接,还可以将集成电路45直接连接到电极垫板321上。换句话说,还可以将集成电路45安装在端部32上,或者将IC基板40和集成电路45混合连接到端部32上。如果采用这样的结构,由于能够缩小配置在端部32上的配置部件的配置空间,故能够实现超声波探头的小型化。
在本实施形态中,虽然基板30的结构是用1个中央部31和设置在其两端部上的2个端部32构成的,但是并不限于此。还可以相对1个中央部31设置3个以上的端部32。如果是这样的结构,即使在连接导线22增加了的情况下,也能够通过形成在中央部31上的通孔311对来自连接导线22的信号线引出进行进一步分配。因此,能够有效的利用超声波探头内的空间,并高效率的实施集成电路45的设置。结果是,能够实现超声波探头的进一步小型化。、
图10是用于说明将线缆60和IC基板40相连接的结构的图,其中线缆60将本发明的第2实施形态的超声波探头和超声波诊断装置主体相连接。
如图10所示,线缆60将超声波诊断装置主体和IC基板40等电连接。该线缆60用线缆组件用FPC601(挠性印刷电路板)和,覆盖该线缆组件用FPC601的覆层603构成,并具备挠性。
线缆连接基板50是用于连接上述IC基板40和线缆60的基板。该线缆连接基板50是在具备挠性的FPC上,将其一端与IC基板40的设置了连接销401一端的相对端电连接。
连接器62分别设置在线缆连接基板50的另一端以及线缆组件用FPC601的一端上。通过该连接器62,将线缆连接基板50和线缆组件用FPC601电连接。
根据以上说明的本实施形态,能够利用分别形成在重叠的基板30上的通孔311,信号线33,电极垫板321,使得超声转换器10的各个连接导线22的导通分开。如此,利用信号线33形成的方法,能够不依赖于连接导线22的配置,来实施对电极垫板321也就是IC基板40的配置。
虽然信号线33必须分别穿过通孔311以及其他信号线之间并向端部32导通,但是本实施形态中,对来自重叠基板30的各个连接导线23的导通进行分配。因此,尤其在通孔形成的中央部31处,能够使得信号线33的配线具有一定的余地。因此,能够在保证连接导线22排列细密的状态下,实现大量信号线的引出。
通过在基板30中采用挠性基板,预先将挠性基板和配置了集成电路等的基板连接之后,再连接连接导线的情况下,或者在将连接导线和挠性基板连接之后,再与集成电路等配置基板连接的情况下,在上述两种情况中的任意一种情况之下都能够容易的进行2者的连接。
通过采用形成了电连接连接导线和电极垫板(IC基板)的信号线以及通孔的基板,可以实现仅利用将连接导线***通孔内的作业就能够实施电连接。如此,连接之际的位置耦合并不必要,连接作业也变得容易了。
由于利用连接导线能够同时并且同样的连接多个挠性基板,故能够通过同样的作业对所有的挠性基板进行连接,提高了制造上的作业性能。
(第3实施形态)
接着,参考附图对本发明超声波探头的第3实施形态进行说明。
本实施形态中,相对于上述第1实施形态和第2实施形态,其特征在于:大量设置的基板30a,30b,30c在各自中央部31a,31b,31c处没有重叠,各个基板30a,30b,30c由仅在连接导线22的一部分上设置了通孔的中央部31和其一侧端上的1个端部32构成。在本实施形态的说明中,以多个基板30的结构为中心进行说明,对于与第1实施形态和第2实施形态重复的部分省略其说明。
图11是表示本发明的超声波探头的第3实施形态的结构的斜视图。如图11所示,各个基板(第1基板30a,第2基板30b,第3基板30c)中央部31a,31b,31c的大小设定为与导通的连接导线22的排列相对应,在各个中央部31a,31b,31c的一侧端上,设置了1个端部32a,32b,32c。
例如,如图12(a)所示,相对于用12行×12列矩阵构成的连接导线22(未图示)来说,2片第1基板30a分别具有:仅具有与从连接导线22的两端侧开始的每3列对应的通孔311的中央部31a,从形成在中央部31a上的各个通孔中引出的信号线33和形成有电极垫板321的端部32a.。
如图12(b)所示,相对于用12行×12列矩阵构成的连接导线22(未图示)来说,2片第2基板30b分别具有:为了从与从连接导线22的两端侧开始的第4列和第5列对应的通孔311中引出信号线33,形成有12行×6列矩阵的通孔311的中央部31b,在形成在中央部31b上的各个通孔中,从与从连接导线22的两端侧开始的第4列和第5列对应的通孔311中引出的信号线33,以及形成有电极垫板321的端部32b。
如图12(c)所示,相对于用12行×12列矩阵构成的连接导线22(未图示)来说,2片第3基板30c分别具有:为了从与从连接导线22的两端侧开始的第6列对应的通孔311中引出信号线33,形成有12行×6列矩阵的通孔311的中央部31c,在形成在中央部31c上的各个通孔中,从与从连接导线22的两端侧始的第6列对应的通孔311中引出的信号线33,以及形成有电极垫板321的端部32c。
而且,中央部31处没有导通连接导线22的通孔311还可以是仅作为通孔而不与连接导线22电连接的结构。而且,将中央部31处没有导通连接导线22的通孔311形成在各个端部32上的电极垫板321还可以不用信号线33线连接。
根据本实施形态,各个中央部31的大小,不依赖于超声转换器10的连接导线22侧的面大小,由于根据想要导通的连接导线22侧的配置进行变换,故降低了基板30的制造成本,能够有效地实施来自部分连接导线22的信号引出。
(第4实施形态)
接着,参考附图对本发明超声波探头的第4实施形态进行说明。
本实施形态并不象上述的第1实施形态~第3实施形态那样,将形成在超声转换器10上的连接导线22相对基板30进行连接。本实施形态的特征在于,在超声转换器10和基板30之间设置使得连接导线22的配置间隔(间距)和/或配置顺序发生变化的中继基板70。而且,在本实施形态的说明中,是以中继基板70的结构为中心进行说明的,对于与第1实施形态~第3实施形态相重复的部分则省略其说明。
图13(a),(b)是表示本实施形态中继基板70的结构的斜视图。如图13(a),(b)所示,中继基板70由形成有与超声转换器10的连接导线22相连接的电极71的第1面,及与该第1面对置的,配置有第2连接导线72的第2面构成。
如图13(a)所示,在中继基板70的第1面上,对应于设置在超声转换器10上的连接导线22的配置,形成有用于***各个连接导线22的孔711。在各个孔711的底部设置有用于与被***的连接导线22电连接的电极(未图示)。另外,在本实施形态中,进行说明时将孔711和上述电极统称为电极71。
如图13(b)所示,在中继基板70的第2面上,2维配置有与电极71电连接的第2连接导线72。这些第2连接导线72用导电金属形成,通过焊接的方式连接在中继基板70的第2面上。
如图14所示,超声转换器10的连接导线22与中继基板70的电极71连接。与此同时,将中继基板的第2连接导线72***连接到基板30的通孔311中。通过这样的方式,来实施与基板30的电极垫板321连接的基板40上所配置的集成电路45和超声转换器10之间的电连接。
本实施形态所说的IC基板40也是与上述实施形态相同的,安装有处理收发信号(放大,转换)的集成电路45的刚性基板。该IC基板40的一端具有与通过中继基板70而连接的基板30的电极垫板321的配置间隔(间距)相对应的连接销401。
在图14中虽然没有图示,但是与上述实施形态相同的,在本实施形态中也设置有用于电连接超声波探头和超声波诊断装置主体的线缆以及用于连接该线缆和IC基板40的线缆连接基板。
根据用这样的结构形成的中继基板70,配置在第2面上的第2连接导线72的配置间隔(间距)和配置顺序等可以,不受到连接导线22的配置间隔和配置顺序的影响(不必与连接导线22的配置间隔(间距)和配置顺序相同),而且可以自由选择电极71和第2连接导线72之间的配线。
例如,用多层基板构成中继基板70。设置在其中间层的配置间隔(间距)和配线顺序发生变化的的图形(将连接导线22和IC基板40的连接销401一一对应,或者多对1,或者1对多地连接的连接图形)。如此,能够保证在上述实施形态中在基板30上形成的通孔311和电极垫板321之间的连接形态。
因此,由于在所设置的基板30的功能中除了使得配置了集成电路45的IC基板40的容纳自由度提高之外,还在连接导线22和集成电路45的连接之间具有了自由度,故能够实现集成电路45的高密度安装化。
上述各实施形态只是本发明的例示,本发明并不仅局限于各实施形态。另外,在上述各个实施形态中,虽然对超声波探头中使用的基板进行了说明,但是对呈矩阵状突出的连接导线通过基板,连接集成电路或配置有集成电路的其它基板的结构也都同样适用,而且能够得到与本发明相同的效果。而且在不脱离本发明技术思想前提下,还可以根据设计的需要对上述各实施形态进行各种变更。

Claims (18)

1、一种超声波探头,包括:
排列成2维阵列形状的超声波振子,
对上述超声波波振子进行连接的导线,和
用于连接上述超声波振子和集成电路的基板,
上述基板包括:
具有通过***上述导线而与上述导线电连接的通孔的第1部分,和
用于连接上述第1部分和集成电路的、被形成为至少一部分可以弯曲的第2部分。
2、如权利要求1所述的超声波探头,其中:上述第2部分配置有上述集成电路中的至少一个。
3、如权利要求1所述的超声波探头,其中:上述第2部分连接着配置有上述集成电路中至少一个的基板。
4、如权利要求1所述的超声波探头,其中:上述基板是挠性基板。
5、一种超声波探头,包括:
排列成2维阵列形状的超声波振子,
具有对上述超声波振子进行连接的第2导线的中继部,
用于连接上述中继部和集成电路的基板,
上述基板包括:
具有通过***上述导线而与上述第2导线电连接的通孔的第1部分,
用于连接上述第1部分和集成电路的、被形成为至少一部分可以弯曲的第2部分。
6、如权利要求5所述的超声波探头,其中:上述第2部分配置有上述集成电路中的至少一个。
7、如权利要求5所述的超声波探头,其中:上述第2部分连接着配置有上述集成电路中的至少一个的基板。
8、如权利要求5所述的超声波探头,其中:上述基板是挠性基板。
9、一种超声波探头,包括:
排列成2维阵列形状的超声波振子,
对上述超声波振子进行连接的导线,
多个基板,该多个基板分别包括:连接上述超声波振子和集成电路并具有用于***上述导线的通孔的第1部分,和连接上述第1部分和上述集成电路并具有能弯曲的部分的第2部分,
其中:上述导线的至少一部分分别与***该导线的上述基板中的至少一个上形成的上述通孔电连接。
10、如权利要求9所述的超声波探头,其中:上述多个基板的上述第1部分被设定为相互重叠。
11、如权利要求9所述的超声波探头,其中:上述第2部分配置有上述集成电路中的至少一个。
12、如权利要求9所述的超声波探头,其中:上述第2部分连接着配置有上述集成电路中的至少一个的基板。
13、如权利要求9所述的超声波探头,其中:上述基板是挠性基板。
14、一种超声波探头,包括:
排列成2维阵列形状的超声波振子,
具有对上述超声波振子进行连接的第2导线的中继部,
多个基板,该多个基板分别包括:连接上述中继部和集成电路并具有用于***上述第2导线的通孔的第1部分,和连接上述第1部分和上述集成电路并具有能弯曲的部分的第2部分,
其中:上述第2导线的至少一部分分别与***该第2导线的上述基板中的至少一个上形成的上述通孔电连接。
15、如权利要求14所述的超声波探头,其中:上述多个基板的上述第1部分被设定为相互重叠。
16、如权利要求14所述的超声波探头,其中:上述第2部分配置有上述集成电路中的至少一个。
17、如权利要求14所述的超声波探头,其中:上述第2部分连接着配置有上述集成电路中的至少一个的基板。
18、如权利要求14所述的超声波探头,其中:上述基板是挠性基板。
CN2005101046592A 2004-10-15 2005-10-14 超声波探头 Expired - Fee Related CN1802036B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004301324 2004-10-15
JP2004-301324 2004-10-15
JP2004301324A JP4575108B2 (ja) 2004-10-15 2004-10-15 超音波プローブ

Publications (2)

Publication Number Publication Date
CN1802036A true CN1802036A (zh) 2006-07-12
CN1802036B CN1802036B (zh) 2012-01-11

Family

ID=36379145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005101046592A Expired - Fee Related CN1802036B (zh) 2004-10-15 2005-10-14 超声波探头

Country Status (3)

Country Link
US (1) US7654961B2 (zh)
JP (1) JP4575108B2 (zh)
CN (1) CN1802036B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677803B (zh) * 2007-05-29 2012-07-04 株式会社日立医药 超声波探头以及超声波诊断装置
CN103286056A (zh) * 2012-02-24 2013-09-11 精工爱普生株式会社 超声波换能器元件芯片、探测器以及电子设备
CN103767732A (zh) * 2012-10-25 2014-05-07 精工爱普生株式会社 超声波测量装置、探头单元、探测器及诊断装置
CN103767731A (zh) * 2012-10-25 2014-05-07 精工爱普生株式会社 超声波测量装置、探头单元、探测器及诊断装置
CN104337545A (zh) * 2013-07-26 2015-02-11 精工爱普生株式会社 超声波测定装置、头单元、探测器及图像装置
CN105073013A (zh) * 2013-03-21 2015-11-18 株式会社东芝 超声波探头
CN108618809A (zh) * 2017-03-22 2018-10-09 精工爱普生株式会社 超声波器件单元、超声波探头以及超声波装置
CN110743768A (zh) * 2019-09-27 2020-02-04 苏州佳世达电通有限公司 超音波探头
WO2020077639A1 (zh) * 2018-10-19 2020-04-23 深圳迈瑞生物医疗电子股份有限公司 超声面阵探头的背衬块、超声面阵探头及超声诊断成像设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791252B2 (en) * 2007-01-30 2010-09-07 General Electric Company Ultrasound probe assembly and method of fabrication
JP2008246075A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp 超音波プローブ及びその製造方法、並びに、超音波診断装置
JP5190979B2 (ja) * 2007-06-05 2013-04-24 学校法人日本大学 2次元的硬さ測定装置
JP5039167B2 (ja) * 2010-03-24 2012-10-03 株式会社東芝 二次元アレイ超音波プローブ及びプローブ診断装置
JP5611645B2 (ja) * 2010-04-13 2014-10-22 株式会社東芝 超音波トランスデューサおよび超音波プローブ
JP5259762B2 (ja) 2011-03-24 2013-08-07 株式会社東芝 超音波プローブ及び超音波プローブ製造方法
KR101993743B1 (ko) * 2014-07-10 2019-06-27 삼성전자주식회사 초음파 프로브 및 초음파 영상장치
JP6590601B2 (ja) 2015-09-04 2019-10-16 キヤノン株式会社 トランスデューサユニット、トランスデューサユニットを備えた音響波用プローブ、音響波用プローブを備えた光音響装置
JP6791671B2 (ja) * 2015-12-11 2020-11-25 キヤノンメディカルシステムズ株式会社 超音波プローブ
JP7014581B2 (ja) * 2017-11-30 2022-02-01 キヤノンメディカルシステムズ株式会社 超音波プローブ
EP3927473A1 (en) * 2019-02-22 2021-12-29 Vermon S.A. Flexible printed circuit board device for interfacing high density ultrasound matrix array transducer with integrated circuits
JP7034246B2 (ja) * 2020-12-24 2022-03-11 京セラ株式会社 腎神経用超音波カテーテル

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140153A (ja) * 1983-12-28 1985-07-25 Toshiba Corp 超音波探触子の製造方法
JPH07108040B2 (ja) 1985-06-28 1995-11-15 株式会社東芝 超音波プローブ及びその製造方法
US5267221A (en) 1992-02-13 1993-11-30 Hewlett-Packard Company Backing for acoustic transducer array
US5744898A (en) * 1992-05-14 1998-04-28 Duke University Ultrasound transducer array with transmitter/receiver integrated circuitry
US5311095A (en) 1992-05-14 1994-05-10 Duke University Ultrasonic transducer array
US5329498A (en) 1993-05-17 1994-07-12 Hewlett-Packard Company Signal conditioning and interconnection for an acoustic transducer
JP3288815B2 (ja) * 1993-06-30 2002-06-04 株式会社東芝 2次元アレイ超音波プローブ
US6530887B1 (en) * 1996-12-24 2003-03-11 Teratech Corporation Ultrasound probe with integrated electronics
JP4408974B2 (ja) * 1998-12-09 2010-02-03 株式会社東芝 超音波トランスジューサ及びその製造方法
US6894425B1 (en) * 1999-03-31 2005-05-17 Koninklijke Philips Electronics N.V. Two-dimensional ultrasound phased array transducer
JP2001198126A (ja) * 2000-01-24 2001-07-24 Toshiba Corp 超音波プローブと、その製造方法
JP4521126B2 (ja) * 2000-02-02 2010-08-11 株式会社東芝 二次元アレイ型超音波プローブ
JP4445096B2 (ja) * 2000-04-25 2010-04-07 株式会社東芝 超音波プローブおよびこれを用いた超音波診断装置
US6589180B2 (en) * 2001-06-20 2003-07-08 Bae Systems Information And Electronic Systems Integration, Inc Acoustical array with multilayer substrate integrated circuits
US6582371B2 (en) * 2001-07-31 2003-06-24 Koninklijke Philips Electronics N.V. Ultrasound probe wiring method and apparatus
US6659955B1 (en) * 2002-06-27 2003-12-09 Acuson Corp. Medical diagnostic ultrasound imaging system transmitter control in a modular transducer system
US7053530B2 (en) * 2002-11-22 2006-05-30 General Electric Company Method for making electrical connection to ultrasonic transducer through acoustic backing material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677803B (zh) * 2007-05-29 2012-07-04 株式会社日立医药 超声波探头以及超声波诊断装置
CN103286056A (zh) * 2012-02-24 2013-09-11 精工爱普生株式会社 超声波换能器元件芯片、探测器以及电子设备
CN103286056B (zh) * 2012-02-24 2017-03-01 精工爱普生株式会社 超声波换能器元件芯片、探测器以及电子设备
CN103767731A (zh) * 2012-10-25 2014-05-07 精工爱普生株式会社 超声波测量装置、探头单元、探测器及诊断装置
CN103767732A (zh) * 2012-10-25 2014-05-07 精工爱普生株式会社 超声波测量装置、探头单元、探测器及诊断装置
US9863918B2 (en) 2012-10-25 2018-01-09 Seiko Epson Corporation Ultrasonic measurement device, head unit, probe, and diagnostic device
CN105073013A (zh) * 2013-03-21 2015-11-18 株式会社东芝 超声波探头
CN104337545A (zh) * 2013-07-26 2015-02-11 精工爱普生株式会社 超声波测定装置、头单元、探测器及图像装置
CN104337545B (zh) * 2013-07-26 2018-11-02 精工爱普生株式会社 超声波测定装置、头单元、探测器及图像装置
CN108618809A (zh) * 2017-03-22 2018-10-09 精工爱普生株式会社 超声波器件单元、超声波探头以及超声波装置
WO2020077639A1 (zh) * 2018-10-19 2020-04-23 深圳迈瑞生物医疗电子股份有限公司 超声面阵探头的背衬块、超声面阵探头及超声诊断成像设备
CN110743768A (zh) * 2019-09-27 2020-02-04 苏州佳世达电通有限公司 超音波探头
CN110743768B (zh) * 2019-09-27 2021-07-02 苏州佳世达电通有限公司 超音波探头

Also Published As

Publication number Publication date
US7654961B2 (en) 2010-02-02
JP4575108B2 (ja) 2010-11-04
CN1802036B (zh) 2012-01-11
JP2006110140A (ja) 2006-04-27
US20070244392A1 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
CN1802036A (zh) 超声波探头
US7952260B2 (en) Ultrasound imaging system
US8551003B2 (en) Ultrasonic probe and ultrasonic diagnosis device
US9907538B2 (en) High frequency ultrasound probe
CN103300883B (zh) 超声波探头及超声波探头的制造方法
US8410666B2 (en) Ultrasonic probe and method of manufacturing the same
KR101137262B1 (ko) 초음파 진단장치용 프로브 및 그 제조방법
CN1331842A (zh) 层叠式电子零件及其制造方法以及二维阵列状元件实装结构及其制造方法
WO2014148426A1 (ja) 超音波プローブ
JP2017018168A (ja) 超音波探触子
KR20100104534A (ko) 초음파 진단장치용 프로브 및 그 제조방법
JP2005511115A (ja) リボンケーブル取付けシステムを用いた超音波プローブ
JP2001292496A (ja) 二次元アレイ型超音波プローブ
CN1253077A (zh) 喷墨印头及其制造方法
CN1531070A (zh) 电子元件装置及其制造方法
JP4376533B2 (ja) 超音波探触子
JP2015524318A (ja) 超音波内視鏡及びその製造方法
JP4709500B2 (ja) 超音波プローブ及び超音波診断装置
JP2002224104A (ja) 超音波アレイ振動子
JP5454890B2 (ja) 超音波プローブ及び超音波プローブの製造方法
CN1913726A (zh) 超声波装置及其组装方法
JP2001309497A (ja) 超音波プローブおよびこれを用いた超音波診断装置
JP2019004251A (ja) コンベックス型超音波プローブ
CN1627513A (zh) 半导体装置和电子设备及其制造方法
JP2006122105A (ja) 超音波プローブ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160713

Address after: Japan Tochigi

Patentee after: TOSHIBA MEDICAL SYSTEMS Corp.

Address before: Tokyo, Japan

Patentee before: Toshiba Corp.

Patentee before: TOSHIBA MEDICAL SYSTEMS Corp.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120111

CF01 Termination of patent right due to non-payment of annual fee