CN116334948A - 聚吡咯/银/纤维素复合纸基材料及其制备方法与应用 - Google Patents

聚吡咯/银/纤维素复合纸基材料及其制备方法与应用 Download PDF

Info

Publication number
CN116334948A
CN116334948A CN202310197475.3A CN202310197475A CN116334948A CN 116334948 A CN116334948 A CN 116334948A CN 202310197475 A CN202310197475 A CN 202310197475A CN 116334948 A CN116334948 A CN 116334948A
Authority
CN
China
Prior art keywords
polypyrrole
silver
based material
cellulose composite
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310197475.3A
Other languages
English (en)
Other versions
CN116334948B (zh
Inventor
张文妍
孙荣爽
张婧
管航敏
黄春雷
马聪
葛纪雨
田文杰
郝凌云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinling Institute of Technology
Original Assignee
Jinling Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinling Institute of Technology filed Critical Jinling Institute of Technology
Priority to CN202310197475.3A priority Critical patent/CN116334948B/zh
Publication of CN116334948A publication Critical patent/CN116334948A/zh
Application granted granted Critical
Publication of CN116334948B publication Critical patent/CN116334948B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/221Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating pH value
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/12Pulp from non-woody plants or crops, e.g. cotton, flax, straw, bagasse
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/71Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes
    • D21H17/74Mixtures of material ; Pulp or paper comprising several different materials not incorporated by special processes of organic and inorganic material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明公开了一种聚吡咯/银/纤维素复合纸基材料,由负载有银颗粒的聚吡咯,在棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,形成导电通路制成。同时公开了该复合纸基材料的制备方法,该复合纸基材料在传感器上的应用。本发明通过合理的材料设计,构建了一种新型复合柔性纸基材料,它由负载有银颗粒的聚吡咯,在纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,形成导电通路;该聚吡咯/银/纤维素复合柔性纸基材料,可实现对pH、水雾、呼吸和指压这四种外界激励的响应。

Description

聚吡咯/银/纤维素复合纸基材料及其制备方法与应用
技术领域
本发明涉及柔性传感材料领域,尤其涉及一种聚吡咯/银/纤维素复合纸基材料及其制备方法与应用。
背景技术
传感器是将温度、湿度、声、光等物理化学刺激按照一定规律转化为电信号输出的一种检测装置。高性能、低成本的柔性电子器件在传感领域具有广泛的应用需求。传统的柔性电子器件多以聚合物材料为基底,合成过程复杂,且废弃器件难以生物降解,不可避免地会带来二次环境污染。
和以聚合物材料为基底的传感材料相比,以天然纤维素为基底的柔性传感材料,逐步受到关注并成为研究热点。纤维素是是地球上存量最丰富的天然高分子材料,具有良好的生物相容性和生物降解性、易于加工成多种形态的材料、还具有独特的表面电荷/化学性质、优异的物理机械性能等综合优点。以天然纤维素为基质的纸张,来源广泛,低成本,可再生利用,可生物降解,以其作为基底,可为柔性传感器的制备和性能提升提供新的发展方向,天然纤维素及其衍生物作为基底构建的柔性纸质基底传感材料,展现出独特的优势,在生物物理传感器、生物化学传感器、环境传感器以及自供电传感器等领域体现出较高的应用潜力。
然而,已报道的以天然纤维素为基底的柔性传感材料的制备方法,往往需要较为复杂的制备工序和较长的制备周期;另一方面,已报道的以天然纤维素为基底的柔性传感材料,往往只能对1~2种外界激励作出响应行为,尚难以对多种外界激励发生响应,这限制了此类材料的应用领域。
因此需要针对性开发新型天然纤维素为基底的柔性传感材料,简化制备方法,提高材料在多种领域的应用潜力。
发明内容
发明目的:针对现有技术的不足与缺陷,本发明提供一种聚吡咯/银/纤维素复合纸基材料及其制备方法与应用,通过合理的材料设计,构建了一种聚吡咯/银/纤维素复合柔性纸基材料,它由负载有银颗粒的聚吡咯,在纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,形成导电通路;该聚吡咯/银/纤维素复合柔性纸基材料,可实现对pH、水雾、呼吸和指压这四种外界激励的响应。
技术方案:本发明的聚吡咯/银/纤维素复合纸基材料,由负载有银颗粒的聚吡咯,在棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,形成导电通路制成。
其中,所述的棉质纤维素纤维为天然棉质纤维素纤维,直径为10μm-30μm。
其中,所述的负载有银颗粒的聚吡咯中,银颗粒与导电聚合物聚吡咯之间形成金属/有机半导体异质结。
其中,所述的聚吡咯的重量百分比为2%-4%,银颗粒的重量百分比为1%-2%,纤维素的重量百分比94%-97%。
其中,所述的表面负载有金属纳米颗粒的长余辉发光材料中,长余辉发光材料的重量百分比为99%-99.9%,表面负载有金属纳米颗粒的重量百分比为0.1%-1%。
本发明的聚吡咯/银/纤维素复合纸基材料的制备方法,包括下述步骤:
1)采用紫外辐照法,将银颗粒负载在聚吡咯上,形成银颗粒与导电聚合物聚吡咯之间的异质结,得到负载有银颗粒的聚吡咯;
2)将负载有银颗粒的聚吡咯分散在有机溶剂中;
3)利用棉质纤维素滤纸自身的毛细管力作为自驱力,促使分散在有机溶剂中的负载有银颗粒的聚吡咯,随着有机溶剂一起被驱入滤纸中,在棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,真空干燥,待有机溶剂自然挥发后,形成导电通路,即得聚吡咯/银/纤维素复合柔性纸基材料。
其中,所述的步骤1)中将醋酸银溶解于N-N二甲基甲酰胺溶液中,向该溶液中加入吡咯,并超声10min-20min,将该溶液置于8W的紫外灯下辐照4h-12h,即得负载有银颗粒的聚吡咯。
其中,所述的N-N二甲基甲酰胺溶液中,醋酸银的浓度为0.36mol/L-0.45mol/L,吡咯的浓度为0.5mol/L-1mol/L;所述的紫外灯的波长为365nm。
其中,所述的步骤3)中,将棉质纤维素滤纸浸入分散了负载有银颗粒的聚吡咯的有机溶剂中1s-5s后取出,即得聚吡咯/银/纤维素复合柔性纸基材料。
本发明的聚吡咯/银/纤维素复合纸基材料在传感器上的应用。
包括下述方面:
1)聚吡咯/银/纤维素复合柔性纸基材料体现出对pH刺激的响应,在不同pH值环境中,聚吡咯/银/纤维素复合柔性纸基材料的颜色发生变化,实现对pH的传感;
2)聚吡咯/银/纤维素复合柔性纸基材料体现出对水雾刺激的响应,当聚吡咯/银/纤维素复合柔性纸基材料接触到水雾时,电导率增大,关闭水雾时,电导率降低,且电导率变化可逆,实现对水雾的传感;
3)聚吡咯/银/纤维素复合柔性纸基材料体现出对呼吸的响应,当聚吡咯/银/纤维素复合柔性纸基材料接触到人呼出的气体时,电导率增大,停止呼气,电导率降低,且电导率变化可逆,实现对呼吸的传感;
4)聚吡咯/银/纤维素复合柔性纸基材料体现出对指压的响应,用手指按压聚吡咯/银/纤维素复合柔性纸基材料,电导率增大,停止按压,电导率降低,且电导率变化可逆,实现对指压的传感。
有益效果:与现有技术相比,本发明具有以下显著优点:本发明构建的聚吡咯/银/纤维素复合柔性纸基材料,成本低廉,具有良好的柔性、可折叠性及便携性。本发明利用聚吡咯与银之间的异质结,在不同pH值环境中,因载流子在聚吡咯与银之间的转移,导致聚吡咯中偶极子的浓度发生变化,聚吡咯/银/纤维素复合柔性纸基材料的颜色随之发生变化,可实现对pH的灵敏传感。
本发明构建的聚吡咯/银/纤维素复合柔性纸基材料,负载有银颗粒的聚吡咯与纤维素纤维之间形成有效连接和协同效应,使该材料对水雾、呼吸和指压具有灵敏、可逆的响应,体现出应用于湿度传感、呼吸传感和指压传感领域的潜力。
本发明聚吡咯/银/纤维素复合柔性纸基材料的制备,是利用棉质纤维素滤纸自身的毛细管力作为自驱力,促使分散在有机溶剂中的负载有银颗粒的聚吡咯,随着有机溶剂一起被驱入滤纸中,在棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,待有机溶剂自然挥发后,形成导电通路;无需特殊设备和苛刻条件,制备方法简单、工艺快速易行,容易实现大面积制备和规模化生产。
附图说明
图1为本发明的复合柔性纸基材料的制备流程图;
图2为本发明实施例1的复合柔性纸基材料的FESEM图;
图3为本发明实施例1的复合柔性纸基材料对pH的响应图及复合柔性纸基材料在pH=7和pH=8条件下的紫外-可见漫反射光谱图;
图4为本发明实施例2的复合柔性纸基材料对水雾的响应图;
图5为本发明实施例2的复合柔性纸基材料对水雾响应的机理图;
图6为本发明实施例3的复合柔性纸基材料对呼吸的响应图;
图7为本发明实施例3的复合柔性纸基材料对呼吸响应的机理图;
图8为本发明实施例3的复合柔性纸基材料对指压的响应图;
图9为本发明实施例3的复合柔性纸基材料对指压响应的机理图。
具体实施方式
下面结合附图及具体实施方式对本发明的技术方案做进一步的描述。
实施例1:
本实施例的聚吡咯/银/纤维素复合柔性纸基材料由负载有银颗粒的聚吡咯,在直径为10μm-30μm的天然棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,形成导电通路制成。具体制备方法如下:
1)将醋酸银溶解于N-N二甲基甲酰胺溶液中,醋酸银的浓度为0.36mol/L;向该溶液中加入吡咯,吡咯的浓度为0.5mol/L,超声10min,将该溶液置于功率为8W、波长为365nm的紫外灯下辐照4h,银离子引发吡咯单体的氧化聚合,银离子被还原为银单质,即得负载有银颗粒的聚吡咯,其中,银颗粒与导电聚合物聚吡咯之间形成金属/半导体异质结。
2)将负载有银颗粒的聚吡咯分散于N-N二甲基甲酰胺溶液中。
3)将棉质纤维素滤纸浸入负载有银颗粒的聚吡咯的N-N二甲基甲酰胺溶液中3s,利用棉质纤维素滤纸自身的毛细管力作为自驱力,促使分散在有机溶剂中的负载有银颗粒的聚吡咯,随着有机溶剂一起被驱入滤纸中,在棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,待有机溶剂自然挥发后,形成导电通路,即得聚吡咯/银/纤维素复合柔性纸基材料。
本实施例获得的聚吡咯/银/纤维素复合柔性纸基材料的形貌和尺寸如附图2所示。附图3是本实施例的聚吡咯/银/纤维素复合柔性纸基材料在不同pH刺激下的响应,以及聚吡咯/银/纤维素复合柔性纸基材料在pH=7和pH=8条件下的紫外-可见漫反射光谱图。
如附图3所示,在不同pH值环境中,聚吡咯/银/纤维素复合柔性纸基材料的颜色发生变化,可实现对pH的传感;从附图3中还可见,当pH从7增加至8,聚吡咯/银/纤维素复合柔性纸基材料上聚吡咯中的偶极子浓度发生变化,偶极子浓度变化主要是由于pH值变化引起的载流子在聚吡咯/银异质结之间的输运引起的,这种效应使聚吡咯/银/纤维素复合柔性纸基材料的颜色发生了显著的变化。
实施例2:
本实施例的聚吡咯/银/纤维素复合柔性纸基材料由负载有银颗粒的聚吡咯,在直径为10μm-30μm的天然棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,形成导电通路制成。具体制备方法如下:
1)将醋酸银溶解于N-N二甲基甲酰胺溶液中,醋酸银的浓度为0.45mol/L;向该溶液中加入吡咯,吡咯的浓度为1mol/L,超声20min,将该溶液置于功率为8W、波长为365nm的紫外灯下辐照12h,银离子引发吡咯单体的氧化聚合,银离子被还原为银单质,即得负载有银颗粒的聚吡咯,其中,银颗粒与导电聚合物聚吡咯之间形成金属/半导体异质结。
2)将负载有银颗粒的聚吡咯分散于N-N二甲基甲酰胺溶液中。
3)将棉质纤维素滤纸浸入负载有银颗粒的聚吡咯的N-N二甲基甲酰胺溶液中4s,利用棉质纤维素滤纸自身的毛细管力作为自驱力,促使分散在有机溶剂中的负载有银颗粒的聚吡咯,随着有机溶剂一起被驱入滤纸中,在棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,待有机溶剂自然挥发后,形成导电通路,即得聚吡咯/银/纤维素复合柔性纸基材料。
附图4是本实施例的聚吡咯/银/纤维素复合柔性纸基材料对水雾刺激的响应图。附图5是本实施例的聚吡咯/银/纤维素复合柔性纸基材料对水雾刺激响应的机理图。
从附图4中可见,聚吡咯/银/纤维素复合柔性纸基材料对水雾激励体现出灵敏的响应和传感行为,在3轮循环实验中体现出稳定的响应行为;当聚吡咯/银/纤维素复合柔性纸基材料接触到水雾时(状态为on),聚吡咯/银/纤维素复合柔性纸基材料电流增大,说明其载流子传递能力增强;移除水雾时(状态为off),聚吡咯/银/纤维素复合柔性纸基材料电流减小,说明其载流子传递能力降低。
如附图5所示,当聚吡咯/银/纤维素复合柔性纸基材料接触到水雾时(状态为on),天然纤维素纤维表面及聚吡咯表面会通过氢键等方式结合水分子,天然纤维素纤维和聚吡咯形成的网络结构会发生形变,形成新的导电通路,这种效应使聚吡咯/银/纤维素复合柔性纸基材料的载流子输运能力增强,电流增大;移除水雾时(状态为off),水分子逐渐从天然纤维素纤维和聚吡咯的表面挥发,天然纤维素纤维和聚吡咯恢复原状,导电通路减少,因而聚吡咯/银/纤维素复合柔性纸基材料的电流降低,载流子传递能力降低恢复到起始状态。
实施例3:
本实施例的聚吡咯/银/纤维素复合柔性纸基材料由负载有银颗粒的聚吡咯,在直径为10μm-30μm的天然棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,形成导电通路制成。具体制备方法如下:
1)将醋酸银溶解于N-N二甲基甲酰胺溶液中,醋酸银的浓度为0.40mol/L;向该溶液中加入吡咯,吡咯的浓度为0.8mol/L,超声20min,将该溶液置于功率为8W、波长为365nm的紫外灯下辐照8h,银离子引发吡咯单体的氧化聚合,银离子被还原为银单质,即得负载有银颗粒的聚吡咯,其中,银颗粒与导电聚合物聚吡咯之间形成金属/半导体异质结。
2)将负载有银颗粒的聚吡咯分散于N-N二甲基甲酰胺溶液中。
3)将棉质纤维素滤纸浸入负载有银颗粒的聚吡咯的N-N二甲基甲酰胺溶液中3s,利用棉质纤维素滤纸自身的毛细管力作为自驱力,促使分散在有机溶剂中的负载有银颗粒的聚吡咯,随着有机溶剂一起被驱入滤纸中,在棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,待有机溶剂自然挥发后,形成导电通路,即得聚吡咯/银/纤维素复合柔性纸基材料。
附图6是本实施例的聚吡咯/银/纤维素复合柔性纸基材料对呼吸的响应图。附图7是本实施例的聚吡咯/银/纤维素复合柔性纸基材料对呼吸响应的机理图。
从附图6中可见,聚吡咯/银/纤维素复合柔性纸基材料对呼吸体现出灵敏的响应和传感行为,在3轮循环实验中体现出稳定的响应行为;外加呼吸激励(状态为on),聚吡咯/银/纤维素复合柔性纸基材料电流增大,说明其载流子传递能力增强;移除呼吸激励(状态为off),聚吡咯/银/纤维素复合柔性纸基材料电流减小,说明其载流子传递能力降低。
如附图7所示,因呼吸中含有水分子和CO2分子,当聚吡咯/银/纤维素复合柔性纸基材料接触到呼吸出的气体时(状态为on),天然纤维素纤维表面及聚吡咯表面会通过氢键等方式结合水分子,天然纤维素纤维和聚吡咯会发生形变,形成新的导电通路;同时,CO2的吸附还会导致其表面pH值发生轻微变化、导致偶极子浓度的变化,这些效应使聚吡咯/银/纤维素复合柔性纸基材料的载流子输运能力增强,电流增大;移除呼吸激励时(状态为off),水分子和CO2逐渐从天然纤维素纤维和聚吡咯的表面挥发,天然纤维素纤维和聚吡咯恢复原状,偶极子浓度回复到起始状态,因而导电通路减少,聚吡咯/银/纤维素复合柔性纸基材料的电流降低,载流子传递能力降低恢复到起始状态。
实施例4:
本实施例的聚吡咯/银/纤维素复合柔性纸基材料由负载有银颗粒的聚吡咯,在直径为10μm-30μm的天然棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,形成导电通路制成。具体制备方法如下:
1)将醋酸银溶解于N-N二甲基甲酰胺溶液中,醋酸银的浓度为0.60mol/L;向该溶液中加入吡咯,吡咯的浓度为0.6mol/L,超声20min,将该溶液置于功率为8W、波长为365nm的紫外灯下辐照6h,银离子引发吡咯单体的氧化聚合,银离子被还原为银单质,即得负载有银颗粒的聚吡咯,其中,银颗粒与导电聚合物聚吡咯之间形成金属/半导体异质结。
2)将负载有银颗粒的聚吡咯分散于N-N二甲基甲酰胺溶液中。
3)将棉质纤维素滤纸浸入负载有银颗粒的聚吡咯的N-N二甲基甲酰胺溶液中5s,利用棉质纤维素滤纸自身的毛细管力作为自驱力,促使分散在有机溶剂中的负载有银颗粒的聚吡咯,随着有机溶剂一起被驱入滤纸中,在棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,待有机溶剂自然挥发后,形成导电通路,即得聚吡咯/银/纤维素复合柔性纸基材料。
附图8是本实施例的聚吡咯/银/纤维素复合柔性纸基材料对手指压力(指压)的响应图。附图9是本实施例的聚吡咯/银/纤维素复合柔性纸基材料对指压响应的机理图。
从附图8中可见,聚吡咯/银/纤维素复合柔性纸基材料对指压体现出灵敏的响应和传感行为,在3轮循环实验中体现出稳定的响应行为;外加指压激励(状态为on),聚吡咯/银/纤维素复合柔性纸基材料电流增大,说明其载流子传递能力增强;移除指压激励(状态为off),聚吡咯/银/纤维素复合柔性纸基材料电流减小,说明其载流子传递能力降低。
如附图9所示,用手指对聚吡咯/银/纤维素复合柔性纸基材料施加压力(状态为on)时,天然纤维素纤维表面及聚吡咯表面会被压缩,天然纤维素纤维和聚吡咯形成的网络结构发生形变,导电通路之间的空隙减小,连接更加紧密,这种效应使聚吡咯/银/纤维素复合柔性纸基材料的载流子输运能力增强,电流增大;停止指压激励时(状态为off),天然纤维素纤维和聚吡咯恢复原状,导电通路恢复原状,因而载流子传递能力降低恢复到起始状态,聚吡咯/银/纤维素复合柔性纸基材料的电流降低。
本发明有益效果分析:
上述实施例中,负载有银颗粒的聚吡咯在棉质纤维素纤维表面与空隙之中的自组装与复合,是利用棉质纤维素滤纸自身的毛细管力作为自驱力,促使分散在有机溶剂中的负载有银颗粒的聚吡咯,随着有机溶剂一起被驱入滤纸中,在棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,待有机溶剂自然挥发后,形成导电通路,无需特殊设备和苛刻条件,制备方法简单、工艺快速易行,容易实现大面积制备和规模化生产。
上述实施例中,负载有银颗粒的聚吡咯及纤维素纤维之间形成协同左右,使聚吡咯/银/纤维素复合柔性纸基材料体现出对pH、水雾、呼吸、指压的这四种外界激励的灵敏响应。该聚吡咯/银/纤维素复合柔性纸基材料,可实现对pH、水雾、呼吸和指压这四种外界激励的响应,包括:利用负载有银颗粒的聚吡咯在不同pH值环境中偶极子浓度的变化,实现对pH的传感;还利用水雾、呼吸和指压这三种外界刺激下,纤维素纤维表面的负载有银颗粒的聚吡咯导电通路的物理应变和化学应变,实现了对湿度、呼吸和指压这三类外界刺激的响应。其中:
1)银颗粒与导电聚合物聚吡咯之间形成金属/半导体异质结,随着pH值的变化,载流子在聚吡咯/银异质结之间发生迁移,使聚吡咯/银/纤维素复合柔性纸基材料上聚吡咯中的偶极子浓度发生变化,使得聚吡咯/银/纤维素复合柔性纸基材料的颜色因而出现显著变化,有效提高了对pH刺激响应的灵敏性。
2)负载有银颗粒的聚吡咯及天然纤维素纤维之间具有协同作用,在吸附和富集水分子的过程中,天然纤维素纤维和聚吡咯形成的网络结构会发生形变,形成新的导电通路,增强了聚吡咯/银/纤维素复合柔性纸基材料的载流子输运能力,使其电流增大,体现出对水雾的灵敏响应。
3)负载有银颗粒的聚吡咯及天然纤维素纤维之间具有协同作用,在呼吸激励下,天然纤维素纤维和聚吡咯形成的网络结构因吸附和富集水分子会发生形变,形成新的导电通路,同时,CO2的吸附还会导致其表面pH值发生轻微变化、导致偶极子浓度的变化,这些效应增强了聚吡咯/银/纤维素复合柔性纸基材料的载流子输运能力,使其体现出对呼吸的灵敏响应。
4)负载有银颗粒的聚吡咯及天然纤维素纤维之间具有协同作用,用手指对聚吡咯/银/纤维素复合柔性纸基材料施加压力,天然纤维素纤维表面及聚吡咯表面会被压缩,天然纤维素纤维和聚吡咯形成的网络结构发生形变,导电通路之间的空隙减小,连接更加紧密,这种效应使聚吡咯/银/纤维素复合柔性纸基材料的载流子输运能力增强,使其体现出对指压的灵敏响应。

Claims (10)

1.聚吡咯/银/纤维素复合纸基材料,其特征在于:由负载有银颗粒的聚吡咯,在棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,形成导电通路制成。
2.根据权利要求1所述的聚吡咯/银/纤维素复合纸基材料,其特征在于:所述的棉质纤维素纤维为天然棉质纤维素纤维,直径为10μm-30μm。
3.根据权利要求1所述的聚吡咯/银/纤维素复合纸基材料,其特征在于:所述的负载有银颗粒的聚吡咯中,银颗粒与导电聚合物聚吡咯之间形成金属/有机半导体异质结。
4.根据权利要求1所述的聚吡咯/银/纤维素复合纸基材料,其特征在于:所述的聚吡咯的重量百分比为2%-4%,银颗粒的重量百分比为1%-2%,纤维素的重量百分比94%-97%。
5.根据权利要求1-4中任一项所述的聚吡咯/银/纤维素复合纸基材料的制备方法,其特征在于:包括下述步骤:
1)采用紫外辐照法,将银颗粒负载在聚吡咯上,形成银颗粒与导电聚合物聚吡咯之间的异质结,得到负载有银颗粒的聚吡咯;
2)将负载有银颗粒的聚吡咯分散在有机溶剂中;
3)利用棉质纤维素滤纸自身的毛细管力作为自驱力,促使分散在有机溶剂中的负载有银颗粒的聚吡咯,随着有机溶剂一起被驱入滤纸中,在棉质纤维素纤维的表面自组装,填充纤维与纤维之间的空隙,真空干燥,待有机溶剂自然挥发后,形成导电通路,即得聚吡咯/银/纤维素复合柔性纸基材料。
6.根据权利要求5所述的聚吡咯/银/纤维素复合纸基材料的制备方法,其特征在于:所述的步骤1)中将醋酸银溶解于N-N二甲基甲酰胺溶液中,向该溶液中加入吡咯,并超声10min-20min,将该溶液置于8W的紫外灯下辐照4h-12h,即得负载有银颗粒的聚吡咯。
7.根据权利要求6所述的聚吡咯/银/纤维素复合纸基材料的制备方法,其特征在于:所述的N-N二甲基甲酰胺溶液中,醋酸银的浓度为0.36mol/L-0.45mol/L,吡咯的浓度为0.5mol/L-1mol/L;所述的紫外灯的波长为365nm。
8.根据权利要求5所述的聚吡咯/银/纤维素复合纸基材料的制备方法,其特征在于:所述的步骤3)中,将棉质纤维素滤纸浸入分散了负载有银颗粒的聚吡咯的有机溶剂中1s-5s后取出,即得聚吡咯/银/纤维素复合柔性纸基材料。
9.根据权利要求1-4中任一项所述的聚吡咯/银/纤维素复合纸基材料在传感器上的应用。
10.根据权利要求9所述的聚吡咯/银/纤维素复合纸基材料在传感器上的应用,其特征在于:包括下述方面:
1)聚吡咯/银/纤维素复合柔性纸基材料体现出对pH刺激的响应,在不同pH值环境中,聚吡咯/银/纤维素复合柔性纸基材料的颜色发生变化,实现对pH的传感;
2)聚吡咯/银/纤维素复合柔性纸基材料体现出对水雾刺激的响应,当聚吡咯/银/纤维素复合柔性纸基材料接触到水雾时,电导率增大,关闭水雾时,电导率降低,且电导率变化可逆,实现对水雾的传感;
3)聚吡咯/银/纤维素复合柔性纸基材料体现出对呼吸的响应,当聚吡咯/银/纤维素复合柔性纸基材料接触到人呼出的气体时,电导率增大,停止呼气,电导率降低,且电导率变化可逆,实现对呼吸的传感;
4)聚吡咯/银/纤维素复合柔性纸基材料体现出对指压的响应,用手指按压聚吡咯/银/纤维素复合柔性纸基材料,电导率增大,停止按压,电导率降低,且电导率变化可逆,实现对指压的传感。
CN202310197475.3A 2023-03-03 2023-03-03 聚吡咯/银/纤维素复合纸基材料及其制备方法与应用 Active CN116334948B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310197475.3A CN116334948B (zh) 2023-03-03 2023-03-03 聚吡咯/银/纤维素复合纸基材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310197475.3A CN116334948B (zh) 2023-03-03 2023-03-03 聚吡咯/银/纤维素复合纸基材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN116334948A true CN116334948A (zh) 2023-06-27
CN116334948B CN116334948B (zh) 2024-04-19

Family

ID=86888647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310197475.3A Active CN116334948B (zh) 2023-03-03 2023-03-03 聚吡咯/银/纤维素复合纸基材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN116334948B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163753A (ja) * 1989-11-22 1991-07-15 Ricoh Co Ltd 導電性高分子電極
US5871672A (en) * 1995-06-19 1999-02-16 Murphy; Oliver J. Electronically and ionically conducting polymer matrix
CA2562822A1 (en) * 2006-10-06 2008-04-06 The University Of New Brunswick Electrically conductive paper composite
JP2010190752A (ja) * 2009-02-18 2010-09-02 Kyushu Univ ガスセンサ及びガス検出装置
CN103319740A (zh) * 2013-07-18 2013-09-25 华东理工大学 一种快速组装Ag/PPy纳米复合薄膜的方法
KR20150138485A (ko) * 2014-05-29 2015-12-10 서울대학교산학협력단 표면적이 증대된 성게 모양의 전도성 고분자 나노입자 고감응성 화학센서의 제조방법
US20170135215A1 (en) * 2015-11-09 2017-05-11 The University Of Memphis Research Foundation Multilayer additive printed circuit
CN107144379A (zh) * 2017-04-28 2017-09-08 东华大学 一种电阻式压力分布织物传感器
CN107799325A (zh) * 2017-09-29 2018-03-13 武汉大学 一种基于Ag/PPy复合纳米材料印制超级电容器的制备方法
CN108914583A (zh) * 2018-07-17 2018-11-30 上海工程技术大学 一种耐水洗通透的导电聚吡咯/银复合棉织物及其制备方法
CN109112820A (zh) * 2018-07-17 2019-01-01 上海工程技术大学 一种通透耐水洗的导电聚吡咯/银复合棉织物及其制备方法
CN109369941A (zh) * 2018-10-22 2019-02-22 厦门理工学院 一种聚乳酸-聚吡咯/银复合抗菌薄膜及其制备方法
CN113417157A (zh) * 2021-06-18 2021-09-21 广东省科学院微生物研究所(广东省微生物分析检测中心) 一种超耐洗双功能可穿戴电子织物及其制备方法
CN115573179A (zh) * 2022-10-06 2023-01-06 青岛大学 提高纳米银/聚吡咯导电印墨在棉织物上附着性的方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163753A (ja) * 1989-11-22 1991-07-15 Ricoh Co Ltd 導電性高分子電極
US5871672A (en) * 1995-06-19 1999-02-16 Murphy; Oliver J. Electronically and ionically conducting polymer matrix
CA2562822A1 (en) * 2006-10-06 2008-04-06 The University Of New Brunswick Electrically conductive paper composite
JP2010190752A (ja) * 2009-02-18 2010-09-02 Kyushu Univ ガスセンサ及びガス検出装置
CN103319740A (zh) * 2013-07-18 2013-09-25 华东理工大学 一种快速组装Ag/PPy纳米复合薄膜的方法
KR20150138485A (ko) * 2014-05-29 2015-12-10 서울대학교산학협력단 표면적이 증대된 성게 모양의 전도성 고분자 나노입자 고감응성 화학센서의 제조방법
US20170135215A1 (en) * 2015-11-09 2017-05-11 The University Of Memphis Research Foundation Multilayer additive printed circuit
CN107144379A (zh) * 2017-04-28 2017-09-08 东华大学 一种电阻式压力分布织物传感器
CN107799325A (zh) * 2017-09-29 2018-03-13 武汉大学 一种基于Ag/PPy复合纳米材料印制超级电容器的制备方法
CN108914583A (zh) * 2018-07-17 2018-11-30 上海工程技术大学 一种耐水洗通透的导电聚吡咯/银复合棉织物及其制备方法
CN109112820A (zh) * 2018-07-17 2019-01-01 上海工程技术大学 一种通透耐水洗的导电聚吡咯/银复合棉织物及其制备方法
CN109369941A (zh) * 2018-10-22 2019-02-22 厦门理工学院 一种聚乳酸-聚吡咯/银复合抗菌薄膜及其制备方法
CN113417157A (zh) * 2021-06-18 2021-09-21 广东省科学院微生物研究所(广东省微生物分析检测中心) 一种超耐洗双功能可穿戴电子织物及其制备方法
CN115573179A (zh) * 2022-10-06 2023-01-06 青岛大学 提高纳米银/聚吡咯导电印墨在棉织物上附着性的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ATTIA: "One-step UV-induced modification of cellulose fabrics by polypyrrole/silver nanocomposite films", JOURNAL OF COLLOID AND INTERFACE SCIENCE, 29 November 2012 (2012-11-29), pages 1 *
K. FIROZ BABU: "One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property", CARBOHYDRATE POLYMERS, 16 July 2012 (2012-07-16), pages 1557 - 1563 *
王晓菲;万爱兰;: "紫外线辐照聚吡咯/银导电涤纶织物的制备", 纺织学报, no. 04, 15 April 2020 (2020-04-15) *

Also Published As

Publication number Publication date
CN116334948B (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
Wang et al. Sensors based on conductive polymers and their composites: a review
Gao et al. All paper-based flexible and wearable piezoresistive pressure sensor
Das et al. Polypyrrole and associated hybrid nanocomposites as chemiresistive gas sensors: A comprehensive review
Li et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets
Zhi et al. Flexible Ti3C2T x MXene/PANI/bacterial cellulose aerogel for e-skins and gas sensing
Wu et al. Extremely deformable, transparent, and high-performance gas sensor based on ionic conductive hydrogel
Sun et al. A wearable, waterproof, and highly sensitive strain sensor based on three-dimensional graphene/carbon black/Ni sponge for wirelessly monitoring human motions
US4699804A (en) Process for producing electrically conductive composite polymer article
Gao et al. Cellulosic triboelectric materials for stable energy harvesting from hot and humid conditions
CN102073428B (zh) 基于碳纳米管薄膜的电容式柔性透明触摸屏
CN111189383A (zh) 一种超疏水纸基应变传感器及其制备方法
Zheng et al. Ultrahigh sensitive, eco-friendly, transparent triboelectric nanogenerator for monitoring human motion and vehicle movement
CN106667451A (zh) 一种柔性脉搏传感器及其制备方法
Ma et al. Advances and challenges of cellulose functional materials in sensors
CN113720884A (zh) 可穿戴的导电薄膜传感器及其制备方法与应用
CN110776667A (zh) 一种压阻式传感器件材料及其制备方法和应用
Chen et al. Self-healing hydrogel sensors with multiple shape memory properties for human motion monitoring
CN110108759A (zh) 一种基于聚苯胺/半导体金属氧化物纳米复合薄膜的呼吸氨气传感器及其制备方法
CN109634020A (zh) 基于纳米纤维素-银纳米线的电致发光器件及其应用
Pasupuleti et al. Enhanced sensitivity of langasite-based surface acoustic wave CO gas sensor using highly porous Ppy@ PEDOT: PSS hybrid nanocomposite
CN116334948B (zh) 聚吡咯/银/纤维素复合纸基材料及其制备方法与应用
Song et al. Graphene-based flexible sensors for respiratory and airflow monitoring
Huang et al. Recent progress and applications of cellulose and its derivatives-based humidity sensors: A review
Zhang et al. Design of MWCNTs and rGO co‐decorated elastic core‐spun yarn towards multifunctional flexible strain sensor with low detection limit and wide working range
Oliveira et al. Processing of nanomaterials in Layer-by-Layer films: Potential applications in (bio) sensing and energy storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant