CN115287530A - 高焊接性能700MPa级稀土高强结构钢及其生产方法 - Google Patents

高焊接性能700MPa级稀土高强结构钢及其生产方法 Download PDF

Info

Publication number
CN115287530A
CN115287530A CN202210711785.8A CN202210711785A CN115287530A CN 115287530 A CN115287530 A CN 115287530A CN 202210711785 A CN202210711785 A CN 202210711785A CN 115287530 A CN115287530 A CN 115287530A
Authority
CN
China
Prior art keywords
equal
less
rare earth
percent
structural steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210711785.8A
Other languages
English (en)
Inventor
董伊康
齐建军
赵林林
孙力
赵燕青
刘需
石帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HBIS Co Ltd
Original Assignee
HBIS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HBIS Co Ltd filed Critical HBIS Co Ltd
Priority to CN202210711785.8A priority Critical patent/CN115287530A/zh
Publication of CN115287530A publication Critical patent/CN115287530A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开一种高焊接性能700MPa级稀土高强结构钢及其生产方法,属于稀土高强钢生产技术领域。生产方法包括转炉冶炼、LF精炼、RH精炼、连铸、热轧、超快冷、回火处理工序;超快冷工序,钢板的开冷温度740~830℃,冷却速率≥25℃/s,终冷温度≤200℃;回火处理工序,回火温度为580~630℃,回火后钢板空冷。本发明通过合理的化学成分设计及生产工艺,获得具有良好的组织均匀性和低温韧性的700MPa级稀土高强钢,焊接冲击性能良好。

Description

高焊接性能700MPa级稀土高强结构钢及其生产方法
技术领域
本发明属于稀土高强钢生产技术领域,具体涉及一种高焊接性能700MPa级稀土高强结构钢及其生产方法。
背景技术
随着工业技术的快速发展,钢结构件逐渐向大型化和轻量化发展,对钢铁材料的要求体现在高强度、高韧性等方面。高强钢强度的提升依靠添加Nb、V、Ti等合金元素,并匹配相应的控轧控冷及热处理工艺。目前高强钢广泛应用于高层建筑、输油管道、海洋平台、压力容器和工程机械等领域,而这些应用领域的构件逐渐趋向于复杂化,通常由大量简单的构件焊接而成,因此高强钢的应用推广极大受限于材料本身的焊接加工性能。但是,高强钢中合金元素的添加虽然保证了材料本身的强度,但是较高的合金含量极大的影响了材料的焊接性能,主要表现在焊接热影响区的性能劣化。
现阶段改善焊接热影响区的手段主要有两大类,一方面通过性能的改善提高材料本身的焊接性能,另一方面通过低焊接热输入、焊前预热及焊后处理的焊接工艺改善焊接热影响区力学性能。但是采用焊接工艺改善热影响区力学性能的工序复杂、生产效率低、成本高。
中国专利公开号CN109930070A的文献,其公开了一种利用稀土提高低碳当量钢板焊接热影响区韧性的方法,但是母材强度在490MPa左右,焊接热输入量较大,冲击功偏低。中国专利公开号CN111893240A的文献,其公开了一种利用稀土提高Nb、Ti微合金钢焊接性能的方法,通过微合金化提升了钢板强度,其强度能够达到700MPa及以上,但是在热处理阶段的淬火及回火温度温度值较高,能耗较大。中国专利公开号CN112626423A的文献,其公开一种提高稀土高强钢焊接性能的生产工艺,其强度可达700MPa,生产成本低,但是其焊接评测过程中焊前需要预热至60℃,在焊接方面增加了使用成本,实际作业效率受影响。
为了适应工程机械、建筑构件的大型化和复杂化趋势,满足重大装备和工程对高强结构钢的强度、韧性和焊接性能的要求,急需开发一种良好焊接性能和强韧性的高强度钢板。
发明内容
本发明提供了一种高焊接性能700MPa级稀土高强结构钢及其生产方法。采用低碳设计,以及轧后超快冷工艺等合理的生产工序,在保证钢板强度的同时,提高钢板的冲击韧性。
为了解决上述技术问题,本发明采用如下的技术方案:高焊接性能700MPa级稀土高强结构钢,所述高强结构钢的化学成分质量百分比为C:0.05~0.11%,Si:0.15~0.3%,Mn:1.25~1.55%,P≤0.0015%,S≤0.005%,Cr:0.15~0.35%,Mo:0.1~0.3%,Nb:0.015~0.035%,V:0.02~0.06%,Ti:0.01~0.035%,Cu:0.25~0.45%,Ni:0.125~0.225%,B:0.0015~0.0025%,Ce:0.002~0.008%,Als:0.025~0.045%,其余为Fe和其他不可避免的杂质。
本发明所述高强结构钢的化学成分质量百分比为C:0.07~0.10%,Si:0.2~0.3%,Mn:1.35~1.50%,P≤0.0015%,S≤0.005%,Cr:0.2~0.3%,Mo:0.2~0.3%,Nb:0.020~0.030%,V:0.02~0.04%,Ti:0.02~0.030%,Cu:0.30~0.40%,Ni:0.15~0.20%,B:0.0015~0.0025%,Ce:0.004~0.006%,Als:0.025~0.045%,其余为Fe和其他不可避免的杂质。
本发明所述高强结构钢的化学成分质量百分比为C:0.08%,Si:0.25%,Mn:1.50%,P≤0.0015%,S≤0.005%,Cr:0.25%,Mo:0.25%,Nb:0.025%,V:0.03%,Ti:0.025%,Cu:0.40%,Ni:0.20%,B:0.0020%,Ce:0.005%,Als:0.025%,其余为Fe和其他不可避免的杂质。
本发明所述高强结构钢的母材屈服强度≥700MPa,抗拉强度≥810MPa,延伸率≥15%,-20℃纵向冲击功≥180J。
本发明所述高强结构钢采用MAG焊接工艺,无需预热,焊缝处的低温冲击功≥100J,热输入量优选为25KJ/cm。
本发明还提供一种上述高焊接性能700MPa级稀土高强结构钢的生产方法,所述生产方法包括转炉冶炼、LF精炼、RH精炼、连铸、热轧、超快冷、回火处理工序;所述超快冷工序,钢板的开冷温度740~830℃,冷却速率≥25℃/s,终冷温度≤200℃;所述回火处理工序,回火温度为580~630℃,回火后钢板空冷。
本发明所述转炉炼钢工序:铁水入转炉温度≥1300℃,转炉终点P≤0.015%,S≤0.008%,吹氧冶炼。
本发明所述LF精炼工序:采用氧化物冶金技术对钢液造渣和脱硫,出钢氧含量≤0.002%,S≤0.003%,温度≥1580℃;所述RH精炼工序:RH真空处理时间≥23min,然后加入稀土Ce合金,稀土Ce合金加入后保证真空循环时间≥15min,吹氩搅拌时间≥8min。
本发明所述连铸工序:浇铸温度≥1525℃,连铸过程中保证氩气吹扫压力为0.5MPa,连铸坯厚度230mm。
本发明所述热轧工序,采用两阶段控轧,第一阶段开轧温度≥1130℃,终轧温度≥950℃,累计压下率65%~72%;第二阶段开轧温度850~920℃,终轧温度800~870℃,单道次压下率≥14%。
本发明为了保证钢板的综合力学性能和焊后焊缝处的低温韧性,各元素的有益效果如下:
C:强化钢板性能,但是碳含量过高会降低钢板的焊接性,为了防止无预热焊接时出现的冷裂纹,应当避免高碳含量带来的较多硬质脆性相产生。
Si:固溶强化提高钢的强度,硬度,避免过高含量带来的塑性和表面质量劣化。
Mn:强韧化常规元素,能够降低奥氏体向铁素体转变温度,细化热轧态铁素体晶粒尺寸,但是过高易导致焊接热影响区裂纹敏感性。
Cr、Mo和B:固溶强化元素和强碳化物形成元素,提高钢的淬透性,但是过高成本增加,同时降低晶界强度,显著降低钢板的低温脆性。
Nb、V和Ti:复合微合金设计,有利于析出强化,细化晶粒,提高钢的强度和韧性,并利用Nb与B的综合作用提高析出强化和晶界偏聚。
Cu:回火工艺中析出细小的,以析出强化的形式进一提高强度。
Ni:再次保证低温冲击韧性,同时防止钢的热裂。
Ce:稀土元素,基于氧化物冶金技术控制钢种夹杂物的种类、数量和尺寸,在焊接过程中利用细小的夹杂物钉扎奥氏体晶界,抑制粗晶,促进针状铁素体生成。
本发明与现有技术相比,具有下列显著的优点和效果:
1、本发明采用低碳设计,保证钢板良好的焊接性能,采用Nb、V和Ti的复合微合金化设计,提高强度和韧性,辅以Cr、Mo和B综合提高钢的淬透性,Cu保证回火过程析出强化改善钢材性能,Ni保证低温冲击韧性的同时防止钢的热裂,稀土元素Ce保证良好的焊接组织,综合的到焊接性能和强韧性良好的高强钢。
2、本发明采用轧后超快冷工艺,在工序上能够有效降低能耗,效果上可以通过冷却速率的控制使得钢材最终组织为贝氏体+马氏体复相组织,其中贝氏体的切变转变能够在奥氏体晶界上形核并贯穿奥氏体晶粒,从而限制马氏体在较小区域内发生相变,细化马氏体组织且继承奥氏体加工过程中的高密度位错,提高强度。回火处理后使得贝氏体+马氏体组织粗化,原奥氏体晶界级板条束间析出碳化物,提高钢的冲击韧性。
3、本发明RH精炼过程中加入适量稀土Ce元素,热轧和后处理采用TMCP技术配合超快冷+回火工艺得到具有良好的组织均匀性和低温韧性的700MPa级稀土高强钢,焊接后焊缝处低温冲击功≥100J,冲击性能良好。
具体实施方式
下面结合具体实施例对本发明作进一步详细的说明。
实施例1-10
本发明高焊接性能700MPa级稀土高强结构钢生产工艺流程包括:转炉冶炼、LF精炼、RH精炼、连铸、热轧、超快冷、低温回火处理工序。具体操作步骤如下:
(1)转炉炼钢工序,铁水入转炉温度≥1300℃,转炉终点P≤0.015%,S≤0.008%,吹氧冶炼。各实施例工艺参数控制见表1。
表1. 实施例1-10转炉炼钢工序参数
Figure DEST_PATH_IMAGE002
(2)LF精炼工序,采用氧化物冶金技术对钢液造渣和脱氧,出钢氧含量≤0.003%,S≤0.003%,温度≥1580℃。各实施例工艺参数控制见表2。
表2. 实施例1-10LF精炼工序参数
Figure DEST_PATH_IMAGE004
(3)RH精炼工序,RH真空处理时间≥23min,一般在15~18min后加入稀土Ce合金,稀土合金加入后保证真空循环时间≥15min,吹氩搅拌时间≥8min。各实施例工艺参数控制见表3。
表3. 实施例1-10钢板化学成分及质量百分含量参数
Figure DEST_PATH_IMAGE006
(4)连铸工序,连铸过程中保证氩气压力0.5MPa,浇铸温度≥1525℃,连铸坯厚度230mm。各实施例工艺参数控制见表4。
表4. 实施例1-10连铸工序参数
Figure DEST_PATH_IMAGE008
(5)热轧工序,采用两阶段控轧,第一阶段粗轧开轧温度≥1130℃,终轧温度≥950℃,累计压下率65%~72%;第二阶段精轧开轧温度850~920℃,终轧温度800~870℃,单道次压下率≥14%。各实施例工艺参数控制见表5。
表5. 实施例1-10热轧工序参数
Figure DEST_PATH_IMAGE010
(6)超快冷工序,钢板的开冷温度740~830℃,冷却速率≥25℃/s,终冷温度≤200℃。各实施例工艺参数控制见表6。
(7)低温回火工序,低温回火温度为580-630℃,回火后钢板空冷。各实施例工艺参数控制见表6。
表6. 实施例1-10超快冷参数
Figure DEST_PATH_IMAGE012
表7为本发明实施例1-10钢板化学成分及质量百分含量。
表8为本发明实施例1-10钢板的力学性能数据。
表9实施例1-10钢板经过MAG焊后性能评价。
表7. 实施例1-10钢板化学成分及质量百分含量
Figure DEST_PATH_IMAGE014
表8. 实施例1-10钢板的力学性能数据列表
Figure DEST_PATH_IMAGE016
表9. 实施例1-10钢板经过MAG焊后性能评价
Figure DEST_PATH_IMAGE018
以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.高焊接性能700MPa级稀土高强结构钢,其特征在于,所述高强结构钢的化学成分质量百分比为C:0.05~0.11%,Si:0.15~0.3%,Mn:1.25~1.55%,P≤0.0015%,S≤0.005%,Cr:0.15~0.35%,Mo:0.1~0.3%,Nb:0.015~0.035%,V:0.02~0.06%,Ti:0.01~0.035%,Cu:0.25~0.45%,Ni:0.125~0.225%,B:0.0015~0.0025%,Ce:0.002~0.008%,Als:0.025~0.045%,其余为Fe和其他不可避免的杂质。
2.根据权利要求1所述的高焊接性能700MPa级稀土高强结构钢,其特征在于,所述高强结构钢的化学成分质量百分比为C:0.07~0.10%,Si:0.2~0.3%,Mn:1.35~1.50%,P≤0.0015%,S≤0.005%,Cr:0.2~0.3%,Mo:0.2~0.3%,Nb:0.020~0.030%,V:0.02~0.04%,Ti:0.02~0.030%,Cu:0.30~0.40%,Ni:0.15~0.20%,B:0.0015~0.0025%,Ce:0.004~0.006%,Als:0.025~0.045%,其余为Fe和其他不可避免的杂质。
3.根据权利要求1所述的高焊接性能700MPa级稀土高强结构钢,其特征在于,所述高强结构钢的化学成分质量百分比为C:0.08%,Si:0.25%,Mn:1.50%,P≤0.0015%,S≤0.005%,Cr:0.25%,Mo:0.25%,Nb:0.025%,V:0.03%,Ti:0.025%,Cu:0.40%,Ni:0.20%,B:0.0020%,Ce:0.005%,Als:0.025%,其余为Fe和其他不可避免的杂质。
4.根据权利要求1-3任意一项所述的高焊接性能700MPa级稀土高强结构钢,其特征在于,所述高强结构钢的母材屈服强度≥700MPa,抗拉强度≥810MPa,延伸率≥15%,-20℃纵向冲击功≥180J。
5.根据权利要求1-3任意一项所述的高焊接性能700MPa级稀土高强结构钢的生产方法,其特征在于,所述高强结构钢采用MAG焊接工艺,无需预热,焊缝处的低温冲击功≥100J。
6.基于权利要求1-5任意一项所述高焊接性能700MPa级稀土高强结构钢的生产方法,其特征在于,所述生产方法包括转炉冶炼、LF精炼、RH精炼、连铸、热轧、超快冷、回火处理工序;
所述超快冷工序,钢板的开冷温度740~830℃,冷却速率≥25℃/s,终冷温度≤200℃;
所述回火处理工序,回火温度为580~630℃,回火后钢板空冷。
7.根据权利要求6所述的高焊接性能700MPa级稀土高强结构钢的生产方法,其特征在于,所述转炉炼钢工序:铁水入转炉温度≥1300℃,转炉终点P≤0.015%,S≤0.008%,吹氧冶炼。
8.根据权利要求6所述的高焊接性能700MPa级稀土高强结构钢的生产方法,其特征在于,所述LF精炼工序:采用氧化物冶金技术对钢液造渣和脱硫,出钢氧含量≤0.002%,S≤0.003%,温度≥1580℃;
所述RH精炼工序:RH真空处理时间≥23min,然后加入稀土Ce合金,稀土Ce合金加入后保证真空循环时间≥15min,吹氩搅拌时间≥8min。
9.根据权利要求6-8任意一项所述的高焊接性能700MPa级稀土高强结构钢的生产方法,其特征在于,所述连铸工序:浇铸温度≥1525℃,连铸过程中保证氩气吹扫压力为0.5MPa,连铸坯厚度230mm。
10.根据权利要求6-8任意一项所述的高焊接性能700MPa级稀土高强结构钢的生产方法,其特征在于,所述热轧工序,采用两阶段控轧,第一阶段开轧温度≥1130℃,终轧温度≥950℃,累计压下率65%~72%;第二阶段开轧温度850~920℃,终轧温度800~870℃,单道次压下率≥14%。
CN202210711785.8A 2022-06-22 2022-06-22 高焊接性能700MPa级稀土高强结构钢及其生产方法 Pending CN115287530A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210711785.8A CN115287530A (zh) 2022-06-22 2022-06-22 高焊接性能700MPa级稀土高强结构钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210711785.8A CN115287530A (zh) 2022-06-22 2022-06-22 高焊接性能700MPa级稀土高强结构钢及其生产方法

Publications (1)

Publication Number Publication Date
CN115287530A true CN115287530A (zh) 2022-11-04

Family

ID=83820903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210711785.8A Pending CN115287530A (zh) 2022-06-22 2022-06-22 高焊接性能700MPa级稀土高强结构钢及其生产方法

Country Status (1)

Country Link
CN (1) CN115287530A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116334488A (zh) * 2023-03-23 2023-06-27 广西柳州钢铁集团有限公司 一种具有高低温冲击韧性q690d钢板及其生产方法
CN117144260A (zh) * 2023-08-07 2023-12-01 武汉钢铁有限公司 一种抗拉强度≥750MPa焊接结构用钢及生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932063A (zh) * 2005-09-12 2007-03-21 鞍钢股份有限公司 高强度低焊接裂纹敏感性钢厚板及其生产方法
CN102080190A (zh) * 2011-02-14 2011-06-01 东北大学 一种屈服强度700MPa级工程机械用调质钢板及其制备方法
US20110262298A1 (en) * 2009-01-15 2011-10-27 Yoshiyuki Watanabe Steel for welded structures excellent in high temperature strength and low temperature toughness and method of production of same
US20160017466A1 (en) * 2013-04-04 2016-01-21 Jfe Steel Corporation Hot-rolled steel sheet and method for producing the same (as amended)
CN105970097A (zh) * 2016-07-21 2016-09-28 内蒙古包钢钢联股份有限公司 稀土处理屈服强度700MPa级防爆高强钢及生产方法
CN109594016A (zh) * 2018-11-22 2019-04-09 包头钢铁(集团)有限责任公司 一种含稀土的q690cf高强钢板及其制备方法
CN111893240A (zh) * 2020-07-28 2020-11-06 北京科技大学 一种利用稀土提高Nb、Ti微合金钢焊接性能的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932063A (zh) * 2005-09-12 2007-03-21 鞍钢股份有限公司 高强度低焊接裂纹敏感性钢厚板及其生产方法
US20110262298A1 (en) * 2009-01-15 2011-10-27 Yoshiyuki Watanabe Steel for welded structures excellent in high temperature strength and low temperature toughness and method of production of same
CN102080190A (zh) * 2011-02-14 2011-06-01 东北大学 一种屈服强度700MPa级工程机械用调质钢板及其制备方法
US20160017466A1 (en) * 2013-04-04 2016-01-21 Jfe Steel Corporation Hot-rolled steel sheet and method for producing the same (as amended)
CN105970097A (zh) * 2016-07-21 2016-09-28 内蒙古包钢钢联股份有限公司 稀土处理屈服强度700MPa级防爆高强钢及生产方法
CN109594016A (zh) * 2018-11-22 2019-04-09 包头钢铁(集团)有限责任公司 一种含稀土的q690cf高强钢板及其制备方法
CN111893240A (zh) * 2020-07-28 2020-11-06 北京科技大学 一种利用稀土提高Nb、Ti微合金钢焊接性能的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116334488A (zh) * 2023-03-23 2023-06-27 广西柳州钢铁集团有限公司 一种具有高低温冲击韧性q690d钢板及其生产方法
CN117144260A (zh) * 2023-08-07 2023-12-01 武汉钢铁有限公司 一种抗拉强度≥750MPa焊接结构用钢及生产方法

Similar Documents

Publication Publication Date Title
JP6198937B2 (ja) 超高度の靭性および優れた溶接性を伴うht550鋼板ならびにその製造方法
CN101153370B (zh) 一种可大线能量焊接的低合金高强度钢板及其制造方法
JP5476763B2 (ja) 延性に優れた高張力鋼板及びその製造方法
CN108914006B (zh) 一种厚度方向性能优良的超高强度调质钢板及其制造方法
WO2016095720A1 (zh) 一种屈服强度800MPa级别高强钢及其生产方法
JP2009127069A (ja) 高靭性ラインパイプ用鋼板およびその製造方法
CN115287530A (zh) 高焊接性能700MPa级稀土高强结构钢及其生产方法
CN114277307B (zh) 一种1100MPa级工程机械用高强钢及其生产方法
CN114277306B (zh) 一种1000MPa级工程机械用高强钢及其生产方法
CN118086780B (zh) 一种抗酸管线钢及其制造方法
CN114107822A (zh) 一种15.9级高强度螺栓用钢及其生产方法和热处理方法
JP5008879B2 (ja) 強度および低温靭性の優れた高張力鋼板および高張力鋼板の製造方法
JPH02125812A (ja) 溶接熱影響部靭性の優れたCu添加鋼の製造法
CN117626117A (zh) 一种含镁氧化物的易焊接海洋工程用钢板及其制备方法
CN111979393A (zh) 一种低温韧性优良的热轧高强钢板及其制备方法
CN113604736B (zh) 一种屈服强度800MPa级高强度中厚板及其制备方法
CN114318120B (zh) 一种800MPa级工程机械用高强钢及其生产方法
CN114318129B (zh) 一种890MPa级易焊接无缝钢管及其制造方法
AU2020455074A1 (en) 800 MPa construction machinery medium-manganese medium-thickness steel and manufacturing method therefor
CN106011361B (zh) 提高焊接性能的Mo-Nb-Ti-Mg钢冶炼方法
CN116121643B (zh) 一种冷弯性能优良屈服强度690MPa级高强钢板及其制造方法
CN113444975B (zh) 一种可焊前免预热低碳当量600MPa级高强水电钢及其制造方法
CN114774804B (zh) 一种600hb级热轧低成本耐磨钢板及其制造方法
JP3502809B2 (ja) 靭性の優れた鋼材の製造方法
CN119433350A (zh) 一种抗疲劳耐低温海洋工程用钢及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221104

RJ01 Rejection of invention patent application after publication