CN115286513A - Methylamine lead iodide perovskite powder and preparation method and application thereof - Google Patents

Methylamine lead iodide perovskite powder and preparation method and application thereof Download PDF

Info

Publication number
CN115286513A
CN115286513A CN202210961497.8A CN202210961497A CN115286513A CN 115286513 A CN115286513 A CN 115286513A CN 202210961497 A CN202210961497 A CN 202210961497A CN 115286513 A CN115286513 A CN 115286513A
Authority
CN
China
Prior art keywords
methylamine lead
methylamine
composite material
lead iodide
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210961497.8A
Other languages
Chinese (zh)
Inventor
吴晓宏
崔凯
李杨
洪杨
秦伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Chongqing Research Institute of Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Chongqing Research Institute of Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology, Chongqing Research Institute of Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202210961497.8A priority Critical patent/CN115286513A/en
Publication of CN115286513A publication Critical patent/CN115286513A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/86Separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding

Abstract

The invention discloses methylamine lead iodide perovskite powder as well as a preparation method and application thereof, belonging to the technical field of functional material preparation, in particular to the technical field of radiation shielding materials. The invention provides a method for regulating and controlling radiation shielding performance of a methylamine lead calcium titanium iodide/epoxy resin composite material by using crystal face engineering. The invention adjusts the crystal face composition of the filler by changing the solvothermal reaction time, further improves the radiation shielding performance of the composite material, is different from the traditional method for adjusting the type and the size of the filler, and creatively provides a design idea for improving the radiation shielding performance of the composite material by adjusting the crystal face composition of the filler. In addition, the invention constructs a high-energy ray shielding material by changing the crystal face composition of the filler and compounding the filler with the epoxy resin, and a large number of interfaces of the filler and the resin exist in the composite material, so that a structure with alternately arranged high-Z materials is constructed, and the bremsstrahlung radiation generated by the action of high-energy electrons and the high-Z materials is inhibited to a certain extent.

Description

Methylamine lead iodide perovskite powder and preparation method and application thereof
Technical Field
The invention relates to methylamine lead iodide perovskite powder and a preparation method and application thereof, belongs to the technical field of functional material preparation, and particularly relates to the technical field of radiation shielding materials.
Background
With the comprehensive development of Mars detection tasks, deep space exploration enters a new era, and higher requirements are put forward on the service life of the spacecraft detector. However, various ionizing radiations in the space environment can damage the detector carried on the spacecraft, so that the performance of the detector is reduced and even the detector fails, and the service life of the detector is seriously shortened. In addition, with the rapid development of nuclear industry and nuclear medicine, high-energy ionizing radiation is inevitably used to meet the needs of industry and medical treatment, increasing the radiation exposure risk of workers, possibly causing irreversible damage to the human body, resulting in conditions of dizziness, fatigue, loss of appetite, alopecia, and the like. Therefore, the service life and public health of the detector are endangered by high-energy ionizing radiation, and the risk brought by the ionizing radiation is urgently reduced.
The main approaches to reducing the hazard of high energy ionizing radiation are to shorten the time of exposure to the radiation, increase the distance from the radiation source and use shielding materials. Among them, shielding materials are the most effective and flexible method for reducing the hazard of high-energy ionizing radiation. The X/gamma ray is typical high-energy ionizing radiation and has the characteristics of short wavelength and strong penetrability. Conventionally, the most commonly used X/y ray shielding materials, such as lead, tungsten, tantalum, concrete, etc., have high atomic number, high density and heavy weight, which hinder further commercial application.
The polymer-based composite material has the advantages of light weight, flexibility, excellent physical, mechanical and radiation resistance and the like, and provides a promising alternative for lead and concrete in the radiation shielding field. Over the past few years, researchers have reported the effect of filler type, filler morphology, and filler particle size on the radiation shielding performance of composite materials. However, the prior art often ignores that crystallographic composition may be another key factor affecting radiation attenuation.
Disclosure of Invention
The invention provides a method for regulating and controlling radiation shielding performance of a methylamine lead iodide perovskite/epoxy resin composite material by using crystal face engineering, and particularly provides methylamine lead iodide perovskite powder as well as a preparation method and application thereof.
The technical scheme of the invention is as follows:
one of the purposes of the invention is to provide a preparation method of methylamine lead iodide perovskite powder, which comprises the following steps:
adding lead acetate, hydroiodic acid and methylamine into isopropanol, magnetically stirring uniformly to obtain a precursor solution, transferring the precursor solution into a reaction kettle, heating, centrifuging, washing and drying the product after the reaction is finished, and obtaining methylamine lead iodide perovskite powder.
Further limiting, the ratio of lead acetate, hydroiodic acid, methylamine, and isopropanol is 0.12.
Further limiting, the heating treatment temperature in the reaction kettle is 120 ℃, and the time is 0.5-2.5 h.
Further limiting, the heating treatment temperature in the reaction kettle is 120 ℃, and the time is 0.5-2.5 h.
The other purpose of the invention is to provide methylamine lead iodide perovskite powder prepared by the method, and the methylamine lead iodide calcium titanium ore powder is used for preparing a composite material.
Further defined, the method of making the composite material is: mixing methylamine lead iodide perovskite powder with epoxy resin, grinding the mixed solution by using a three-roll grinder to obtain slurry, pouring the slurry into a prefabricated mould, and curing to obtain the composite material with radiation shielding performance.
Further limited, the mass ratio of methylamine lead iodide perovskite powder to epoxy resin is (1-3) to (7-9).
Further, the polishing treatment time is limited to 5 to 20min.
Further limiting, the curing treatment temperature is 30-120 ℃, and the time is 2-12 h.
The composite material prepared by the method is used for shielding ionizing radiation in a space environment.
The invention adjusts the crystal face composition of the filler by changing the solvothermal reaction time, further improves the radiation shielding performance of the composite material, is different from the traditional method for adjusting the type and the size of the filler, and creatively provides a design idea for improving the radiation shielding performance of the composite material by adjusting the crystal face composition of the filler. Compared with the prior art, the application also has the following beneficial effects:
(1) The invention adopts a simple solvothermal method, effectively adjusts the crystal face composition of the product through the adjustment of process parameters, further improves the radiation shielding performance of the composite material, and is simpler and more convenient to operate.
(2) According to the method, the crystal face composition of the filler is changed, the high-energy ray shielding material is compounded with the epoxy resin, the advantages of all the components are combined, a large number of interfaces of the filler and the resin exist in the composite material, a structure with high-low Z materials arranged alternately is constructed, and the bremsstrahlung generated by the action of high-energy electrons and the high-Z materials is inhibited to a certain degree.
(3) The composite material provided by the invention has a simple preparation process and is suitable for large-scale production.
Drawings
FIG. 1 is an XRD spectrum of methylamine lead iodide powder prepared in examples 1 to 5;
FIG. 2 shows the crystal face ratio test results of methylamine lead iodide powders prepared in examples 1 to 5;
FIG. 3 is a linear attenuation coefficient of a composite material prepared using methylamine lead iodide powder with different crystal faces;
FIG. 4 shows the results of electron density distribution simulation of the 110 crystal plane;
fig. 5 shows the result of simulation of electron density distribution of the 220 crystal plane.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is further described in detail with reference to the following embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
The experimental procedures used in the following examples are conventional unless otherwise specified. The materials, reagents, methods and apparatus used, unless otherwise specified, are conventional in the art and are commercially available to those skilled in the art.
The epoxy resins in the following examples and comparative examples are all prepared by mixing a K-9761 agent A and an agent B according to a mass ratio of 2.
Example 1:
the specific process for preparing methylamine lead iodide powder in this example is as follows:
firstly, 120mg of white powder of lead acetate trihydrate is accurately weighed in a clean beaker, 2mL of 50wt% hydriodic acid solution is added into the beaker, the mixture is stirred until the powder is completely dissolved in the hydriodic acid solution, 60mL of isopropanol solvent is added into the beaker, the mixture is stirred uniformly, 600 mu L of 30wt% methylamine solution is added into the beaker by using a liquid transfer gun, and the stirring is continued for 30min. And secondly, pouring the prepared mixed precursor into a 100mL polytetrafluoroethylene reaction kettle lining, putting the mixture into a reaction kettle, putting the reaction kettle into an oven, preserving the heat for 0.5h at the temperature of 120 ℃, taking the reaction kettle out, cooling the reaction kettle to the room temperature, centrifuging the reaction product, and continuously washing the reaction product for 3 times by using an isopropanol solution to obtain methylamine lead iodide powder.
The method for preparing the composite material by adopting the methylamine lead iodide powder comprises the following specific steps:
mixing the obtained methylamine lead iodide powder with epoxy resin, wherein the mass ratio of methylamine lead iodide powder to epoxy resin is 2:8. and fully grinding the two by using a three-roll grinder, wherein the treatment time is 10min, pouring the ground mixture into a prefabricated mould after grinding to form a composite material with the thickness of 1mm, placing the composite material in a vacuum drying oven, and curing for 6h at 60 ℃ to obtain the methylamine lead iodide/epoxy resin composite material.
Example 2:
the specific process for preparing methylamine lead iodide powder in this example is as follows:
firstly, 120mg of white powder of lead acetate trihydrate is accurately weighed in a clean beaker, 2mL of 50wt% hydriodic acid solution is added into the beaker, the mixture is stirred until the powder is completely dissolved in the hydriodic acid solution, 60mL of isopropanol solvent is added into the beaker, the mixture is stirred uniformly, 600 mu L of 30wt% methylamine solution is added into the beaker by using a liquid transfer gun, and the stirring is continued for 30min. And secondly, pouring the prepared mixed precursor into a 100mL polytetrafluoroethylene reaction kettle liner, putting the mixture into a reaction kettle, putting the reaction kettle into an oven, preserving the heat for 1.0h at 120 ℃, taking out the reaction kettle, cooling the reaction kettle to room temperature, centrifuging a reaction product, and continuously washing the reaction product for 3 times by using an isopropanol solution to obtain methylamine lead iodide powder.
The methylamine lead iodide powder obtained by the method is used for preparing the composite material, and the specific process is as follows:
mixing the obtained methylamine lead iodide powder with epoxy resin, wherein the mass ratio of methylamine lead iodide powder to epoxy resin is 2:8. and fully grinding the two by using a three-roll grinder, wherein the treatment time is 10min, pouring the ground mixture into a prefabricated mould after grinding to form a composite material with the thickness of 1mm, placing the composite material in a vacuum drying oven, and curing for 6h at 60 ℃ to obtain the methylamine lead iodide/epoxy resin composite material.
Example 3:
the specific process for preparing methylamine lead iodide powder in this example is as follows:
firstly, 120mg of white powder of lead acetate trihydrate is accurately weighed in a clean beaker, 2mL of 50wt% hydriodic acid solution is added into the beaker, the mixture is stirred until the powder is completely dissolved in the hydriodic acid solution, 60mL of isopropanol solvent is added into the beaker, the mixture is stirred uniformly, 600 mu L of 30wt% methylamine solution is added into the beaker by using a liquid transfer gun, and the stirring is continued for 30min. And secondly, pouring the prepared mixed precursor into a 100mL polytetrafluoroethylene reaction kettle lining, putting the mixture into a reaction kettle, putting the reaction kettle into an oven, preserving the heat for 1.5h at the temperature of 120 ℃, taking the reaction kettle out, cooling the reaction kettle to the room temperature, centrifuging the reaction product, and continuously washing the reaction product for 3 times by using an isopropanol solution to obtain methylamine lead iodide powder.
The methylamine lead iodide powder obtained by the method is used for preparing the composite material, and the specific process is as follows:
mixing the obtained methylamine lead iodide powder with epoxy resin, wherein the mass ratio of methylamine lead iodide powder to epoxy resin is 2:8. and fully grinding the two by using a three-roll grinder, wherein the processing time is 10min, pouring the ground mixture into a prefabricated mould after grinding to form a composite material with the thickness of 1mm, placing the composite material in a vacuum drying oven, and curing the composite material for 6h at the temperature of 60 ℃ to obtain the methylamine lead iodide/epoxy resin composite material with different crystal face compositions.
Example 4:
the specific process for preparing methylamine lead iodide powder in this example is as follows:
firstly, accurately weighing 120mg of white lead acetate trihydrate powder in a clean beaker, adding 2mL of 50wt% hydriodic acid solution into the beaker, stirring until the powder is completely dissolved in the hydriodic acid solution, adding 60mL of isopropanol solvent into the beaker, uniformly stirring, adding 600 mu L of 30wt% methylamine solution into the beaker by using a liquid transfer gun, and continuing stirring for 30min. And secondly, pouring the prepared mixed precursor into a 100mL polytetrafluoroethylene reaction kettle liner, putting the mixture into a reaction kettle, putting the reaction kettle into an oven, preserving the heat for 2.0 hours at the temperature of 120 ℃, taking out the reaction kettle, cooling the reaction kettle to room temperature, centrifuging a reaction product, and continuously washing the reaction product for 3 times by using an isopropanol solution to obtain methylamine lead iodide powder.
The method for preparing the composite material by adopting the methylamine lead iodide powder comprises the following specific steps:
mixing the obtained methylamine lead iodide powder with epoxy resin, wherein the mass ratio of methylamine lead iodide powder to epoxy resin is 2:8. and fully grinding the two by using a three-roll grinder, wherein the treatment time is 10min, pouring the ground mixture into a prefabricated mould after grinding to form a composite material with the thickness of 1mm, placing the composite material in a vacuum drying oven, and curing for 6h at 60 ℃ to obtain the methylamine lead iodide/epoxy resin composite material with different crystal face compositions.
Example 5:
the specific process for preparing methylamine lead iodide powder in this example is as follows:
firstly, accurately weighing 120mg of white lead acetate trihydrate powder in a clean beaker, adding 2mL of 50wt% hydriodic acid solution into the beaker, stirring until the powder is completely dissolved in the hydriodic acid solution, adding 60mL of isopropanol solvent into the beaker, uniformly stirring, adding 600 mu L of 30wt% methylamine solution into the beaker by using a liquid transfer gun, and continuing stirring for 30min. And secondly, pouring the prepared mixed precursor into a 100mL polytetrafluoroethylene reaction kettle liner, putting the mixture into a reaction kettle, putting the reaction kettle into an oven, preserving the heat for 2.5 hours at the temperature of 120 ℃, taking out the reaction kettle, cooling the reaction kettle to room temperature, centrifuging a reaction product, and continuously washing the reaction product for 3 times by using an isopropanol solution to obtain methylamine lead iodide powder.
The methylamine lead iodide powder obtained by the method is used for preparing the composite material, and the specific process is as follows:
mixing the obtained methylamine lead iodide powder with epoxy resin, wherein the mass ratio of methylamine lead iodide powder to epoxy resin is 2:8. and fully grinding the two by using a three-roll grinder, wherein the treatment time is 10min, pouring the ground mixture into a prefabricated mould after grinding to form a composite material with the thickness of 1mm, placing the composite material in a vacuum drying oven, and curing for 6h at 60 ℃ to obtain the methylamine lead iodide/epoxy resin composite material with different crystal face compositions.
Example of effects:
the methylamine lead iodide powders obtained in examples 1 to 5 were subjected to structural characterization:
fig. 1 shows an XRD spectrum, and as can be seen from fig. 1, diffraction peaks of the prepared powder XRD at 14.2 °, 20.1 °, 23.5 °, 24.2 °, 28.5 °, 31.8 °, 40.5 ° and 43.1 ° respectively correspond to (110), (200), (211), (202), (220), (222), (f) and (f)224 Crystal planes of (314) and (314) show that MAPbI is successfully prepared 3 And (3) powder.
FIG. 2 shows the results of the crystal face ratio test, and it can be seen from FIG. 2 that MAPbI is prepared 3 The crystal face composition of the powder changes along with the prolonging of the solvothermal reaction time. (110) And (220) the crystal face ratio is increased and then reduced along with the increase of the reaction time, which shows that the solvothermal reaction time can effectively regulate and control the crystal face ratio of the powder.
The results of the radiation shielding performance tests on the composite materials respectively obtained in examples 1 to 5 are shown in fig. 3, and it can be seen from the graph that the linear attenuation coefficient of the prepared composite material increases with the increase of the crystal face ratio of (110) and (220), which indicates that the radiation shielding performance of the composite material can be effectively improved by the crystal face regulation.
The electron density of the crystal plane of the methylamine lead iodide powder obtained in examples 1 to 5 was simulated, and as shown in fig. 4 and 5, it can be seen from the figure that the (110) crystal plane is mainly composed of Pb and I elements, the atomic arrangement is compact, and the electron density is
Figure BDA0003793418130000051
And (220) plane is composed of I element and has electron density of
Figure BDA0003793418130000052
The greater electron density facilitates the interaction of radiation with the material, and therefore increasing the (110) and (220) lattice face ratios can enhance the radiation shielding properties of the composite.
Although the present invention has been described with reference to the preferred embodiments, it should be understood that various changes and modifications can be made therein by those skilled in the art without departing from the spirit and scope of the invention as defined in the appended claims.

Claims (10)

1. A preparation method of methylamine lead iodide perovskite powder is characterized by adding lead acetate, hydroiodic acid and methylamine into isopropanol and uniformly stirring by magnetic force to obtain a precursor solution, transferring the precursor solution into a reaction kettle for heating treatment, and centrifuging, washing and drying a product after the reaction is finished to obtain methylamine lead iodide perovskite powder.
2. The method for preparing methylamine lead iodide perovskite powder according to claim 1, wherein the ratio of lead acetate, hydroiodic acid, methylamine and isopropanol is 0.12.
3. The method for preparing methylamine lead iodide perovskite powder according to claim 1, wherein the heating treatment temperature in a reaction kettle is 120 ℃ and the time is 0.5-2.5 h.
4. The method for preparing methylamine lead iodide perovskite powder according to claim 1, wherein the drying treatment temperature is 60-80 ℃ and the time is 6-12 h.
5. Methylamine lead iodide perovskite powder prepared by the method of claim 1.
6. A method for preparing a composite material by using the methylamine lead iodide perovskite powder as claimed in claim 5 is characterized in that methylamine lead iodide perovskite powder is mixed with epoxy resin, the mixed solution is ground by a three-roll grinder to obtain slurry, the slurry is poured into a prefabricated mould, and the composite material with radiation shielding performance is obtained after curing.
7. The application of the methylamine lead calcium iodide titanium ore powder body as claimed in claim 1, wherein the mass ratio of methylamine lead iodide perovskite powder body to epoxy resin is (1-3) to (7-9).
8. The application of the methylamine lead calcium iodide titanium ore powder body as claimed in claim 1, wherein the grinding treatment time is 5-20 min.
9. The application of the methylamine lead calcium iodide titanium ore powder body as claimed in claim 1, wherein the curing treatment temperature is 30-120 ℃ and the time is 2-12 h.
10. A composite material prepared by the method of claim 6 for shielding ionizing radiation in a space environment.
CN202210961497.8A 2022-08-11 2022-08-11 Methylamine lead iodide perovskite powder and preparation method and application thereof Pending CN115286513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210961497.8A CN115286513A (en) 2022-08-11 2022-08-11 Methylamine lead iodide perovskite powder and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210961497.8A CN115286513A (en) 2022-08-11 2022-08-11 Methylamine lead iodide perovskite powder and preparation method and application thereof

Publications (1)

Publication Number Publication Date
CN115286513A true CN115286513A (en) 2022-11-04

Family

ID=83827786

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210961497.8A Pending CN115286513A (en) 2022-08-11 2022-08-11 Methylamine lead iodide perovskite powder and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN115286513A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106632454A (en) * 2016-12-23 2017-05-10 中国工程物理研究院材料研究所 Boron-containing perovskite material serving as ray shielding material and preparation method thereof
CN110330434A (en) * 2019-08-02 2019-10-15 中国建材国际工程集团有限公司 A kind of organic inorganic hybridization perovskite material and preparation method thereof
CN111925292A (en) * 2020-10-13 2020-11-13 江西省科学院能源研究所 Preparation method of perovskite microcrystal
CN113524658A (en) * 2021-06-22 2021-10-22 西安交通大学 Additive manufacturing method of light shielding body with multi-ray shielding and self-generating functions
CN113881312A (en) * 2021-09-30 2022-01-04 哈尔滨工业大学 Rare earth-high Z-graphene-composite coating for aerospace-grade chip total dose effect protection and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106632454A (en) * 2016-12-23 2017-05-10 中国工程物理研究院材料研究所 Boron-containing perovskite material serving as ray shielding material and preparation method thereof
CN110330434A (en) * 2019-08-02 2019-10-15 中国建材国际工程集团有限公司 A kind of organic inorganic hybridization perovskite material and preparation method thereof
CN111925292A (en) * 2020-10-13 2020-11-13 江西省科学院能源研究所 Preparation method of perovskite microcrystal
CN113524658A (en) * 2021-06-22 2021-10-22 西安交通大学 Additive manufacturing method of light shielding body with multi-ray shielding and self-generating functions
CN113881312A (en) * 2021-09-30 2022-01-04 哈尔滨工业大学 Rare earth-high Z-graphene-composite coating for aerospace-grade chip total dose effect protection and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
安骏,吴海霞,辛寅昌: "防高能辐射的树脂/纳米铅复合材料的制备及研究" *

Similar Documents

Publication Publication Date Title
US2818605A (en) Method of making a refractory material
CN108424107B (en) Radiation-proof concrete
CN113201180B (en) Neutron and gamma ray composite shielding material and preparation method thereof
KR101952817B1 (en) Concrete composite for improving neutron shielding ability
CN108046789A (en) A kind of preparation method of electromagnetic shielding composite material
CN113990540B (en) Flash device resistant to heavy ion single event effect and preparation method thereof
CN105161144B (en) A kind of preparation method of nuclear reactor neutron absorber material metatitanic acid dysprosium pellet
CN115286513A (en) Methylamine lead iodide perovskite powder and preparation method and application thereof
CN115368130A (en) A 2 B 2 O 7 Composite coating of type high-entropy ceramic powder and shielding gamma ray and preparation method thereof
CN105734385A (en) Iron-based dysprosium iron oxide material and application thereof
CN108424017A (en) A kind of radiation shield concrete active aggregates and preparation method thereof
TWI804800B (en) Neutron moderator material and method for producing the same
CN115231571B (en) Mxene-metal/rare earth oxide-boride composite material for shielding neutrons and gamma rays and preparation method thereof
CN112895621B (en) Anti-radiation gradient composite material and preparation method and application thereof
CN115304982B (en) Packaging shielding coating for spaceborne integrated circuit and preparation method thereof
Wang et al. Pressure-densified new rhombohedral phase of EuSn 2 As 2
CN104649605B (en) A kind of radiation shield concrete protective agent and preparation method thereof
CN106750820B (en) Low-density neutron shielding material and preparation method thereof
CN113896640A (en) Theory and experiment combined perovskite material crystal structure optimization method
CN108484088B (en) Ettringite radiation-proof concrete
CN110156410A (en) Steel slag steel cuttings radiation shield concrete and preparation method thereof
Cui et al. Construction of MAPbBr3/EP composites with blocking path for high-performance gamma-rays shielding
Al Hassan et al. Monte Carlo simulations of gamma-rays shielding with phthalonitrile-tungsten borides composites
CN108794012B (en) Rich in10B boron carbide sputtering target material and preparation method and application thereof
CN105568378B (en) A kind of preparation method for possessing multi-functional and compound with regular structure lead borate whisker

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination