CN114990630A - Preparation method and application of ZIF-67-derived hollow bimetal MOF/nitrogen-doped carbon composite material electrocatalyst - Google Patents
Preparation method and application of ZIF-67-derived hollow bimetal MOF/nitrogen-doped carbon composite material electrocatalyst Download PDFInfo
- Publication number
- CN114990630A CN114990630A CN202210579480.6A CN202210579480A CN114990630A CN 114990630 A CN114990630 A CN 114990630A CN 202210579480 A CN202210579480 A CN 202210579480A CN 114990630 A CN114990630 A CN 114990630A
- Authority
- CN
- China
- Prior art keywords
- zif
- nitrogen
- preparation
- doped carbon
- carbon composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 50
- 239000002131 composite material Substances 0.000 title claims abstract description 50
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- 239000010411 electrocatalyst Substances 0.000 title claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims abstract description 18
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000001263 FEMA 3042 Substances 0.000 claims abstract description 14
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 claims abstract description 14
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 claims abstract description 14
- 229940033123 tannic acid Drugs 0.000 claims abstract description 14
- 235000015523 tannic acid Nutrition 0.000 claims abstract description 14
- 229920002258 tannic acid Polymers 0.000 claims abstract description 14
- YSWBFLWKAIRHEI-UHFFFAOYSA-N 4,5-dimethyl-1h-imidazole Chemical compound CC=1N=CNC=1C YSWBFLWKAIRHEI-UHFFFAOYSA-N 0.000 claims abstract description 13
- 150000001868 cobalt Chemical class 0.000 claims abstract description 13
- 239000002184 metal Chemical class 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 150000003839 salts Chemical class 0.000 claims abstract description 7
- 238000001354 calcination Methods 0.000 claims abstract description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 48
- 239000013384 organic framework Substances 0.000 claims description 46
- 238000003756 stirring Methods 0.000 claims description 40
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 27
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 17
- 239000013246 bimetallic metal–organic framework Substances 0.000 claims description 13
- 238000001035 drying Methods 0.000 claims description 12
- 238000005406 washing Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- 229910052786 argon Inorganic materials 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 238000003763 carbonization Methods 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 claims description 5
- 159000000003 magnesium salts Chemical class 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 150000002815 nickel Chemical class 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 150000003751 zinc Chemical class 0.000 claims description 3
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 9
- 230000001681 protective effect Effects 0.000 abstract description 8
- 238000010000 carbonizing Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 59
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 description 25
- 239000007787 solid Substances 0.000 description 22
- 238000005119 centrifugation Methods 0.000 description 13
- 239000003575 carbonaceous material Substances 0.000 description 12
- 239000011259 mixed solution Substances 0.000 description 12
- 230000003197 catalytic effect Effects 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 244000178870 Lavandula angustifolia Species 0.000 description 8
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 8
- 239000012467 final product Substances 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000001102 lavandula vera Substances 0.000 description 8
- 235000018219 lavender Nutrition 0.000 description 8
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 229910052573 porcelain Inorganic materials 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 150000001721 carbon Chemical class 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- LSSAUVYLDMOABJ-UHFFFAOYSA-N [Mg].[Co] Chemical compound [Mg].[Co] LSSAUVYLDMOABJ-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000004502 linear sweep voltammetry Methods 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- MFUVDXOKPBAHMC-UHFFFAOYSA-N magnesium;dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MFUVDXOKPBAHMC-UHFFFAOYSA-N 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- 229910002441 CoNi Inorganic materials 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/095—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/061—Metal or alloy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inert Electrodes (AREA)
Abstract
Description
技术领域technical field
本发明属于电催化材料领域,具体涉及一种基于ZIF-67衍生的空心双金属MOF/氮掺杂碳复合材料电催化剂制备方法及其应用。The invention belongs to the field of electrocatalytic materials, and in particular relates to a preparation method and application of a hollow bimetallic MOF/nitrogen-doped carbon composite material electrocatalyst based on ZIF-67.
背景技术Background technique
随着科学社会的不断发展,全球范围内的化石能源在不断的被消耗,且其在消耗过程中造成的生态环境问题也愈发严重,故人们开始不断开发可持续和可再生能源,以此来替代化石燃料。氢能就是这样一种可持续的、可再生的能源。电催化全解水是产生氢能这种绿色清洁能源的有效可持续的途径之一,它包括两个半电极反应:析氢反应(HER)和析氧反应(OER),但这两种反应动力学过程都很缓慢,尤其是OER是四电子转移过程,所以需要高效的电催化剂来减少多电子反应所造成的额外能量损失。With the continuous development of scientific society, fossil energy is constantly being consumed around the world, and the ecological and environmental problems caused by the consumption process are becoming more and more serious. Therefore, people have begun to develop sustainable and renewable energy. to replace fossil fuels. Hydrogen energy is one such sustainable, renewable energy source. Electrocatalytic total water splitting is one of the effective and sustainable ways to generate hydrogen energy as a green and clean energy. It includes two semi-electrode reactions: hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The chemical processes are slow, especially OER is a four-electron transfer process, so efficient electrocatalysts are required to reduce the extra energy loss caused by multi-electron reactions.
RuO2和Pt是公认的析氧反应和析氢反应效果优异的电催化剂,但由于其成本高、稀缺性,限制了其大规模的商业应用。因此,开发出效率高且适用范围广的非贵金属电催化剂是当今科研界关注的热点。RuO2 and Pt are recognized as excellent electrocatalysts for the oxygen evolution reaction and hydrogen evolution reaction, but their large-scale commercial applications are limited due to their high cost and scarcity. Therefore, the development of non-precious metal electrocatalysts with high efficiency and wide applicability is a hot spot in the current scientific research community.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于ZIF-67衍生的空心双金属MOF/氮掺杂碳复合材料电催化剂制备方法及其应用,该空心双金属有机框架/氮掺杂碳复合材料电催化剂具有十分优异的电化学催化性能,在析氢反应和析氧反应中都具有很好的催化活性,进而能增强析氢反应和析氧反应。The purpose of the present invention is to provide a preparation method and application of a hollow bimetallic MOF/nitrogen-doped carbon composite electrocatalyst based on ZIF-67. The hollow bimetallic organic framework/nitrogen-doped carbon composite electrocatalyst has excellent The excellent electrochemical catalytic performance has good catalytic activity in both the hydrogen evolution reaction and the oxygen evolution reaction, which can further enhance the hydrogen evolution reaction and the oxygen evolution reaction.
为实现上述目的,本发明采取的技术方案如下:To achieve the above object, the technical scheme adopted by the present invention is as follows:
基于ZIF-67衍生的空心双金属MOF/氮掺杂碳复合材料电催化剂的制备方法,包括以下步骤:The preparation method of a hollow bimetallic MOF/nitrogen-doped carbon composite electrocatalyst derived from ZIF-67 includes the following steps:
(1)将钴盐和除钴盐以外的其他金属盐溶解在醇溶剂中,并在搅拌的条件下向其中加入二甲基咪唑的醇溶液,两者混合均匀后静置生长,再经洗涤、干燥,得到双金属有机框架材料CoM-ZIF-67;(1) Dissolve the cobalt salt and other metal salts except the cobalt salt in the alcohol solvent, and add the alcohol solution of dimethylimidazole to it under stirring conditions, mix the two evenly, let stand for growth, and then wash , and dried to obtain a bimetallic organic framework material CoM-ZIF-67;
(2)将双金属有机框架材料CoM-ZIF-67溶解在醇溶剂中,并在搅拌的条件下向其中加入单宁酸溶液,加入完成后持续搅拌一定时间,再经洗涤、干燥,得到空心双金属有机框架材料CoM-ZIF-67-TA;(2) Dissolving the bimetallic organic framework material CoM-ZIF-67 in an alcohol solvent, adding a tannic acid solution to it under stirring conditions, stirring continuously for a certain period of time after the addition, and then washing and drying to obtain a hollow Bimetal organic framework material CoM-ZIF-67-TA;
(3)将空心双金属有机框架材料CoM-ZIF-67-TA在惰性气氛下煅烧碳化,即可得到基于ZIF-67衍生的空心双金属MOF/氮掺杂碳复合材料电催化剂。(3) The hollow bimetallic organic framework material CoM-ZIF-67-TA was calcined and carbonized in an inert atmosphere to obtain a hollow bimetallic MOF/nitrogen-doped carbon composite electrocatalyst based on ZIF-67.
步骤(1)中,钴盐、除钴盐以外的其他金属盐、二甲基咪唑的摩尔比为1:(1~100):(1~100),优选为1:1~5:5~40,更优选为1:1:32。In step (1), the molar ratio of cobalt salt, other metal salts except cobalt salt, and dimethylimidazole is 1:(1~100):(1~100), preferably 1:1~5:5~ 40, more preferably 1:1:32.
步骤(1)中,所述钴盐在醇溶剂中的浓度为0.01~0.2M,优选为0.05~0.1M;所述二甲基咪唑的醇溶液浓度为0.1~1.0M,优选为0.2~0.5M。In step (1), the concentration of the cobalt salt in the alcohol solvent is 0.01-0.2M, preferably 0.05-0.1M; the alcohol solution concentration of the dimethylimidazole is 0.1-1.0M, preferably 0.2-0.5 M.
步骤(1)中,所述静置生长的条件为10℃~60℃静置生长1~24h,优选为20~35℃静置生长18~24h,更优选为25℃静置生长24h。In step (1), the conditions for the stationary growth are 10-60°C for 1-24 hours, preferably 20-35°C for 18-24 hours, more preferably 25°C for 24 hours.
步骤(1)中,所述钴盐选自硝酸钴、氯化钴中的任意一种或两种;所述除钴盐以外的其他金属盐选自镍盐、镁盐、锌盐中的任意一种。In step (1), the cobalt salt is selected from any one or both of cobalt nitrate and cobalt chloride; the other metal salts except the cobalt salt are selected from any one of nickel salt, magnesium salt, and zinc salt. A sort of.
所述镍盐选自硝酸镍、氯化镍中的任意一种或两种。The nickel salt is selected from any one or both of nickel nitrate and nickel chloride.
所述镁盐选自硝酸镁、氯化镁中的任意一种或两种。The magnesium salt is selected from any one or two of magnesium nitrate and magnesium chloride.
所述锌盐选自硝酸锌、氯化锌中的任意一种或两种。The zinc salt is selected from any one or two of zinc nitrate and zinc chloride.
所述醇溶剂选自甲醇、乙醇中的任意一种或两种。The alcohol solvent is selected from any one or two of methanol and ethanol.
步骤(2)中,CoM-ZIF-67和单宁酸的质量比为1:(0.1~10),优选为1:1~5,更优选为1:2.5。In step (2), the mass ratio of CoM-ZIF-67 and tannic acid is 1:(0.1-10), preferably 1:1-5, more preferably 1:2.5.
步骤(2)中,所述单宁酸溶液为单宁酸的水溶液,其浓度为1~10g/L,优选为4~7g/L;CoM-ZIF-67在醇溶剂中的浓度为0.01~0.1g/mL,优选为0.05g/mL。In step (2), the tannic acid solution is an aqueous solution of tannic acid, and its concentration is 1-10 g/L, preferably 4-7 g/L; the concentration of CoM-ZIF-67 in the alcohol solvent is 0.01-10 g/L 0.1 g/mL, preferably 0.05 g/mL.
步骤(2)中,持续搅拌的条件为10℃~60℃搅拌1~60min,优选为20℃~35℃搅拌5~15min,更优选为25℃搅拌10min。In step (2), the conditions for continuous stirring are 10°C to 60°C for 1 to 60 minutes, preferably 20°C to 35°C for 5 to 15 minutes, and more preferably 25°C for 10 minutes.
步骤(3)中,所述惰性气氛为氩气或氮气;所述煅烧碳化的条件为以1~10℃/min的升温速率升温至300℃~900℃保温1~8h,优选为以1~5℃/min的升温速率升温至450℃~580℃保温1.5~3h,更优选为以2℃/min的升温速率升温至500℃保温2h。In step (3), the inert atmosphere is argon or nitrogen; the conditions for the calcination and carbonization are to raise the temperature to 300°C to 900°C at a heating rate of 1 to 10°C/min for 1 to 8 hours, preferably 1 to 10°C. The temperature is raised to 450°C to 580°C at a heating rate of 5°C/min for 1.5 to 3 hours, and more preferably, the temperature is raised to 500°C at a heating rate of 2°C/min for 2 hours.
本发明还提供了根据所述的制备方法制备得到的基于ZIF-67衍生的空心双金属MOF/氮掺杂碳复合材料电催化剂,其为空心的十二面体框架结构。The present invention also provides a hollow bimetallic MOF/nitrogen-doped carbon composite electrocatalyst based on ZIF-67 derived according to the preparation method, which is a hollow dodecahedron frame structure.
本发明还提供了所述基于ZIF-67衍生的空心双金属MOF/氮掺杂碳复合材料电催化剂作为HER或OER反应的催化剂的应用。The present invention also provides the application of the ZIF-67-derived hollow bimetallic MOF/nitrogen-doped carbon composite electrocatalyst as a catalyst for HER or OER reaction.
本发明提供的基于ZIF-67衍生的空心双金属MOF/氮掺杂碳复合材料电催化剂,首先在ZIF-67中引入第二相金属,再将其在单宁酸溶液中进行蚀刻变为空心的十二面体框架结构,最后在惰性气氛中进行碳化制备得到。本发明以ZIF-67为前驱体,不仅在后续煅烧中提供框架结构,还为材料本身提供了氮源、碳源与钴源,第二相金属的加入和氮掺杂碳材料的异质结构之间协同作用,又是互补,可更好的降低全解水反应的活化能。For the hollow bimetallic MOF/nitrogen-doped carbon composite electrocatalyst derived from ZIF-67 provided by the present invention, the second phase metal is first introduced into ZIF-67, and then it is etched in a tannic acid solution to become hollow The dodecahedral framework structure is finally prepared by carbonization in an inert atmosphere. The present invention uses ZIF-67 as a precursor, which not only provides a framework structure in the subsequent calcination, but also provides nitrogen source, carbon source and cobalt source for the material itself, the addition of second-phase metal and the heterostructure of nitrogen-doped carbon material The synergistic effect and complementarity between them can better reduce the activation energy of the total water splitting reaction.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明提供的基于ZIF-67衍生的空心双金属MOF/氮掺杂碳复合材料电催化剂的制备方法简单,其形貌为空心的十二面体框架结构,其具有大的比表面积,能够为催化剂参与HER或OER反应提供更多的活性位点,对OER和HER均具有优异的电化学催化活性。The preparation method of the hollow bimetallic MOF/nitrogen-doped carbon composite material electrocatalyst derived from ZIF-67 provided by the present invention is simple, and its morphology is a hollow dodecahedral frame structure, which has a large specific surface area, and can be used as a catalyst Participating in the HER or OER reaction provides more active sites and has excellent electrochemical catalytic activity for both OER and HER.
附图说明Description of drawings
图1为实施例1中步骤(1)中所制备的淡紫色固体CoNi-ZIF-67放大10000倍的扫描电子显微(SEM)图;Fig. 1 is the scanning electron microscope (SEM) image of the lavender solid CoNi-ZIF-67 prepared in step (1) in Example 1 at a magnification of 10,000 times;
图2为实施例1中步骤(2)中所制备的浅棕色固体CoNi-ZIF-67-TA放大15000倍的透射电子显微(TEM)图;Figure 2 is a transmission electron microscope (TEM) image of the light brown solid CoNi-ZIF-67-TA prepared in step (2) in Example 1 at a magnification of 15,000 times;
图3为实施例1制得的钴镍空心双金属有机框架/氮掺杂碳复合材料放大80000倍的扫描电子显微(SEM)图;3 is a scanning electron microscope (SEM) image of the cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material obtained in Example 1 at a magnification of 80,000 times;
图4为实施例1制得的钴镍空心双金属有机框架/氮掺杂碳复合材料的放大20000倍扫描电子显微(SEM)图;4 is a scanning electron microscope (SEM) image of the cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material prepared in Example 1 at a magnification of 20,000 times;
图5为实施例1制得的空心双金属有机框架/氮掺杂碳复合材料的放大15000倍透射电子显微(TEM)图;5 is a transmission electron microscope (TEM) image of the hollow bimetallic organic framework/nitrogen-doped carbon composite prepared in Example 1 at a magnification of 15,000 times;
图6为实施例1制得的钴镍空心双金属有机框架/氮掺杂碳复合材料的放大50000倍透射电子显微(TEM)图;6 is a transmission electron microscope (TEM) image of the cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material obtained in Example 1 at a magnification of 50,000 times;
图7为实施例1制得的钴镍空心双金属有机框架/氮掺杂碳复合材料的XRD图;7 is the XRD pattern of the cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material prepared in Example 1;
图8为实施例2制得的钴镍空心双金属有机框架/氮掺杂碳复合材料放大35000倍的扫描电子显微(SEM)图;8 is a scanning electron microscope (SEM) image of the cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material obtained in Example 2 at a magnification of 35,000 times;
图9为实施例2制得的钴镍空心双金属有机框架/氮掺杂碳复合材料放大90000倍的扫描电子显微(SEM)图;9 is a scanning electron microscope (SEM) image of the cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material obtained in Example 2 at a magnification of 90,000 times;
图10为实施例3制得的钴镍空心双金属有机框架/氮掺杂碳复合材料的SEM图;10 is a SEM image of the cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material prepared in Example 3;
图11为实施例4制得的钴镍空心双金属有机框架/氮掺杂碳复合材料放大30000倍的扫描电子显微(SEM)图;11 is a scanning electron microscope (SEM) image of the cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material obtained in Example 4 at a magnification of 30,000 times;
图12为实施例5中制得的钴镁空心双金属有机框架/氮掺杂碳复合材料放大70000倍的扫描电子显微(SEM)图;12 is a scanning electron microscope (SEM) image magnified 70,000 times of the cobalt-magnesium hollow bimetallic organic framework/nitrogen-doped carbon composite material prepared in Example 5;
图13为实施例6制得的钴镍空心双金属有机框架/氮掺杂碳复合材料的透射电子显微(TEM)图;13 is a transmission electron microscope (TEM) image of the cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material prepared in Example 6;
图14为实施例1-3制得的钴镍空心双金属有机框架/氮掺杂碳复合材料和对比例1制得的氮掺杂碳材料进行电化学测试得到的析氧反应性能测试图;14 is a test diagram of oxygen evolution reaction performance obtained by electrochemical testing of the cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material prepared in Example 1-3 and the nitrogen-doped carbon material prepared in Comparative Example 1;
图15为实施例1-3制得的钴镍空心双金属有机框架/氮掺杂碳复合材料和对比例1制得的氮掺杂碳材料进行电化学测试得到的析氢反应性能测试图。15 is a test diagram of hydrogen evolution reaction performance obtained by electrochemical testing of the cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material prepared in Examples 1-3 and the nitrogen-doped carbon material prepared in Comparative Example 1.
具体实施方式Detailed ways
下面结合实施例和附图对本发明进行详细说明。The present invention will be described in detail below with reference to the embodiments and accompanying drawings.
实施例1Example 1
一种钴镍空心双金属有机框架/氮掺杂碳复合材料的制备方法,包括以下步骤:A preparation method of a cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material, comprising the following steps:
(1)称取0.465g六水合硝酸钴和0.465g六水合硝酸镍溶于20mL甲醇,形成粉红色溶液,记为溶液A;4.200g二甲基咪唑溶于160mL甲醇,形成透明溶液溶液B;在搅拌中将溶液B缓慢加入溶液A中,持续搅拌1小时,之后静置生长24h,最后通过离心、洗涤、干燥,得到淡紫色固体CoNi-ZIF-67,其SEM图如图1所示;(1) Weigh 0.465g cobalt nitrate hexahydrate and 0.465g nickel nitrate hexahydrate and dissolve in 20mL methanol to form a pink solution, denoted as solution A; 4.200g dimethylimidazole is dissolved in 160mL methanol to form transparent solution solution B; The solution B was slowly added to the solution A during stirring, and the stirring was continued for 1 hour, and then left to grow for 24 hours. Finally, through centrifugation, washing and drying, a lavender solid CoNi-ZIF-67 was obtained, and its SEM image was shown in Figure 1;
(2)称取0.1g步骤(1)中制得的CoNi-ZIF-67溶于2mL乙醇中,进行超声搅拌形成均匀混合溶液A;再称取0.25g单宁酸均匀分散在48mL去离子水中,形成浅棕色混合溶液B;在搅拌中将B溶液缓慢加入溶液A中,持续搅拌10min,最后通过离心、洗涤、干燥,得到浅棕色固体CoNi-ZIF-67-TA,其SEM图如图2所示;(2) Weigh 0.1 g of CoNi-ZIF-67 obtained in step (1) and dissolve it in 2 mL of ethanol, and perform ultrasonic stirring to form a uniform mixed solution A; then weigh 0.25 g of tannic acid and uniformly disperse it in 48 mL of deionized water , to form a light brown mixed solution B; slowly add solution B to solution A during stirring, continue stirring for 10 min, and finally obtain light brown solid CoNi-ZIF-67-TA through centrifugation, washing and drying, and its SEM image is shown in Figure 2 shown;
(3)将所制得的CoNi-ZIF-67-TA置于瓷舟内,放入管式炉中,采用氩气作为保护气体,以2℃/min的升温速率升温至550℃保温2h,自然降温后得到黑色固体氮掺杂碳材料,即为最终产物钴镍空心双金属有机框架/氮掺杂碳复合材料。(3) The prepared CoNi-ZIF-67-TA was placed in a porcelain boat, placed in a tube furnace, and argon was used as a protective gas, and the temperature was raised to 550°C for 2h at a heating rate of 2°C/min. After natural cooling, a black solid nitrogen-doped carbon material is obtained, which is the final product cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material.
其SEM、TEM如图3-6所示,从图中可以看出该实施例制备得到的钴镍空心双金属有机框架/氮掺杂碳复合材料保留了原ZIF-67的三维十二面体框架结构,其大小均匀,粒径分布在250-300nm,且内部呈现出中空的特点,这种的形貌给材料提供了很大的比表面积。The SEM and TEM are shown in Figures 3-6. It can be seen from the figures that the cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite prepared in this example retains the three-dimensional dodecahedral framework of the original ZIF-67 The structure is uniform in size, the particle size is distributed in 250-300nm, and the interior is hollow. This morphology provides the material with a large specific surface area.
其XRD图如图7所示。Its XRD pattern is shown in Figure 7.
实施例2Example 2
一种钴镍空心双金属有机框架/氮掺杂碳复合材料的制备方法,包括以下步骤:A preparation method of a cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material, comprising the following steps:
(1)称取0.465g六水合硝酸钴和0.465g六水合硝酸镍溶于20mL甲醇,形成粉红色溶液,记为溶液A;4.200g二甲基咪唑溶于160mL甲醇,形成透明溶液溶液B;在搅拌中将溶液B缓慢加入溶液A中,持续搅拌1小时,之后静置生长24h,最后通过离心、洗涤、干燥,得到淡紫色固体CoNi-ZIF-67;(1) Weigh 0.465g cobalt nitrate hexahydrate and 0.465g nickel nitrate hexahydrate and dissolve in 20mL methanol to form a pink solution, denoted as solution A; 4.200g dimethylimidazole is dissolved in 160mL methanol to form transparent solution solution B; Slowly add solution B to solution A during stirring, continue stirring for 1 hour, then stand for 24 hours, and finally obtain lavender solid CoNi-ZIF-67 by centrifugation, washing and drying;
(2)称取0.1g步骤(1)中制得的CoNi-ZIF-67溶于2mL乙醇中,进行超声搅拌形成均匀混合溶液A;再称取0.25g单宁酸均匀分散在48mL去离子水中,形成浅棕色混合溶液B;在搅拌中将B溶液缓慢加入溶液A中,持续搅拌10min,最后通过离心、洗涤、干燥,得到浅棕色固体CoNi-ZIF-67-TA;(2) Weigh 0.1 g of CoNi-ZIF-67 obtained in step (1) and dissolve it in 2 mL of ethanol, and perform ultrasonic stirring to form a uniform mixed solution A; then weigh 0.25 g of tannic acid and uniformly disperse it in 48 mL of deionized water , to form a light brown mixed solution B; slowly add solution B to solution A during stirring, continue stirring for 10 min, and finally obtain light brown solid CoNi-ZIF-67-TA by centrifugation, washing and drying;
(3)将所制得的CoNi-ZIF-67-TA置于瓷舟内,放入管式炉中,采用氩气作为保护气体,以2℃/min的升温速率升温至400℃保温2h,自然降温后得到黑色固体氮掺杂碳材料,即为最终产物钴镍空心双金属有机框架/氮掺杂碳复合材料。(3) The prepared CoNi-ZIF-67-TA was placed in a porcelain boat, placed in a tube furnace, and argon was used as a protective gas, and the temperature was raised to 400°C for 2h at a heating rate of 2°C/min. After natural cooling, a black solid nitrogen-doped carbon material is obtained, which is the final product cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material.
其SEM如图8-9所示,从图中可以看出该实施例也制备得到了保留了原ZIF-67的三维十二面体框架结构的钴镍空心双金属有机框架/氮掺杂碳复合材料,其大小均匀,粒径分布在250-300nm,但是由于煅烧碳化的温度相对于实施例1降低了,材料内部最终碳化不完全,最终使其催化性能受到了一定的影响。The SEM is shown in Figures 8-9. It can be seen from the figures that this example also prepared a cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite that retained the three-dimensional dodecahedral framework structure of the original ZIF-67. The material has a uniform size and a particle size distribution of 250-300 nm, but because the temperature of calcination and carbonization is lower than that of Example 1, the final carbonization of the material is incomplete, and its catalytic performance is finally affected to a certain extent.
实施例3Example 3
一种钴镍空心双金属有机框架/氮掺杂碳复合材料的制备方法,包括以下步骤:A preparation method of a cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material, comprising the following steps:
(1)称取0.465g六水合硝酸钴和0.465g六水合硝酸镍溶于20mL甲醇,形成粉红色溶液,记为溶液A;4.200g二甲基咪唑溶于160mL甲醇,形成透明溶液溶液B;在搅拌中将溶液B缓慢加入溶液A中,持续搅拌1小时,之后静置生长24h,最后通过离心、洗涤、干燥,得到淡紫色固体CoNi-ZIF-67;(1) Weigh 0.465g cobalt nitrate hexahydrate and 0.465g nickel nitrate hexahydrate and dissolve in 20mL methanol to form a pink solution, denoted as solution A; 4.200g dimethylimidazole is dissolved in 160mL methanol to form transparent solution solution B; Slowly add solution B to solution A during stirring, continue stirring for 1 hour, then stand for 24 hours, and finally obtain lavender solid CoNi-ZIF-67 by centrifugation, washing and drying;
(2)称取0.1g步骤(1)中制得的CoNi-ZIF-67溶于2mL乙醇中,进行超声搅拌形成均匀混合溶液A;再称取0.25g单宁酸均匀分散在48mL去离子水中,形成浅棕色混合溶液B;在搅拌中将B溶液缓慢加入溶液A中,持续搅拌10min,最后通过离心、洗涤、干燥,得到浅棕色固体CoNi-ZIF-67-TA;(2) Weigh 0.1 g of CoNi-ZIF-67 obtained in step (1) and dissolve it in 2 mL of ethanol, and perform ultrasonic stirring to form a uniform mixed solution A; then weigh 0.25 g of tannic acid and uniformly disperse it in 48 mL of deionized water , to form a light brown mixed solution B; slowly add solution B to solution A during stirring, continue stirring for 10 min, and finally obtain light brown solid CoNi-ZIF-67-TA by centrifugation, washing and drying;
(3)将所制得的CoNi-ZIF-67-TA置于瓷舟内,放入管式炉中,采用氩气作为保护气体,以2℃/min的升温速率升温至500℃保温2h,自然降温后得到黑色固体氮掺杂碳材料,即为最终产物钴镍空心双金属有机框架/氮掺杂碳复合材料。(3) The prepared CoNi-ZIF-67-TA was placed in a porcelain boat, placed in a tube furnace, and argon was used as a protective gas, and the temperature was raised to 500°C for 2h at a heating rate of 2°C/min. After natural cooling, a black solid nitrogen-doped carbon material is obtained, which is the final product cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material.
其SEM如图10所示,从图中可以看出该实施例制备得到的钴镍空心双金属有机框架/氮掺杂碳复合材料保留了原ZIF-67的三维十二面体框架结构,其大小均匀,粒径分布在250-300nm,且内部呈现出中空的特点,这种的形貌给材料提供了很大的比表面积。Its SEM is shown in Figure 10. It can be seen from the figure that the cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite prepared in this example retains the three-dimensional dodecahedral framework structure of the original ZIF-67, and its size Uniform, particle size distribution is 250-300nm, and the interior is hollow, which provides a large specific surface area for the material.
实施例4Example 4
一种钴镍空心双金属有机框架/氮掺杂碳复合材料的制备方法,包括以下步骤:A preparation method of a cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material, comprising the following steps:
(1)称取0.465g六水合硝酸钴和0.465g六水合硝酸镍溶于20mL甲醇,形成粉红色溶液,记为溶液A;4.200g二甲基咪唑溶于160mL甲醇,形成透明溶液溶液B;在搅拌中将溶液B缓慢加入溶液A中,持续搅拌1小时,之后静置生长24h,最后通过离心、洗涤、干燥,得到淡紫色固体CoNi-ZIF-67;(1) Weigh 0.465g cobalt nitrate hexahydrate and 0.465g nickel nitrate hexahydrate and dissolve in 20mL methanol to form a pink solution, denoted as solution A; 4.200g dimethylimidazole is dissolved in 160mL methanol to form transparent solution solution B; Slowly add solution B to solution A during stirring, continue stirring for 1 hour, then stand for 24 hours, and finally obtain lavender solid CoNi-ZIF-67 by centrifugation, washing and drying;
(2)称取0.1g步骤(1)中制得的CoNi-ZIF-67溶于2mL乙醇中,进行超声搅拌形成均匀混合溶液A;再称取0.25g单宁酸均匀分散在48mL去离子水中,形成浅棕色混合溶液B;在搅拌中将B溶液缓慢加入溶液A中,持续搅拌10min,最后通过离心、洗涤、干燥,得到浅棕色固体CoNi-ZIF-67-TA;(2) Weigh 0.1 g of CoNi-ZIF-67 obtained in step (1) and dissolve it in 2 mL of ethanol, and perform ultrasonic stirring to form a uniform mixed solution A; then weigh 0.25 g of tannic acid and uniformly disperse it in 48 mL of deionized water , to form a light brown mixed solution B; slowly add solution B to solution A during stirring, continue stirring for 10 min, and finally obtain light brown solid CoNi-ZIF-67-TA by centrifugation, washing and drying;
(3)将所制得的CoNi-ZIF-67-TA置于瓷舟内,放入管式炉中,采用氩气作为保护气体,以2℃/min的升温速率升温至600℃保温2h,自然降温后得到黑色固体氮掺杂碳材料,即为最终产物钴镍空心双金属有机框架/氮掺杂碳复合材料。(3) The prepared CoNi-ZIF-67-TA was placed in a porcelain boat, placed in a tube furnace, and argon was used as a protective gas, and the temperature was raised to 600°C for 2h at a heating rate of 2°C/min. After natural cooling, a black solid nitrogen-doped carbon material is obtained, which is the final product cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material.
其SEM图如图11所示,由于煅烧碳化的温度相对于实施例1升高至了600℃,会导致材料内部的金属颗粒团聚在一起,最终的产物无法保持住原ZIF-67的三维十二面体框架结构。Its SEM image is shown in Figure 11. Since the temperature of calcination and carbonization is increased to 600 °C compared with Example 1, the metal particles inside the material will agglomerate together, and the final product cannot maintain the three-dimensional ten-dimensional shape of the original ZIF-67. Dihedral frame structure.
实施例5Example 5
一种钴镍空心双金属有机框架/氮掺杂碳复合材料的制备方法,包括以下步骤:A preparation method of a cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material, comprising the following steps:
(1)称取0.620g六水合硝酸钴和0.274g六水合硝酸镁溶于20mL甲醇,形成粉红色溶液,记为溶液A;4.200g二甲基咪唑溶于160mL甲醇,形成透明溶液溶液B;在搅拌中将溶液B缓慢加入溶液A中,持续搅拌1小时,之后静置生长24h,最后通过离心、洗涤、干燥,得到淡紫色固体CoMg-ZIF-67;(1) Weigh 0.620g cobalt nitrate hexahydrate and 0.274g magnesium nitrate hexahydrate and dissolve in 20mL methanol to form a pink solution, denoted as solution A; 4.200g dimethylimidazole is dissolved in 160mL methanol to form transparent solution solution B; Slowly add solution B to solution A during stirring, continue stirring for 1 hour, then stand for 24 hours, and finally obtain lavender solid CoMg-ZIF-67 by centrifugation, washing and drying;
(2)称取0.1g步骤(1)中制得的CoMg-ZIF-67溶于2mL乙醇中,进行超声搅拌形成均匀混合溶液A;再称取0.25g单宁酸均匀分散在48mL去离子水中,形成浅棕色混合溶液B;在搅拌中将B溶液缓慢加入溶液A中,持续搅拌10min,最后通过离心、洗涤、干燥,得到浅棕色固体CoMg-ZIF-67-TA;(2) Weigh 0.1 g of CoMg-ZIF-67 prepared in step (1) and dissolve it in 2 mL of ethanol, and perform ultrasonic stirring to form a uniform mixed solution A; then weigh 0.25 g of tannic acid and uniformly disperse it in 48 mL of deionized water , to form a light brown mixed solution B; slowly add solution B to solution A during stirring, continue stirring for 10 min, and finally obtain light brown solid CoMg-ZIF-67-TA by centrifugation, washing and drying;
(3)将所制得的CoMg-ZIF-67-TA置于瓷舟内,放入管式炉中,采用氩气作为保护气体,以2℃/min的升温速率升温至550℃保温2h,自然降温后得到黑色固体氮掺杂碳材料,即为最终产物钴镁空心双金属有机框架/氮掺杂碳复合材料,其SEM图如图12所示。(3) The prepared CoMg-ZIF-67-TA was placed in a porcelain boat, placed in a tube furnace, and argon was used as a protective gas, and the temperature was raised to 550°C for 2h at a heating rate of 2°C/min. After natural cooling, a black solid nitrogen-doped carbon material is obtained, which is the final product cobalt-magnesium hollow bimetallic organic framework/nitrogen-doped carbon composite material, and its SEM image is shown in Figure 12.
实施例6Example 6
一种钴镍空心双金属有机框架/氮掺杂碳复合材料的制备方法,包括以下步骤:A preparation method of a cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material, comprising the following steps:
(1)称取0.621g六水合硝酸钴和0.310g六水合硝酸镍溶于20mL甲醇,形成粉红色溶液,记为溶液A,4.200g二甲基咪唑溶于160mL甲醇,形成透明溶液溶液B。在搅拌中将溶液B缓慢加入溶液A中,持续搅拌1小时,之后静置生长24h,最后通过离心洗涤干燥得到淡紫色固体CoNi-ZIF-67。(1) Dissolve 0.621g cobalt nitrate hexahydrate and 0.310g nickel nitrate hexahydrate in 20mL methanol to form a pink solution, denoted as solution A, and dissolve 4.200g dimethylimidazole in 160mL methanol to form solution B, a transparent solution. The solution B was slowly added to the solution A while stirring, and the stirring was continued for 1 hour, and then it was left to grow for 24 hours, and finally washed and dried by centrifugation to obtain a lavender solid CoNi-ZIF-67.
(2)称取0.2g步骤(1)中制得的CoNi-ZIF-67溶于4mL乙醇中,进行超声搅拌形成均匀混合溶液A,在称取0.50g单宁酸均匀分散在96mL去离子水中,形成浅棕色混合溶液B。在搅拌中将B溶液缓慢加入溶液A中,持续搅拌10min,最后通过离心洗涤干燥的单浅棕色固体CoNi-ZIF-67-TA。(2) Weigh 0.2 g of CoNi-ZIF-67 obtained in step (1) and dissolve it in 4 mL of ethanol, perform ultrasonic stirring to form a uniform mixed solution A, weigh 0.50 g of tannic acid and evenly disperse it in 96 mL of deionized water , forming a light brown mixed solution B. The solution B was slowly added to the solution A while stirring, and the stirring was continued for 10 min. Finally, the dried single light brown solid CoNi-ZIF-67-TA was washed by centrifugation.
(3)将所制得的CoNi-ZIF-67-TA置于瓷舟内,放入管式炉中,采用氩气作为保护气体,以2℃/min的升温速率升温至550℃保温2h,自然降温后得到黑色固体氮掺杂碳材料,即为最终产物钴镍空心双金属有机框架/氮掺杂碳复合材料。(3) The prepared CoNi-ZIF-67-TA was placed in a porcelain boat, placed in a tube furnace, and argon was used as a protective gas, and the temperature was raised to 550°C for 2h at a heating rate of 2°C/min. After natural cooling, a black solid nitrogen-doped carbon material is obtained, which is the final product cobalt-nickel hollow bimetallic organic framework/nitrogen-doped carbon composite material.
其SEM或TEM图如图13所示,从图中可以看出摩尔比同步增加并不会影响最终产物的形貌。Its SEM or TEM images are shown in Figure 13, from which it can be seen that the simultaneous increase in the molar ratio does not affect the morphology of the final product.
对比例1Comparative Example 1
氮掺杂碳材料CoNi-ZIF-67/NC的制备方法,包括以下步骤:The preparation method of nitrogen-doped carbon material CoNi-ZIF-67/NC comprises the following steps:
(1)称取0.465g六水合硝酸钴、0.465g六水合硝酸镍溶于20mL甲醇,形成粉红色溶液,记为溶液A;4.200g二甲基咪唑溶于160mL甲醇,形成透明溶液溶液B;在搅拌中将溶液B缓慢加入溶液A中,持续搅拌1小时,之后静置生长24h,最后通过离心洗涤干燥得到淡紫色固体CoNi-ZIF-67;(1) Dissolve 0.465g cobalt nitrate hexahydrate and 0.465g nickel nitrate hexahydrate in 20mL methanol to form a pink solution, denoted as solution A; 4.200g dimethylimidazole is dissolved in 160mL methanol to form transparent solution solution B; The solution B was slowly added to the solution A during stirring, and the stirring was continued for 1 hour, and then left to grow for 24 hours, and finally washed and dried by centrifugation to obtain a lavender solid CoNi-ZIF-67;
(2)将;CoNi-ZIF-67置于瓷舟内,放入管式炉中,采用氩气作为保护气体,以2℃/min升温速率升温至600℃保温3h,自然降温后得到黑色固体氮掺杂碳材料,即为CoNi-ZIF-67/NC。(2) Put CoNi-ZIF-67 in a porcelain boat, put it into a tube furnace, use argon as a protective gas, heat up to 600°C at a heating rate of 2°C/min for 3h, and obtain a black solid after natural cooling The nitrogen-doped carbon material is CoNi-ZIF-67/NC.
应用例1Application example 1
空心双金属有机框架/氮掺杂碳复合材料作为析氧反应(OER)催化剂的应用Application of hollow bimetallic organic frameworks/nitrogen-doped carbon composites as catalysts for oxygen evolution reaction (OER)
分别将7mg实施例1-3制得的空心双金属有机框架/氮掺杂碳复合材料和对比例1制备得到的CoNi-ZIF-67/NC与2mg乙炔黑和1mg聚偏氟乙烯(PVDF)粉末加入玛瑙砂浆中研磨,其中乙炔黑作为导电剂、PVDF作为粘合剂,直到获得细粉末,然后添加50mL N-甲基-2-吡咯烷酮(NMP)作为溶剂,以形成均匀的混合物。将所得混合物均匀地涂覆在尺寸为1cm×1cm的干净镍箔(NF)上,则获得均匀的薄层,并以其作为工作电极,铂片电极为对电极,Ag/AgCl电极为参比电极,电解液为1mol/L的氢氧化钾溶液;采用线性扫描伏安法(LSV)在5mV·s-1的扫描速率且欧姆补偿为90%下获得极化曲线。如图14所示,电流密度为10mA·cm-2时,以实施例1制得的空心双金属有机框架/氮掺杂碳复合材料作为工作电极时,OER过电位为181mV,说明该材料表现出对OER具有优异的电化学催化活性。7 mg of hollow bimetallic organic framework/nitrogen-doped carbon composites prepared in Examples 1-3 and CoNi-ZIF-67/NC prepared in Comparative Example 1 were mixed with 2 mg of acetylene black and 1 mg of polyvinylidene fluoride (PVDF), respectively. The powder was added to agate mortar and ground with acetylene black as conductive agent and PVDF as binder until a fine powder was obtained, then 50 mL of N-methyl-2-pyrrolidone (NMP) was added as solvent to form a homogeneous mixture. The obtained mixture was uniformly coated on a clean nickel foil (NF) with a size of 1 cm × 1 cm to obtain a uniform thin layer, which was used as the working electrode, the platinum sheet electrode as the counter electrode, and the Ag/AgCl electrode as the reference. Electrode, the electrolyte is 1 mol/L potassium hydroxide solution; the polarization curve is obtained by linear sweep voltammetry (LSV) at a scan rate of 5 mV·s -1 and an ohmic compensation of 90%. As shown in Fig. 14, when the current density is 10 mA·cm -2 , when the hollow bimetallic organic framework/nitrogen-doped carbon composite prepared in Example 1 is used as the working electrode, the OER overpotential is 181mV, indicating that the material exhibits It has excellent electrochemical catalytic activity for OER.
应用例2Application example 2
空心双金属有机框架/氮掺杂碳复合材料作为析氢反应(HER)催化剂的应用Application of hollow bimetallic organic frameworks/nitrogen-doped carbon composites as catalysts for hydrogen evolution reaction (HER)
将实施例1-3制得的空心双金属有机框架/氮掺杂碳复合材料和对比例1制备得到的CoNi-ZIF-67/NC按照应用例1中的方法涂覆在镍箔上作为工作电极,碳棒电极为对电极,Ag/AgCl电极为参比电极,电解液为1mol/L的氢氧化钾溶液;采用线性扫描伏安法(LSV)在5mV·s-1的扫描速率且欧姆补偿为90%下获得极化曲线。如图15所示,电流密度为10mA·cm-2时,以实施例1制得的空心双金属有机框架/氮掺杂碳复合材料作为工作电极OER过电位为62mV,说明该材料表现出对HER具有优异的电化学催化活性,且实施例1制得的空心双金属有机框架/氮掺杂碳复合材料对HER的电化学催化活性>实施例3制得的空心双金属有机框架/氮掺杂碳复合材料对HER的电化学催化活性>实施例2制得的空心双金属有机框架/氮掺杂碳复合材料对HER的电化学催化活性>对比例1制得的氮掺杂碳材料CoNi-ZIF-67/NC。The hollow bimetallic organic framework/nitrogen-doped carbon composites prepared in Examples 1-3 and CoNi-ZIF-67/NC prepared in Comparative Example 1 were coated on nickel foils as work Electrode, carbon rod electrode is the counter electrode, Ag/AgCl electrode is the reference electrode, and the electrolyte is 1mol/L potassium hydroxide solution; Linear sweep voltammetry (LSV) is used at a scan rate of 5mV·s -1 and ohmic The polarization curve was obtained with compensation of 90%. As shown in Fig. 15, when the current density is 10 mA·cm -2 , the OER overpotential of the hollow bimetallic organic framework/nitrogen-doped carbon composite prepared in Example 1 is 62 mV as the working electrode, indicating that the material exhibits good resistance to HER has excellent electrochemical catalytic activity, and the electrochemical catalytic activity of the hollow bimetallic organic framework/nitrogen-doped carbon composite prepared in Example 1 for HER> the hollow bimetallic organic framework/nitrogen-doped carbon composite prepared in Example 3 Electrochemical catalytic activity of heterocarbon composites for HER>Electrochemical catalytic activity of hollow bimetallic organic framework/nitrogen-doped carbon composites prepared in Example 2 for HER>Nitrogen-doped carbon material CoNi prepared in Comparative Example 1 -ZIF-67/NC.
上述参照实施例对一种基于ZIF-67衍生的空心双金属MOF/氮掺杂碳复合材料电催化剂制备方法及其应用进行的详细描述,是说明性的而不是限定性的,可按照所限定范围列举出若干个实施例,因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。The above-mentioned detailed description of the preparation method and application of a hollow bimetallic MOF/nitrogen-doped carbon composite electrocatalyst based on ZIF-67 derived by referring to the examples is illustrative rather than restrictive, and can be carried out according to the defined The scope enumerates several embodiments, so changes and modifications without departing from the general concept of the present invention should fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210579480.6A CN114990630B (en) | 2022-05-25 | 2022-05-25 | Preparation method and application of hollow bimetallic MOF/nitrogen-doped carbon composite material electrocatalyst based on ZIF-67 derivative |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210579480.6A CN114990630B (en) | 2022-05-25 | 2022-05-25 | Preparation method and application of hollow bimetallic MOF/nitrogen-doped carbon composite material electrocatalyst based on ZIF-67 derivative |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114990630A true CN114990630A (en) | 2022-09-02 |
CN114990630B CN114990630B (en) | 2023-06-13 |
Family
ID=83028288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210579480.6A Active CN114990630B (en) | 2022-05-25 | 2022-05-25 | Preparation method and application of hollow bimetallic MOF/nitrogen-doped carbon composite material electrocatalyst based on ZIF-67 derivative |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114990630B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116273203A (en) * | 2022-12-02 | 2023-06-23 | 宁夏大学 | Preparation of Cyclohexane Fuel by Hydrodeoxygenation of Lignin Pyrolysis Oil Catalyzed by Hollow NiCo/NC Cage Polyhedron Catalyst |
CN116876004A (en) * | 2023-06-12 | 2023-10-13 | 浙江大学杭州国际科创中心 | Preparation method of MOF-on-MOF multidimensional metal organic framework material for hydrogen production by water electrolysis |
CN117225420A (en) * | 2023-09-28 | 2023-12-15 | 北京化工大学 | Photocatalyst for reducing low-concentration carbon dioxide and preparation method thereof |
CN118461059A (en) * | 2024-07-09 | 2024-08-09 | 潍坊科技学院 | A bifunctional ruthenium single atom-ruthenium dioxide-based nanocatalyst and its preparation method and application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109449009A (en) * | 2018-10-29 | 2019-03-08 | 安徽师范大学 | One-dimensional manganese dioxide nano pipe@ZIF-67 nucleocapsid heterojunction structure composite material and preparation method and application |
CN109499600A (en) * | 2018-12-14 | 2019-03-22 | 江苏科技大学 | A kind of bimetallic nitrogen-doped carbon/molybdenum disulfide composite electro catalytic agent material, preparation method and applications |
CN111871463A (en) * | 2020-07-14 | 2020-11-03 | 南昌航空大学 | Preparation method of electrocatalytic full-decomposition water material based on ZIF-67 and UiO-66 double MOFs |
CN112007673A (en) * | 2020-09-09 | 2020-12-01 | 安徽师范大学 | N-doped porous carbon-coated MoP nano rod material and preparation method and application thereof |
CN112981429A (en) * | 2021-02-24 | 2021-06-18 | 江南大学 | Metal organic framework and hydroxide heterojunction electrocatalyst and in-situ preparation method and application thereof |
-
2022
- 2022-05-25 CN CN202210579480.6A patent/CN114990630B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109449009A (en) * | 2018-10-29 | 2019-03-08 | 安徽师范大学 | One-dimensional manganese dioxide nano pipe@ZIF-67 nucleocapsid heterojunction structure composite material and preparation method and application |
CN109499600A (en) * | 2018-12-14 | 2019-03-22 | 江苏科技大学 | A kind of bimetallic nitrogen-doped carbon/molybdenum disulfide composite electro catalytic agent material, preparation method and applications |
CN111871463A (en) * | 2020-07-14 | 2020-11-03 | 南昌航空大学 | Preparation method of electrocatalytic full-decomposition water material based on ZIF-67 and UiO-66 double MOFs |
CN112007673A (en) * | 2020-09-09 | 2020-12-01 | 安徽师范大学 | N-doped porous carbon-coated MoP nano rod material and preparation method and application thereof |
CN112981429A (en) * | 2021-02-24 | 2021-06-18 | 江南大学 | Metal organic framework and hydroxide heterojunction electrocatalyst and in-situ preparation method and application thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116273203A (en) * | 2022-12-02 | 2023-06-23 | 宁夏大学 | Preparation of Cyclohexane Fuel by Hydrodeoxygenation of Lignin Pyrolysis Oil Catalyzed by Hollow NiCo/NC Cage Polyhedron Catalyst |
CN116876004A (en) * | 2023-06-12 | 2023-10-13 | 浙江大学杭州国际科创中心 | Preparation method of MOF-on-MOF multidimensional metal organic framework material for hydrogen production by water electrolysis |
CN117225420A (en) * | 2023-09-28 | 2023-12-15 | 北京化工大学 | Photocatalyst for reducing low-concentration carbon dioxide and preparation method thereof |
CN118461059A (en) * | 2024-07-09 | 2024-08-09 | 潍坊科技学院 | A bifunctional ruthenium single atom-ruthenium dioxide-based nanocatalyst and its preparation method and application |
CN118461059B (en) * | 2024-07-09 | 2024-09-27 | 潍坊科技学院 | A bifunctional ruthenium single atom-ruthenium dioxide-based nanocatalyst and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN114990630B (en) | 2023-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114990630A (en) | Preparation method and application of ZIF-67-derived hollow bimetal MOF/nitrogen-doped carbon composite material electrocatalyst | |
CN110639534B (en) | Oxygen evolution electrocatalytic material and preparation method and application thereof | |
CN109453772B (en) | CrO2-RuO2Solid solution material, preparation method thereof and application of solid solution material as acidic OER electrocatalyst | |
CN109718822B (en) | Method for preparing metal-carbon composite catalytic material and application thereof | |
CN108486605A (en) | A kind of carbon coating selenizing nickel cobalt nano material and preparation method thereof with excellent electrolysis water performance | |
CN108374179A (en) | A kind of preparation method and application of the compound nitrogen-doped carbon material of two cobaltous selenide of Fe2O3 doping | |
CN113388847A (en) | Prussian blue analogue derived metal sulfide/nitrogen-doped carbon electrocatalyst and preparation method and application thereof | |
CN113862726B (en) | A kind of preparation method and application of molybdenum and selenium double element doped porous lamellar nickel phosphide material | |
CN113621988B (en) | A kind of high-efficiency oxygen evolution high-entropy amorphous oxide nano-catalyst and preparation method and application thereof | |
CN110743565A (en) | A supported palladium-ultrathin CoNi-LDH nanosheet composite material and its preparation method and application | |
CN114836779A (en) | Layered double hydroxide/nitrogen-doped carbon composite material and preparation method and application thereof | |
CN114481209A (en) | Preparation method of Ru-modified iron-based self-supporting hydrogen evolution electrode | |
CN112481656A (en) | Bifunctional catalyst for high-selectivity electrocatalysis of glycerin oxidation conversion to produce formic acid and high-efficiency electrolysis of water to produce hydrogen, preparation method and application thereof | |
CN115404511A (en) | A kind of nickel foam self-supporting cobalt-nickel bimetallic sulfide heterostructure anode electrocatalyst and its preparation method and application | |
CN117512676A (en) | Hierarchical iron doped nickel-carbon structure nanotube and preparation method and application thereof | |
CN114657592B (en) | Nickel-based catalyst for electrocatalytic carbon dioxide reduction and preparation method thereof | |
CN113668012B (en) | An iron/ruthenium nitrogen-doped porous carbon electrocatalyst and its preparation method and application | |
CN113555569B (en) | Catalyst precursor, metal carbon-based catalyst, and preparation methods and applications thereof | |
CN115652357B (en) | Sulfur-doped yttrium ruthenate, preparation method thereof and oxygen evolution reaction electrode | |
CN117926323A (en) | A heterojunction catalyst for electrocatalytic oxygen evolution reaction under high current density and a preparation method thereof | |
CN118028890A (en) | Metal-doped self-supporting cobalt oxide nano-array catalyst and preparation method and application thereof | |
CN118704031A (en) | A NiCo alloy hydrogen evolution catalyst modified by rare earth oxide Eu2O3 supported on carbon cloth and its preparation method and application | |
CN113774420B (en) | Self-supporting nickel-ytterbium oxide composite electrode and preparation method and application thereof | |
CN117488342B (en) | Nickel-doped RP perovskite material, and preparation method and application thereof | |
CN115011997B (en) | Self-supporting hollow sugarcoated haws-end electrocatalyst and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |