CN114868392A - 编码器、解码器及对应方法 - Google Patents

编码器、解码器及对应方法 Download PDF

Info

Publication number
CN114868392A
CN114868392A CN202080090491.7A CN202080090491A CN114868392A CN 114868392 A CN114868392 A CN 114868392A CN 202080090491 A CN202080090491 A CN 202080090491A CN 114868392 A CN114868392 A CN 114868392A
Authority
CN
China
Prior art keywords
tile
picture
minus1
equal
video
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080090491.7A
Other languages
English (en)
Inventor
马祥
杨海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202310513068.9A priority Critical patent/CN116489389B/zh
Publication of CN114868392A publication Critical patent/CN114868392A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • User Interface Of Digital Computer (AREA)
  • Indexing, Searching, Synchronizing, And The Amount Of Synchronization Travel Of Record Carriers (AREA)

Abstract

本发明提供一种对经编码的视频码流进行解码的方法,所述方法包括:通过解析所述视频码流,获取包含在所述当前图像的图像头中的图像级语法元素,其中,所述图像级语法元素用于指示是否对所述当前图像启用自适应环路滤波(adaptive loop filter,ALF);当所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波时,获取所述图像头中包括的参数集标识符,其中,所述参数集标识符用于表示包括一组ALF参数的第一参数集,并且所述第一参数集的时域标识符小于或等于所述当前图像的时域标识符;根据所述第一参数集,对所述当前图像的至少一个条带执行所述自适应环路滤波。

Description

编码器、解码器及对应方法
相关申请案的交叉参考
本申请是2020年1月2日提交的第PCT/CN2020/070155号国际申请的继续申请,而后者是2019年12月31日提交的第PCT/CN2019/130581号国际申请的继续申请。上述申请的公开内容通过全文引用并入本文中。
技术领域
本申请(发明)的实施例大体上涉及图像处理领域,更具体地,涉及高层语法元素。
背景技术
视频译码(视频编码和解码)广泛用于数字视频应用,例如广播数字电视、基于互联网和移动网络的视频传输、视频聊天、视频会议等实时会话应用、DVD和蓝光光盘、视频内容采集和编辑***以及安全应用的可携式摄像机。
即使在视频较短的情况下也需要对大量的视频数据进行描述,当数据要在带宽容量受限的通信网络中发送或以其它方式发送时,这样可能会造成困难。因此,视频数据通常要先压缩然后在现代电信网络中发送。由于内存资源可能有限,当在存储设备中存储视频时,视频的大小也可能成为问题。视频压缩设备通常在信源侧使用软件和/或硬件,以在发送或存储之前对视频数据进行译码,从而减少用来表示数字视频图像所需的数据量。然后,压缩数据在目的地侧由用于对视频数据进行解码的视频解压缩设备接收。在有限的网络资源以及对更高视频质量的需求不断增长的情况下,需要改进压缩和解压缩技术,这些改进的技术在几乎不影响图像质量的情况下能够提高压缩比。
发明内容
本申请实施例提供了独立权利要求所描述的编码及解码装置和方法。
上述和其它目的通过独立权利要求请求保护的主题来实现。其它实现方式在从属权利要求、说明书和附图中显而易见。
第一方面,本发明涉及一种由解码设备实现的对视频码流进行解码的方法,其中,所述视频码流包括表示当前图像的数据,所述解码方法包括:通过解析所述视频码流,获取包含在所述当前图像的图像头中的图像级语法元素,其中,所述图像级语法元素用于指示是否对所述当前图像启用自适应环路滤波(adaptive loop filter,ALF);在所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波的情况下,获取所述图像头中包括的参数集标识符,其中,所述参数集标识符用于表示包括一组ALF参数的第一参数集,并且所述第一参数集的时域标识符小于或等于所述当前图像的时域标识符;根据所述第一参数集,对所述当前图像的至少一个条带执行所述自适应环路滤波。
图像头是一种语法结构,包含适用于编码图像的所有条带的语法元素。语法结构是以指定顺序共同存在于码流中的零个或多个语法元素,语法元素是在码流中表示的数据元素。
第一参数集为自适应参数集(adaptation parameter set,APS),是一种语法结构。
当前图像是包含在图像单元(picture unit,PU)中的编码图像,其中,PU是按照指定的分类规则相互关联的NAL单元的集合,这些NAL单元在解码顺序上是连续的。
网络抽象层(network abstraction layer,NAL)单元是一种语法结构,包含要遵循的数据类型的指示和字节,这些字节包含当前图像、图像头或包含一组ALF参数的参数集的数据或一部分数据。其中,每个NAL单元具有时域标识符。
如果第一NAL单元的时域标识符小于同一层的第二NAL单元的时域标识符,则可以在不参考第二NAL单元封装的数据的情况下对第一NAL单元封装的数据进行解码。时域标识符也可以用于子码流提取过程,通过该过程,从码流中去除由目标最高时域标识符确定的、码流中不属于目标集合的NAL单元,其中,输出子码流包括所述码流中属于所述目标集合的NAL单元。因此,第一参数集的时域标识符小于或等于当前图像的时域标识符使得能够在对当前图像进行解码时参考第一参数集,或者对当前图像启用子码流提取过程。
时域标识符可以与解码顺序相关。
根据所述第一方面,在所述方法的一种可能实现方式中,所述根据所述第一参数集对所述当前图像的至少一个条带执行所述自适应环路滤波包括:根据所述第一参数集对所述当前图像的至少一个条带的亮度分量执行自适应环路滤波。
根据所述第一方面或所述第一方面的任一上述实现方式,在所述方法的一种可能实现方式中,所述方法还包括:在所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波的情况下,获取所述图像头中包括的另一参数集标识符,其中,所述参数集标识符用于表示包括一组ALF参数的第二参数集,并且所述第二参数集的时域标识符小于或等于所述当前图像的时域标识符;根据所述第二参数集,对所述当前图像的至少一个条带的色度分量执行自适应环路滤波。
第二参数集为自适应参数集(adaptation parameter set,APS),是一种语法结构。
第二方面,本发明涉及一种由编码设备实现的对视频码流进行编码的方法,其中,所述视频码流包括表示当前图像的数据,所述编码方法包括:确定是否对所述当前图像执行自适应环路滤波(adaptive loop filter,ALF);根据是否对所述当前图像执行自适应环路滤波(adaptive loop filter,ALF)的所述确定结果,将图像级语法元素编码到所述当前图像的图像头中;其中,所述图像级语法元素用于指示是否对所述当前图像启用自适应环路滤波(adaptive loop filter,ALF);当对所述当前图像执行自适应环路滤波时,将参数集标识符编码到所述图像头中,其中,所述参数集标识符用于表示包括自适应环路滤波的一组ALF参数的第一参数集;其中,所述第一参数集的时域标识符设置为小于或等于所述当前图像的时域标识符。
确定是否对所述当前图像执行自适应环路滤波(adaptive loop filter,ALF)可以包括:将对所述当前图像的至少一个块执行自适应环路滤波(adaptive loop filter,ALF)的成本与不对所述当前图像执行自适应环路滤波(adaptive loop filter,ALF)的成本进行比较;当对所述当前图像的至少一个块执行自适应环路滤波(adaptive loopfilter,ALF)的成本大于或等于对所述当前图像的至少一个块执行自适应环路滤波(adaptive loop filter,ALF)的成本时,确定不对所述当前图像执行自适应环路滤波(adaptive loop filter,ALF);否则,确定对所述当前图像执行自适应环路滤波(adaptiveloop filter,ALF)。成本可以是率失真成本。
根据所述第二方面,在所述方法的一种可能实现方式中,所述方法还包括:将所述第一参数集的所述时域标识符和所述当前图像的所述时域标识符编码到所述视频码流中。
根据所述第二方面或所述第二方面的任一上述实现方式,在所述方法的一种可能实现方式中,所述第一参数集包括对所述当前图像的至少一个条带的所述亮度分量执行的自适应环路滤波的一组ALF参数。
根据所述第二方面或所述第二方面的任一上述实现方式,在所述方法的一种可能实现方式中,所述方法还包括:在所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波的情况下,将另一参数集标识符编码到所述图像头中;其中,所述参数集标识符用于表示第二参数集,所述第二参数集包括对所述当前图像的至少一个条带的所述色度分量执行自适应环路滤波的一组ALF参数,并且所述第二参数集的时域标识符设置为小于或等于所述当前图像的时域标识符。
第三方面,本发明涉及一种用于对经编码的视频码流进行解码的装置。所述装置包括:获取单元,用于通过解析所述视频码流,获取包含在所述当前图像的图像头中的图像级语法元素,其中,所述图像级语法元素用于指示是否对所述当前图像启用自适应环路滤波(adaptive loop filter,ALF)。所述获取单元还用于:在所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波的情况下,获取所述图像头中包括的参数集标识符,其中,所述参数集标识符用于表示包括一组ALF参数的第一参数集,并且所述第一参数集的时域标识符小于或等于所述当前图像的时域标识符。所述装置还包括:滤波单元,用于根据所述第一参数集,对所述当前图像的至少一个条带执行所述自适应环路滤波。
根据所述第三方面,在所述装置的一种可能实现方式中,所述滤波单元用于根据所述第一参数集,对所述当前图像的至少一个条带的所述亮度分量执行自适应环路滤波。
根据所述第三方面或所述第三方面的任一上述实现方式,在所述装置的一种可能实现方式中,所述获取单元还用于:在所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波的情况下,获取所述图像头中包括的另一参数集标识符,其中,所述参数集标识符用于表示包括一组ALF参数的第二参数集,并且所述第二参数集的时域标识符小于或等于所述当前图像的时域标识符;所述滤波单元用于:根据所述第二参数集,对所述当前图像的至少一个条带的色度分量执行自适应环路滤波。
第四方面,本发明涉及一种用于对经编码的视频码流进行编码的装置。所述装置包括:确定单元,用于确定是否对所述当前图像执行自适应环路滤波(adaptive loopfilter,ALF);编码单元,用于根据是否对所述当前图像执行自适应环路滤波(adaptiveloop filter,ALF)的确定结果,将图像级语法元素编码到所述当前图像的图像头中,其中,所述图像级语法元素用于指示是否对所述当前图像启用自适应环路滤波(adaptive loopfilter,ALF);所述编码单元还用于:当对所述当前图像执行自适应环路滤波时,将参数集标识符编码到所述图像头中,其中,所述参数集标识符用于表示包括自适应环路滤波的一组ALF参数的第一参数集;其中,所述第一参数集的时域标识符设置为小于或等于所述当前图像的时域标识符。
根据所述第四方面,在所述装置的一种可能实现方式中,所述编码单元还用于:将所述第一参数集的所述时域标识符和所述当前图像的所述时域标识符编码到所述视频码流中。
根据所述第四方面或所述第四方面的任一上述实现方式,在所述装置的一种可能实现方式中,所述第一参数集包括对所述当前图像的至少一个条带的所述亮度分量执行的自适应环路滤波的一组ALF参数。
根据所述第四方面或所述第四方面的任一上述实现方式,在所述装置的一种可能实现方式中,所述编码单元还用于:在所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波的情况下,将另一参数集标识符编码到所述图像头中;其中,所述参数集标识符用于表示第二参数集,所述第二参数集包括对所述当前图像的至少一个条带的所述色度分量执行自适应环路滤波的一组ALF参数,并且所述第二参数集的时域标识符设置为小于或等于所述当前图像的时域标识符。
本发明第一方面提供的方法可由本发明第三方面提供的装置执行。本发明第一方面提供的方法的其它特征和实现方式对应于本发明第三方面提供的装置的特征和实现方式。
本发明第二方面提供的方法可以由本发明第四方面提供的装置执行。本发明第二方面提供的方法的其它特征和实现方式对应于本发明第四方面提供的装置的特征和实现方式。
第二方面提供的方法可以扩展为对应于第一方面提供的方法的实现方式的实现方式。因此,所述方法的实现方式包括所述第一方面的对应实现方式的一个或多个特征。
第二方面提供的方法的优点与第一方面提供的方法的对应实现方式的优点相同。
第五方面,本发明涉及一种用于对视频流进行解码的装置,包括处理器和存储器。所述存储器存储指令,所述指令使所述处理器执行所述第一方面或所述第一方面的任一实现方式提供的方法。
第六方面,本发明涉及一种用于对视频流进行编码的装置,包括处理器和存储器。所述存储器存储指令,所述指令使所述处理器执行所述第二方面或所述第二方面的任一实现方式提供的方法。
第七方面,提供一种存储有指令的计算机可读存储介质,所述指令在执行时使一个或多个处理器对视频数据进行译码。所述指令使所述一个或多个处理器执行所述第一方面或第二方面或所述第一方面或第二方面的任一实现方式提供的方法。
第八方面,本发明涉及一种包括程序代码的计算机程序,所述程序代码在计算机中执行时,所述程序代码用于执行所述第一方面或第二方面或所述第一方面或第二方面的任一实现方式提供的方法。
第九方面,本发明涉及一种解码器,所述解码器包括处理电路,用于执行所述第一方面或所述第一方面的任一实现方式提供的方法。
第十方面,本发明涉及一种编码器,所述编码器包括处理电路,用于执行所述第二方面或所述第二方面的任一实现方式提供的方法。
第十一方面,本发明涉及一种非瞬时性存储介质,包括由图像解码设备解码的编码码流,所述码流通过将视频信号或图像信号的当前图像划分为多个块来生成,并且包括多个语法元素,其中,所述多个语法元素包括包含在所述当前图像的图像头中的图像级语法元素图像级语法元素,所述图像级语法元素通过解析所述视频码流来获取,其中,所述图像级语法元素用于指示是否对所述当前图像启用自适应环路滤波(adaptive loopfilter,ALF);在所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波的情况下,所述码流还包括包含在所述图像头中的参数集标识符,其中,所述参数集标识符用于表示包括一组ALF参数的第一参数集,并且所述第一参数集的时域标识符设置为小于或等于所述当前图像的时域标识符。
具体实施例在所附独立权利要求中概述,其它实施例在从属权利要求中概述。
附图和以下描述对一个或多个实施例的细节进行了阐述。其它特征、目的和优点在说明书、附图和权利要求中是显而易见的。
此外,提供以下实施例。
在一个实施例中,提供了一种用于视频译码的码流,其中,DPS最多在所述码流中存在一次。
在一个实施例中,所述码流中不一定存在DPS。
在一个实施例中,当所述码流包含DPS时,所述码流中只有一个DPS。
在一个实施例中,码流中具有dps_decoding_parameter_set_id的特定值的所有DPS NAL单元应具有相同的内容。
在一个实施例中,一个DPS id不能关联(hook)一个以上DPS内容。
在一个实施例中,提供了一种用于视频译码的码流,其中,在DPS中指示的级别被限制为不小于在SPS中指示的级别。
在一个实施例中,提供了一种由解码设备实现的译码方法,所述方法包括解析上述任一实施例提供的码流。
在一个实施例中,提供了一种由编码设备实现的译码方法,所述方法包括产生上述任一实施例提供的码流。
在一个实施例中,提供了一种编码器(20),包括用于执行上述任一实施例提供的方法的处理电路。
在一个实施例中,提供了一种解码器(30),包括用于执行上述任一实施例提供的方法的处理电路。
在一个实施例中,提供了一种包括程序代码的计算机程序产品,其中,当所述程序代码在计算机或处理器中执行时,所述程序代码用于执行上述任一实施例提供的方法。
在一个实施例中,提供了一种解码器,包括:
一个或多个处理器;
非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的程序,其中,当所述一个或多个处理器执行所述程序时,使所述解码器执行上述任一实施例提供的方法。
在一个实施例中,提供了一种编码器,包括:
一个或多个处理器;
非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的程序,其中,当所述一个或多个处理器执行所述程序时,使所述编码器执行上述任一实施例提供的方法。
在一个实施例中,提供了一种携带程序代码的非瞬时性计算机可读存储介质,其中,当计算机设备执行所述程序代码时,所述计算机设备执行上述任一实施例提供的方法。
在一个实施例中,提供了一种由解码设备实现的对视频码流进行解码的方法,其中,所述视频码流包括表示编码图像的数据,所述编码图像包括分块(tile)列,所述解码方法包括:
通过解析所述视频码流,获取语法元素(例如,tile_column_width_minus1),其中,所述语法元素用于推导所述分块列的宽度;其中,所述分块列的宽度之和小于或等于所述编码图像的宽度;
根据所述分块列的宽度,预测所述编码图像。
在一个实施例中,所述分块列的分块列宽度为所述语法元素中每个语法元素的值加1。
在一个实施例中,所述分块列的宽度具有索引i,在0到num_exp_tile_columns_minus1–1的范围内。
在一个实施例中,所述分块列的宽度具有索引i,在0到num_exp_tile_columns_minus1的范围内。
在一个实施例中,提供了一种由解码设备实现的对视频码流进行解码的方法,其中,所述视频码流包括表示编码图像的数据,所述编码图像包括分块列,所述解码方法包括:
通过解析所述视频码流,获取语法元素(例如,tile_column_width_minus1),其中,所述语法元素用于推导所述分块列的宽度值;其中,所述分块列的宽度值是恒定的,并且所述分块列的宽度值小于或等于所述编码图像的宽度;
根据所述分块列的宽度,预测所述编码图像。
在一个实施例中,所述分块列的宽度值为所述语法元素的值加1。
在一个实施例中,所述分块列的宽度具有索引i,等于num_exp_tile_columns_minus1。
在一个实施例中,提供了一种由解码设备实现的对视频码流进行解码的方法,其中,所述视频码流包括表示编码图像的数据,所述编码图像包括分块行,所述解码方法包括:
通过解析所述视频码流,获取语法元素(例如,tile_row_height_minus1),其中,所述语法元素用于推导所述分块行的高度;其中,所述分块行的高度之和小于或等于所述编码图像的高度;
根据所述分块行的高度,预测所述编码图像。
在一个实施例中,所述分块行的分块行高度为所述语法元素中每个语法元素的值加1。
在一个实施例中,所述分块行的高度具有索引i,在0到num_exp_tile_columns_minus1–1的范围内。
在一个实施例中,所述分块行的高度具有索引i,在0到num_exp_tile_rows_minus1的范围内。
在一个实施例中,提供了一种由解码设备实现的对视频码流进行解码的方法,其中,所述视频码流包括表示编码图像的数据,所述编码图像包括分块行,所述解码方法包括:
通过解析所述视频码流,获取语法元素(例如,tile_row_height_minus1),其中,所述语法元素用于推导所述分块行的高度值;其中,所述分块行的高度值是恒定的,并且所述分块行的高度值小于或等于所述编码图像的高度;
根据所述分块行的高度,预测所述编码图像。
在一个实施例中,所述分块行的高度值为所述语法元素的值加1。
在一个实施例中,所述分块行的高度具有索引i,等于num_exp_tile_rows_minus1。
在一个实施例中,提供了一种编码器(20),包括用于执行上述任一实施例提供的方法的处理电路。
在一个实施例中,提供了一种解码器(30),包括用于执行上述任一实施例提供的方法的处理电路。
在一个实施例中,提供了一种包括程序代码的计算机程序产品,其中,当所述程序代码在计算机或处理器中执行时,所述程序代码用于执行上述任一实施例提供的方法。
在一个实施例中,提供了一种解码器,包括:
一个或多个处理器;
非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的程序,其中,当所述一个或多个处理器执行所述程序时,使所述解码器执行上述任一实施例提供的方法。
在一个实施例中,提供了一种编码器,包括:
一个或多个处理器;
非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的程序,其中,当所述一个或多个处理器执行所述程序时,使所述编码器执行上述任一实施例提供的方法。
在一个实施例中,提供了一种携带程序代码的非瞬时性计算机可读存储介质,其中,当计算机设备执行所述程序代码时,所述计算机设备执行上述任一实施例提供的方法。
附图说明
下文结合附图对本发明实施例进行详细描述。在附图中:
图1A为用于实现本发明实施例的视频译码***的一个示例的框图;
图1B为用于实现本发明实施例的视频译码***的另一示例的框图;
图2为用于实现本发明实施例的视频编码器示例的框图;
图3为用于实现本发明实施例的视频解码器的示例性结构的框图;
图4为示出编码装置或解码装置的一个示例的框图;
图5为示出编码装置或解码装置的另一示例的框图;
图6为实现内容分发业务的内容供应***3100的示例性结构的框图;
图7为示出终端设备示例结构的框图;
图8为一个实施例提供的解码方法的流程图;
图9为一个实施例提供的编码方法的流程图;
图10为一个实施例提供的编码器的示意图;
图11为一个实施例提供的解码器的示意图;
在下文中,除非另外明确说明,否则相同的附图标记是指相同或至少功能上等效的特征。
具体实施方式
以下描述中,参考组成本发明一部分并以说明的方式示出本发明实施例的具体方面或可以使用本发明实施例的具体方面的附图。应理解,本发明实施例可在其它方面中使用,并且可以包括附图中未描绘的结构变化或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,本发明的范围由所附权利要求书界定。
例如,应理解,结合所描述方法的公开内容对用于执行所述方法的对应设备或***也可以同样适用,反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包括一个或多个单元(例如,功能单元)来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元分别执行多个步骤中的一个或多个),即使附图中未明确描述或说明该一个或多个单元。另一方面,例如,如果根据一个或多个单元(例如,功能单元)来描述具体装置,则对应的方法可以包括一个步骤来实现一个或多个单元的功能(例如,一个步骤实现一个或多个单元的功能,或多个步骤分别实现多个单元中一个或多个单元的功能),即使附图中未明确描述或说明该一个或多个步骤。此外,应理解,除非另有说明,否则本文描述的各种示例性实施例和/或方面的特征可彼此组合。
视频译码通常指对构成视频或视频序列的图像序列进行处理。在视频译码领域中,术语“帧(frame)”与“图像(picture/image)”可以用作同义词。视频译码(或通常为译码)包括视频编码和视频解码两部分。视频编码在信源侧执行,通常包括处理(例如,压缩)原始视频图像以减少表示视频图像所需的数据量(从而更高效存储和/或发送)。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重建视频图像。实施例涉及的视频图像(或通常称为图像)的“译码”应理解为涉及视频图像或相应视频序列的“编码”或“解码”。编码部分和解码部分的组合也称为编解码(编码和解码,CODEC)。
在无损视频译码情况下,可以重建原始视频图像,即重建的视频图像与原始视频图像具有相同的质量(假设存储或传输期间没有传输损耗或其它数据丢失)。在有损视频译码情况下,通过量化等进行进一步压缩来减少表示视频图像所需的数据量,而解码器侧无法完全重建视频图像,即重建的视频图像的质量比原始视频图像的质量更低或更差。
几个视频译码标准属于“有损混合视频编解码器”组(即,将样本域中的空间预测和时间预测与变换域中用于应用量化的2D变换译码结合)。视频序列中的每个图像通常分割成不重叠的块集合,通常基于块级进行译码。换句话说,编码器通常在块(视频块)级对视频进行处理,即编码,例如,通过空间(帧内)预测和/或时间(帧间)预测来生成预测块;从当前块(当前处理/待处理的块)中减去预测块,获得残差块;在变换域中变换残差块并量化残差块,以减少待发送(压缩)的数据量,而解码器将相对于编码器的逆处理应用于经编码或压缩的块,以重建用于表示的当前块。此外,编码器重复解码器的处理步骤,使得编码器和解码器生成相同的预测(例如,帧内预测和帧间预测)和/或重建,用于对后续块进行处理(即译码)。
在以下实施例中,根据图1至图3描述了视频译码***10、视频编码器20和视频解码器30。
图1A为示意性框图,示出了示例性译码***10,例如可以利用本申请技术的视频译码***10(或简称为译码***10)。视频译码***10中的视频编码器20(或简称为编码器20)和视频解码器30(或简称为解码器30)代表可用于根据本申请中描述的各种示例执行各技术的设备的示例。
如图1A所示,译码***10包括源设备12,例如,所述源设备12用于将经编码的图像数据21提供到目的地设备14以对经编码的图像数据13进行解码。
源设备12包括编码器20,并且可以另外(即可选地)包括图像源16、预处理器(或预处理单元)18(例如图像预处理器18)和通信接口或通信单元22。
图像源16可以包括或可以是任何类型的图像捕获设备,例如用于捕获真实世界图像的摄像机,和/或任何类型的图像生成设备,例如用于生成计算机动画图像的计算机图形处理器,或用于获取和/或提供真实世界图像、计算机生成图像(例如,屏幕内容、虚拟现实(virtual reality,VR)图像)和/或其任何组合(例如,增强现实(augmented reality,AR)图像)的任何类型的其它设备。所述图像源可以为存储任一上述图像的任何类型的存储器(memory/storage)。
为了区分预处理器18和预处理单元18执行的处理,图像或图像数据17也可以称为原始图像或原始图像数据17。
预处理器18用于接收(原始)图像数据17,对图像数据17进行预处理,以获得经预处理的图像19或经预处理的图像数据19。例如,预处理器18执行的预处理可包括修剪(trimming)、颜色格式转换(例如从RGB转换为YCbCr)、调色或去噪。可以理解的是,预处理单元18可以为可选组件。
视频编码器20用于接收经预处理的图像数据19并提供经编码的图像数据21(例如,下文根据图2进一步详细描述)。
源设备12的通信接口22可用于接收经编码的图像数据21并通过通信信道13将经编码的图像数据21(或其任何其它经处理版本)发送到其它设备,例如目的地设备14或用于存储或直接重建的任何其它设备。
目的地设备14包括解码器30(例如,视频解码器30),并且可以另外(即,可选地)包括通信接口或通信单元28、后处理器32(或后处理单元32)和显示设备34。
目的地设备14的通信接口28用于接收经编码的图像数据21(或其任何其它经处理版本),例如,直接从源设备12或任何其它源(例如,编码图像数据存储设备等存储设备)接收,并将经编码的图像数据21提供给解码器30。
通信接口22和通信接口28可以用于通过源设备12与目的地设备14之间的直接通信链路(例如,直接有线或无线连接),或通过任何类型的网络(例如,有线或无线网络或其任意组合,或任何类型的专用和公共网络),或其任意组合发送或接收经编码的图像数据21或编码数据13。
例如,通信接口22可用于将经编码的图像数据21封装为数据包等合适的格式,和/或采用任何类型的发送编码或处理来处理所述经编码的图像数据,以便通过通信链路或通信网络进行发送。
例如,与通信接口22对应的通信接口28可以用于接收传输数据,并通过任何类型的对应传输解码或处理和/或解封装方式来处理传输数据,得到经编码的图像数据21。
通信接口22和通信接口28均可配置为单向通信接口(如图1A中从源设备12指向目的地设备14的通信信道13的箭头所表示),或双向通信接口,并可用于发送和接收消息等,例如,建立连接,确认和交互与通信链路和/或数据传输(例如,经编码的图像数据传输)相关的任何其它信息。
解码器30用于接收经编码的图像数据21并提供经解码的图像数据31或解码图像31(例如,下文根据图3或图5进一步详细描述)。
目的地设备14的后处理器32用于对经解码的图像数据31(也称为重建图像数据)(例如,解码图像31)进行后处理,以获得经后处理的图像数据33(例如,后处理图像33)。例如,由后处理单元32执行的后处理可以包括颜色格式转换(例如从YCbCr转换为RGB)、颜色校正、修剪或重采样,或任何其它处理,例如,用于准备经解码的图像数据31以供显示设备34等显示。
目的地设备14的显示设备34用于接收经后处理的图像数据33,以向用户或观看者等显示图像。显示设备34可以是或包括用于显示重建图像的任何类型的显示器,例如,集成或外部的显示器或监视器。例如,显示器可以包括液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light emitting diode,OLED)显示器、等离子显示器、投影仪、微型LED显示器、硅基液晶显示器(liquid crystal on silicon,LCoS)、数字光处理器(digital light processor,DLP)或任意类型的其它显示器。
尽管图1A示出了源设备12和目的地设备14作为单独的设备,但是在实施例中,设备还可以同时包括源设备12和目的地设备14或同时包括源设备12和目的地设备14的功能,即源设备12或对应功能以及目的地设备14或对应功能。在这类实施例中,源设备12或对应功能以及目的地设备14或对应功能可以使用相同的硬件和/或软件或通过单独的硬件和/或软件或其任意组合来实现。
根据描述,技术人员显而易见的是,图1A所示的源设备12和/或目的地设备14中的不同单元或功能的存在和(精确)划分可以根据实际设备和应用而不同。
编码器20(例如视频编码器20)或解码器30(例如视频解码器30),或编码器20和解码器30两者都可通过如图1B所示的处理电路实现,如一个或多个微处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integratedcircuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)、离散逻辑、硬件、视频编码专用处理器或其任意组合。编码器20可以由处理电路46实现,以体现结合图2的编码器20所述的各种模块和/或本文描述的任何其它编码器***或子***。解码器30可以由处理电路46实现,以体现结合图3的解码器30所述的各种模块和/或本文描述的任何其它解码器***或子***。所述处理电路可用于执行下文描述的各种操作。如图5所示,如果所述技术部分地以软件形式实现,则设备可以将软件的指令存储在合适的非瞬时性计算机可读介质中,并且可以使用一个或多个处理器执行硬件中的指令,以执行本发明的技术。视频编码器20和视频解码器30中的任一个可作为组合编解码器(encoder/decoder,CODEC)的一部分集成在单个设备中,如图1B所示。
源设备12和目的地设备14可以包括多种设备中的任一种,包括任何类型的手持或固定设备,例如,笔记本电脑或膝上型电脑、手机、智能手机、平板电脑(tablet/tabletcomputer)、摄像机、台式计算机、机顶盒、电视机、显示设备、数字媒体播放器、视频游戏机、视频流设备(如内容服务服务器或内容分发服务器)、广播接收器设备、广播发射器设备等,并且可以不使用或使用任何类型的操作***。在某些情况下,可以配备源设备12和目的地设备14以用于无线通信。因此,源设备12和目的地设备14可以是无线通信设备。
在某些情况下,图1A所示的视频译码***10仅仅是示例,本申请的技术可适用于在编码设备与解码设备之间不一定包括任何数据通信的视频译码设置(例如,视频编码或视频解码)。在其它示例中,从本地存储器中检索数据,通过网络发送,等等。视频编码设备可以对数据进行编码并将数据存储到存储器中,和/或视频解码设备可以从存储器检索数据并对数据进行解码。在一些示例中,编码和解码由相互不通信而只是将数据编码到存储器和/或从存储器中检索数据并对数据进行解码的设备来执行。
为便于描述,本文参考由ITU-T视频译码专家组(video coding experts group,VCEG)和ISO/IEC运动图像专家组(motion picture experts group,MPEG)的视频译码联合工作组(joint collaboration team on video coding,JCT-VC)开发的高效视频译码(high-efficiency video coding,HEVC)或通用视频译码(versatile video coding,VVC)(下一代视频译码标准)参考软件等描述本发明实施例。本领域普通技术人员理解本发明实施例不限于HEVC或VVC。
编码器和编码方法
图2为用于实现本申请技术的示例性视频编码器20的示意性框图。在图2的示例中,视频编码器20包括输入端201(或输入接口201)、残差计算单元204、变换处理单元206、量化单元208、反量化单元210和逆变换处理单元212、重建单元214、环路滤波单元220、解码图像缓冲器(decoded picture buffer,DPB)230、模式选择单元260、熵编码单元270和输出端272(或输出接口272)。模式选择单元260可以包括帧间预测单元244、帧内预测单元254和分割单元262。帧间预测单元244可以包括运动估计单元和运动补偿单元(未示出)。图2所示的视频编码器20也可以称为混合视频编码器或基于混合视频编解码器的视频编码器。
残差计算单元204、变换处理单元206、量化单元208和模式选择单元260可以组成编码器20的正向信号路径,而反量化单元210、逆变换处理单元212、重建单元214、缓冲器216、环路滤波器220、解码图像缓冲器(decoded picture buffer,DPB)230、帧间预测单元244和帧内预测单元254可以组成视频编码器20的反向信号路径。视频编码器20的反向信号路径与解码器(参见图3中的视频解码器30)的信号路径对应。反量化单元210、逆变换处理单元212、重建单元214、环路滤波器220、解码图像缓冲器(decoded picture buffer,DPB)230、帧间预测单元244和帧内预测单元254还组成视频编码器20的“内置解码器”。
图像和图像分割(图像和块)
编码器20可用于通过输入端201等接收图像17(或图像数据17),例如,形成视频或视频序列的图像序列中的图像。接收的图像或图像数据也可以是经预处理的图像19(或经预处理的图像数据19)。为了简单起见,以下描述使用图像17。图像17也可以称为当前图像或待编码图像(特别是在视频译码中,以便将当前图像与其它图像(例如,同一视频序列(即,也包括当前图像的视频序列)的先前编码和/或解码的图像)区分开)。
(数字)图像为或可以视为具有强度值的样本的二维阵列或矩阵。阵列中的样本也可以称为像素(pixel或pel)(图像元素的简称)。图像的大小和/或分辨率由阵列或图像在水平和垂直方向(或轴)上的样本数量定义。通常采用三种颜色分量来表示颜色,即该图像可表示为三个样本阵列或包括三个样本阵列。在RGB格式或颜色空间中,图像包括对应的红色、绿色和蓝色样本阵列。然而,在视频译码中,每个像素通常由亮度和色度格式或在颜色空间中表示,例如,YCbCr,包括Y表示的亮度分量(有时也用L表示)和Cb和Cr表示的两个色度分量。亮度(luminance,简写为luma)分量Y表示亮度或灰度级强度(例如在灰度等级图像中两者相同),而两个色度(chrominance,简写为chroma)分量Cb和Cr表示色度或颜色信息分量。因此,YCbCr格式的图像包括亮度样本值(Y)的亮度样本阵列和色度值(Cb和Cr)的两个色度样本阵列。RGB格式的图像可以转换或变换为YCbCr格式,反之亦然,该过程也称为颜色变换或转换。如果图像是单色的,则该图像可以仅包括亮度样本阵列。相应地,例如,图像可以为单色格式的亮度样本阵列或4:2:0、4:2:2和4:4:4彩色格式的亮度样本阵列和两个对应的色度样本阵列。
视频编码器20的实施例可包括图像分割单元(图2中未示出),所述图像分割单元用于将图像17分割成多个(通常不重叠)图像块203。这些块也可以称为根块、宏块(H.264/AVC)或编码树块(coding tree block,CTB),或编码树单元(coding tree unit,CTU)(H.265/HEVC和VVC)。图像分割单元可用于对视频序列的所有图像使用相同的块大小和定义块大小的对应网格,或者用于改变图像或图像子集或组之间的块大小,并将每个图像分割成对应块。
在其它实施例中,视频编码器可以用于直接接收图像17的块203,例如组成图像17的一个、几个或所有块。图像块203也可以称为当前图像块或待编码图像块。
与图像17类似,图像块203同样是或可以看作是具有强度值(样本值)的样本的二维阵列或矩阵,但是,图像块203的尺寸比图像17小。换句话说,例如,根据所应用的颜色格式,块203可以包括一个样本阵列(例如,图像17是单色情况下的亮度阵列,或图像17是彩色情况下的亮度或色度阵列)或三个样本阵列(例如,图像17是彩色情况下的一个亮度阵列和两个色度阵列)或任何其它数量和/或类型的阵列。块203的水平方向和垂直方向(或轴线)上的样本数量决定了块203的大小。因此,块可以为M×N(M列×N行)个样本阵列,或M×N个变换系数阵列等。
图2所示的视频编码器20的实施例可以用于逐块对图像17进行编码,例如,按块203进行编码和预测。
图2所示的视频编码器20的实施例还可以用于使用条带(slice)(也称为视频条带)对图像进行分割和/或编码,其中,可以使用一个或多个条带(通常为非重叠的)对图像进行分割或编码。每个条带可以包括一个或多个块(例如,CTU)或一个或多个块组(例如,分块(H.265/HEVC和VVC)或砖(VVC))。
图2所示的视频编码器20的实施例还可以用于使用条带/分块组(也称为视频分块组)和/或分块(也称为视频分块)对图像进行分割和/或编码,其中,可以使用一个或多个条带/分块组(通常为不重叠的)对图像进行分割或编码,每个条带/分块组可以包括一个或多个块(例如,CTU)或一个或多个分块等,其中,每个分块可以为矩形等形状,可以包括一个或多个块(例如,CTU),例如完整或部分块。
残差计算
残差计算单元204可用于通过如下等方式根据图像块203和预测块265(下文详细描述预测块265)来计算残差块205(也称为残差205):逐个样本(逐个像素)从图像块203的样本值中减去预测块265的样本值,以获得样本域中的残差块205。
变换
变换处理单元206可以用于对残差块205的样本值进行离散余弦变换(discretecosine transform,DCT)或离散正弦变换(discrete sine transform,DST)等变换,得到变换域中的变换系数207。变换系数207也可称为变换残差系数,表示变换域中的残差块205。
变换处理单元206可用于应用DCT/DST的整数近似,例如为H.265/HEVC指定的变换。与正交DCT变换相比,这种整数近似通常通过某一因子进行缩放(scale)。为了保持经过正变换和逆变换处理的残差块的范数,在变换过程中应用了其它缩放因子。缩放因子通常是根据某些约束条件来选择的,例如缩放因子是用于移位运算的2的幂、变换系数的位深度、准确性与实现成本之间的权衡等。例如,通过逆变换处理单元212等为逆变换(以及在视频解码器30侧通过逆变换处理单元312等为对应的逆变换)指定具体的缩放因子;相应地,可以在编码器20侧,通过变换处理单元206等为正变换指定对应的缩放因子。
视频编码器20(具体是变换处理单元206)的实施例可以用于直接或通过熵编码单元270编码或压缩等输出变换参数(例如,一种或多种变换的类型),使得例如视频解码器30可以接收并使用变换参数进行解码。
量化
量化单元208可以用于通过应用标量量化或矢量量化等对变换系数207进行量化,以获得量化系数209。量化系数209也可以称为量化变换系数209或量化残差系数209。
量化过程可减少与部分或全部变换系数207有关的位深度。例如,可以在量化期间将n位变换系数向下舍入到m位变换系数,其中n大于m。可以通过调整量化参数(quantization parameter,QP)修改量化程度。例如,对于标量量化,可以应用不同程度的缩放来实现较细或较粗的量化。较小量化步长对应于较细量化,而较大量化步长对应于较粗量化。可以通过量化参数(quantization parameter,QP)表示合适的量化步长。例如,量化参数可以为合适的量化步长的预定义集合的索引。例如,较小的量化参数可对应精细量化(较小量化步长),较大的量化参数可对应粗糙量化(较大量化步长),反之亦然。量化可以包括除以量化步长,而反量化单元210等执行的对应和/或反解量化可以包括乘以量化步长。根据HEVC等一些标准的实施例可以使用量化参数来确定量化步长。通常,可以根据量化参数使用包括除法的等式的定点近似来计算量化步长。可以引入其它缩放因子来进行量化和解量化,以恢复可能由于在用于量化步长和量化参数的等式的定点近似中使用的缩放而修改的残差块的范数。在一种示例性实现方式中,可以合并逆变换和解量化的缩放。或者,可以使用自定义量化表并在码流中等将其从编码器向解码器指示。量化是有损操作,其中,量化步长越大,损耗越大。
视频编码器20(具体是量化单元208)的实施例可以用于直接或通过熵编码单元270编码等输出量化参数(quantization parameter,QP),使得例如视频解码器30可以接收并使用量化参数进行解码。
反量化
反量化单元210用于通过根据或使用与量化单元208相同的量化步长应用量化单元208所应用的量化方案的逆过程等,对量化系数应用量化单元208的反量化,以获得解量化系数211。解量化系数211也可以称为解量化残差系数211,对应于变换系数207,但是由于量化造成损耗,解量化系数211通常与变换系数不相同。
逆变换
逆变换处理单元212用于进行变换处理单元206进行的变换的逆变换,例如逆离散余弦变换(discrete cosine transform,DCT)或逆离散正弦变换(discrete sinetransform,DST),得到像素域中的重建残差块213(或对应的解量化系数213)。重建残差块213也可以称为变换块213。
重建
重建单元214(例如,加法器或求和器214)用于例如通过将重建残差块213的样本值和预测块265的样本值逐个样本相加,将变换块213(即重建残差块213)添加到预测块265,以获得样本域中的重建块215。
滤波
环路滤波单元220(或简称“环路滤波器”220)用于对重建块215进行滤波,得到滤波块221,或通常用于对重建样本进行滤波以得到滤波样本值。例如,环路滤波单元用于平滑像素转变或提高视频质量。环路滤波单元220可以包括一个或多个环路滤波器,如去块效应滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或一个或多个其它滤波器,例如自适应环路滤波器(adaptive loop filter,ALF)、噪声抑制滤波器(noisesuppression filter,NSF)或其任意组合。在一个示例中,环路滤波单元220可以包括去块效应滤波器、SAO滤波器和ALF。滤波过程的顺序可以是去块效应滤波器、SAO滤波器和ALF。在另一示例中,增加称为具有色度缩放的亮度映射(luma mapping with chroma scaling,LMCS)(即,自适应环内整形器)的过程。该过程在去块之前执行。在另一示例中,去块效应滤波过程也可以应用于内部子块边缘,例如仿射子块边缘、ATMVP子块边缘、子块变换(sub-block transform,SBT)边缘和帧内子分割(intra sub-partition,ISP)边缘。虽然环路滤波单元220在图2中示出为环内滤波器,但是在其它配置中,环路滤波单元220可以实现为后环路滤波器。滤波块221也可以称为滤波重建块221。
视频编码器20(具体是环路滤波单元220)的实施例可用于直接或通过熵编码单元270编码等输出环路滤波器参数(如SAO滤波器参数或ALF滤波器参数(ALF参数)或LMCS参数),使得例如解码器30可以接收和应用相同环路滤波器参数或相应的环路滤波器进行解码。熵编码单元270还可以将图像级语法元素编码到当前图像的图像头中,其中,所述图像级语法元素用于指示是否对当前图像执行自适应环路滤波(adaptive loop filter,ALF)。
解码图像缓冲器
解码图像缓冲器(decoded picture buffer,DPB)230可以是存储参考图像或通常存储参考图像数据以供视频编码器20对视频数据进行编码的存储器。DPB 230可以由多种存储设备中的任一种组成,如动态随机存取存储器(dynamic random access memory,DRAM),包括同步DRAM(synchronous DRAM,SDRAM)、磁阻RAM(magnetoresistive RAM,MRAM)、电阻RAM(resistive RAM,RRAM)或其它类型的存储设备。解码图像缓冲器(decodedpicture buffer,DPB)230可用于存储一个或多个滤波块221。解码图像缓冲器230还可用于存储同一当前图像或不同图像(例如,先前重建的图像)的其它先前滤波块(例如,先前重建和滤波块221),并且可提供完整的先前重建(即解码)的图像(和对应的参考块和样本)和/或部分重建的当前图像(和对应的参考块和样本),以进行帧间预测等。例如,在重建块215未被环路滤波单元220进行滤波时,解码图像缓冲器(decoded picture buffer,DPB)230还可用于存储一个或多个未经滤波的重建块215,或通常存储未经滤波的重建样本,或重建块或重建样本的任何其它未经进一步处理的版本。
模式选择(分割和预测)
模式选择单元260包括分割单元262、帧间预测单元244和帧内预测单元254,用于从解码图像缓冲器230或其它缓冲器(例如,行缓冲器,未示出)等接收或获得原始图像数据(例如,原始块203(当前图像17的当前块203))和重建图像数据(例如,相同(当前)图像和/或一个或多个先前解码图像的滤波和/或未经滤波的重建样本或重建块)。重建图像数据用作帧间预测或帧内预测等预测所需的参考图像数据,以得到预测块265或预测值265。
模式选择单元260可用于为当前块预测模式(不包括分割)和预测模式(例如帧内或帧间预测模式)确定或选择分割类型,并生成对应的预测块265,以对残差块205进行计算和对重建块215进行重建。
模式选择单元260的实施例可用于选择分割和预测模式(例如,从模式选择单元260支持或可用于模式选择单元260的预测模式中选择),所述预测模式提供最佳匹配或者说最小残差(最小残差意味着传输或存储中更好的压缩),或提供最小指示开销(最小指示开销意味着传输或存储中更好的压缩),或者同时考虑或平衡以上两者。模式选择单元260可用于根据率失真优化(rate distortion optimization,RDO)确定分割和预测模式,即选择提供最小率失真的预测模式。本上下文中如“最佳”、“最小”、“最优”等术语不一定指总体上“最佳”、“最小”、“最优”等,也可以指满足终止或选择标准,例如,值超过或低于阈值或其它约束条件,可能会进行“次优选择”,但是降低了复杂度和处理时间。
换句话说,分割单元262可以用于将视频序列的图像分割成一系列编码树单元(coding tree unit,CTU),还可以将CTU 203分割成更小的分割块或子块(再次形成块),例如,使用四叉树(quad-tree,QT)分割、二叉树(binary-tree,BT)分割或三叉树(triple-tree,TT)分割或其任何组合迭代地进行,并例如,对每个分割块或子块进行预测,其中,所述模式选择包括选择分割块203的树结构并将预测模式应用于每个分割块或子块。
下文详细描述由示例性视频编码器20执行的分割(例如,由分割单元260执行)和预测处理(例如,由帧间预测单元244和帧内预测单元254执行)。
分割
分割单元262可以用于将视频序列的图像分割为编码树单元(coding tree unit,CTU)序列,分割单元262可以将编码树单元(coding tree unit,CTU)203分割(或划分)为较小的分割块,例如正方形或矩形小块。对于具有三个样本阵列的图像,一个CTU由N×N个亮度样本块和两个对应的色度样本块组成。CTU中亮度块的最大允许大小在正在开发的通用视频译码(Versatile Video Coding,VVC)标准中被指定为128×128,但是可指定为不同于128×128的值,例如256×256。图像的CTU可以集中/分组为条带/分块组、分块或砖。一个分块覆盖一幅图像的矩形区域,一个分块可以分成一个或多个砖。一个砖由一个分块内的多个CTU行组成。没有分割成多个砖的分块可以称为砖。但是,砖是分块的真子集,因此不称为分块。VVC支持两种分块组模式,即光栅扫描条带/分块组模式和矩形条带模式。在光栅扫描分块组模式中,条带/分块组包括图像的分块光栅扫描中的分块序列。在矩形条带模式中,条带包括一幅图像的多个砖,这些砖共同组成图像的矩形区域。矩形条带内的砖按照条带的砖光栅扫描顺序排列。这些较小块(也可以称为子块)可以进一步分割成甚至更小的分割块。这也称为树分割或层次树分割,其中,可以递归地分割例如根树层次0(层次级别0,深度0)的根块,例如分割为两个或两个以上下一较低树层次的块,例如树层次1(层次级别1,深度1)的节点。可以再次将这些块分割为两个或两个以上下一较低层次,例如树层次2(层次级别2、深度2)的块等,直到例如因为满足结束标准,例如达到最大树深度或最小块大小,分割结束。未进一步分割的块也称为树的叶块或叶节点。分割为两个部分的树称为二叉树(binary-tree,BT),分割为三个部分的树称为三叉树(ternary-tree,TT),分割为四个部分的树称为四叉树(quad-tree,QT)。
例如,编码树单元(coding tree unit,CTU)可以为或包括具有三个样本阵列的图像的亮度样本的一个CTB和色度样本的两个对应CTB,或单色图像或使用用于对样本进行译码的三个独立颜色平面和语法结构译码的图像的样本的一个CTB。相应地,编码树块(coding tree block,CTB)可以为N×N个样本块,其中N可以设为某个值从而将分量划分为多个CTB,这就是分割。编码单元(coding unit,CU)可以为或包括具有三个样本阵列的图像的亮度样本的一个编码块、色度样本的两个对应编码块,或单色图像或使用用于对样本进行译码的三个独立颜色平面和语法结构译码的图像的样本的一个编码块。相应地,编码块(coding block,CB)可以为M×N个样本块,其中M和N可以设为某个值从而将CTB划分为多个编码块,这就是分割。
在实施例中,例如根据HEVC,可以通过表示为编码树的四叉树结构将编码树单元(coding tree unit,CTU)划分为多个CU。在叶CU级决定是否使用帧间(时间)预测或帧内(空间)预测对图像区域进行译码。可以根据PU划分类型将每个叶CU进一步划分为一个、两个或四个PU。一个PU内应用相同的预测过程,并在PU的基础上向解码器发送相关信息。在根据PU划分类型应用预测过程获得残差块之后,可以根据与用于CU的编码树类似的另一种四叉树结构将叶CU分割为变换单元(transform unit,TU)。
例如,在实施例中,根据当前正在开发的最新视频译码标准(称为通用视频译码(Versatile Video Coding,VVC)),例如,四叉树嵌套多类型树(使用二叉树和三叉树)的组合划分分割结构,例如用于分割编码树单元。在编码树单元内的编码树结构中,CU可以为正方形或矩形。例如,首先通过四叉树分割编码树单元(coding tree unit,CTU)。然后,可以通过多类型树结构进一步分割四叉树叶节点。多类型树结构有四种划分类型:垂直二叉树划分(SPLIT_BT_VER)、水平二叉树划分(SPLIT_BT_HOR)、垂直三叉树划分(SPLIT_TT_VER)和水平三叉树划分(SPLIT_TT_HOR)。多类型树叶节点称为编码单元(coding unit,CU),除非CU大于最大变换长度,否则在无需任何进一步分割的情况下将该分割用于预测和变换处理。这意味着,在大多数情况下,CU、PU和TU在四叉树嵌套多类型树的编码块结构中的块大小相同。当最大支持变换长度小于CU的颜色分量的宽度或高度时,发生异常。VVC开发了一种四叉树嵌套多类型树的编码树结构中分割划分信息的独特信令机制。在该信令机制中,编码树单元(coding tree unit,CTU)作为四叉树的根进行处理,首先通过四叉树结构分割。然后,进一步通过多类型树结构分割每个四叉树叶节点(当大到足以进行分割时)。在多类型树结构中,指示第一标志(mtt_split_cu_flag)来表示是否进一步分割节点;当进一步分割节点时,指示第二标志(mtt_split_cu_vertical_flag)来表示划分方向,然后指示第三标志(mtt_split_cu_binary_flag)来表示划分为二叉树划分还是三叉树划分。根据mtt_split_cu_vertical_flag和mtt_split_cu_binary_flag的值,解码器可以根据预定义规则或表格推导出CU的多类型树划分模式(MttSplitMode)。需要说明的是,对于某种设计,例如VVC硬件解码器中的64×64亮度块和32×32色度流水线设计,当亮度编码块的宽度或高度大于64时,禁止进行TT划分,如图6所示。当色度编码块的宽度或高度大于32时,也禁止TT划分。流水线设计将图像分为多个虚拟流水数据单元(virtual pipeline data unit,VPDU),定义为图像中的非重叠单元。在硬件解码器中,多个流水线阶段同时处理连续的VPDU。在大多数流水线阶段,VPDU大小与缓冲器大小大致成正比,因此需要保持较小的VPDU。在大多数硬件解码器中,可以将VPDU大小设置为最大变换块(transform block,TB)大小。然而,在VVC中,三叉树(ternary tree,TT)和二叉树(binary tree,BT)分割可能会增加VPDU的大小。
另外,需要说明的是,当树节点块的一部分超出底部或右侧图像边界时,对该树节点块进行强制划分,直到每个编码CU的所有样本都位于图像边界内。
例如,帧内子分割(Intra Sub-Partitions,ISP)工具可以根据块大小将亮度帧内预测块垂直或水平分为两个或四个子部分。
在一个示例中,视频编码器20的模式选择单元260可以用于执行本文描述的分割技术的任意组合。
如上所述,视频编码器20用于从(例如预定的)预测模式集合中确定或选择最好或最优的预测模式。例如,预测模式集合可以包括帧内预测模式和/或帧间预测模式。
帧内预测
帧内预测模式集合可以包括35种不同的帧内预测模式,例如像DC(或均值)模式和平面模式的非方向性模式或者如HEVC中定义的方向性模式,或可以包括67种不同的帧内预测模式,例如像DC(或均值)模式和平面模式的非方向性模式或者如VVC中定义的方向性模式。在一个示例中,若干传统角度帧内预测模式自适应地替换为VVC中定义的非正方形块的广角帧内预测模式。在另一示例中,为了避免DC预测的除法运算,仅使用较长边来计算非正方形块的平均值。并且,还可以通过位置决定的帧内预测组合(position dependent intraprediction combination,PDPC)方法修改平面模式的帧内预测结果。
帧内预测单元254用于根据帧内预测模式集合中的帧内预测模式,使用同一当前图像的邻块的重建样本来生成帧内预测块265。
帧内预测单元254(或通常为模式选择单元260)还用于将帧内预测参数(或通常为指示块的所选帧内预测模式的信息)以语法元素266的形式输出到熵编码单元270,以包括到经编码的图像数据21中,使得例如视频解码器30可以接收并使用用于解码的预测参数。
帧间预测
(可能的)帧间预测模式的集合取决于可用参考图像(即,例如存储在DPB 230中的先前至少部分解码的图像)和其它帧间预测参数,例如取决于是否使用整个参考图像或只使用参考图像的一部分(例如当前块的区域附近的搜索窗口区域)来搜索最佳匹配参考块,和/或例如取决于是否应用像素插值(例如二分之一/半像素、四分之一和/或1/16像素插值)。
除上述预测模式外,还可以应用跳过模式、直接模式和/或其它帧间预测模式。
例如,扩展融合预测,这种模式的融合候选列表由以下五种候选类型按顺序组成:空间相邻CU的空间MVP、并置CU的时间MVP、FIFO表的基于历史的MVP、成对平均MVP和零MV。可以应用基于双边匹配的解码端运动矢量修正(decoder side motion vectorrefinement,DMVR)来提高融合模式的MV的准确度。带有MVD的融合模式(merge mode withMVD,MMVD)来自有运动矢量差值的融合模式。在发送跳过标志和融合标志之后立即指示MMVD标志,以表示是否对CU使用MMVD模式。可以应用CU级自适应运动矢量分辨率(adaptivemotion vector resolution,AMVR)方案。AMVR支持以不同的精度对CU的MVD进行译码。根据当前CU的预测模式,可以自适应地选择当前CU的MVD。当以融合模式对CU进行译码时,可以将合并的帧间/帧内预测(combined inter/intra prediction,CIIP)模式应用于当前CU。对帧间和帧内预测信号进行加权平均,得到CIIP预测。对于仿射运动补偿预测,通过2个控制点(4参数)或3个控制点(6参数)运动矢量的运动信息来描述块的仿射运动场。基于子块的时间运动矢量预测(subblock-based temporal motion vector prediction,SbTMVP)与HEVC中的时间运动矢量预测(temporal motion vector prediction,TMVP)类似,但预测的是当前CU内子CU的运动矢量。双向光流(bi-directional optical flow,BDOF)以前称为BIO,是一种所需计算减少的简化版本,特别是乘法次数和乘数大小的计算减少。在三角形分割模式中,使用对角线划分或反对角线划分将CU均匀划分为两个三角形分割。此外,双向预测模式在简单平均的基础上进行了扩展,以支持两个预测信号的加权平均。
帧间预测单元244可以包括运动估计(motion estimation,ME)单元和运动补偿(motion compensation,MC)单元(两者在图2中未示出)。运动估计单元可用于接收或获取图像块203(当前图像17的当前图像块203)和解码图像231,或至少一个或多个先前重建块,例如,一个或多个其它/不同先前解码图像231的重建块,以进行运动估计。例如,视频序列可以包括当前图像和先前解码图像231,或换句话说,当前图像和先前解码图像231可以为形成视频序列的图像序列的一部分或形成该图像序列。
例如,编码器20可用于从多个其它图像中的相同或不同图像的多个参考块中选择参考块,并将参考图像(或参考图像索引)和/或参考块的位置(x坐标,y坐标)与当前块的位置之间的偏移(空间偏移)作为帧间预测参数提供给运动估计单元。这种偏移也称为运动矢量(motion vector,MV)。
运动补偿单元用于获取(例如接收)帧间预测参数,并根据或使用帧间预测参数进行帧间预测,以获得帧间预测块265。由运动补偿单元执行的运动补偿可能涉及根据通过运动估计确定的运动/块矢量来提取或生成预测块,还可能涉及对子像素精度进行插值。插值滤波可以从已知的像素样本中生成额外的像素样本,从而可能增加可用于对图像块进行译码的候选预测块的数量。一旦接收到当前图像块的PU的运动矢量,运动补偿单元可以定位在其中一个参考图像列表中运动矢量指向的预测块。
运动补偿单元还可以生成与块和视频条带相关的语法元素,以供视频解码器30在解码视频条带的图像块时使用。除了条带和相应语法元素或作为条带和相应语法元素的替代,还可以接收和/或使用分块组(tile group)和/或分块(tile)以及相应语法元素。
熵编码
例如,熵编码单元270用于对量化系数209、帧间预测参数、帧内预测参数、环路滤波器参数(如ALF参数的集合)和/或其它语法元素应用熵编码算法或方案(例如,可变长度编码(variable length coding,VLC)方案、上下文自适应VLC(context adaptive VLC,CAVLC)方案、算术编码方案、二值化、上下文自适应二进制算术编码(context adaptivebinary arithmetic coding,CABAC)、基于语法的上下文自适应二进制算术编码(syntax-based context-adaptive binary arithmetic coding,SBAC)、概率区间分割熵(probability interval partitioning entropy,PIPE)编码或其它熵编码方法或技术)或旁路熵编码算法或方案(不压缩),以获得可以通过输出端272以经编码码流21等形式输出的经编码的图像数据21,使得例如视频解码器30可以接收并使用这些参数进行解码。可以将经编码码流21发送到视频解码器30,或将其存储在存储器中以供后续传输或由视频解码器30检索。
视频编码器20的其它结构变体可以用于对视频流进行编码。例如,基于非变换的编码器20可以在某些块或帧没有变换处理单元206的情况下直接量化残差信号。在另一种实现方式中,编码器20中,量化单元208和反量化单元210可以组合成一个单元。
解码器和解码方法
图3示出了用于实现本申请技术的视频解码器30的示例。视频解码器30用于接收例如由编码器20编码的经编码的图像数据21(例如,经编码码流21)以获得解码图像331。经编码的图像数据或码流包括用于对所述经编码的图像数据进行解码的信息,例如表示经编码视频条带(和/或分块组或分块)的图像块的数据和相关的语法元素。
在图3的示例中,解码器30包括熵解码单元304、反量化单元310、逆变换处理单元312、重建单元314(例如求和器314)、环路滤波器320、解码图像缓冲区(decoded picturebuffer,DPB)330、模式选择单元360、帧间预测单元344和帧内预测单元354。帧间预测单元344可以为或可以包括运动补偿单元。在一些示例中,视频解码器30可执行通常与针对图2的视频编码器100描述的编码过程相反的解码过程。
如针对编码器20的描述,反量化单元210、逆变换处理单元212、重建单元214、环路滤波器220、解码图像缓冲器(decoded picture buffer,DPB)230、帧间预测单元344和帧内预测单元354还组成视频编码器20的“内置解码器”。相应地,反量化单元310的功能可以与反量化单元110相同;逆变换处理单元312的功能可以与逆变换处理单元212相同;重建单元314的功能可以与重建单元214相同;环路滤波器320的功能可以与环路滤波器220相同;解码图像缓冲器330的功能可以与解码图像缓冲器230相同。因此,对视频编码器20的相应单元和功能进行的描述对应地适用于视频解码器30的相应单元和功能。
熵解码
熵解码单元304用于解析码流21(或通常为经编码的图像数据21)并例如对经编码的图像数据21进行熵解码,以获得量化系数309和/或经解码的译码参数(图3中未示出)等,例如帧间预测参数(例如参考图像索引和运动矢量)、帧内预测参数(例如帧内预测模式或索引)、变换参数、量化参数、环路滤波器参数和/或其它语法元素中的任一个或全部。熵解码单元304可用于应用与针对编码器20的熵编码单元270所描述的编码方案相对应的解码算法或方案。熵解码单元304还可以用于向模式应用单元360提供帧间预测参数、帧内预测参数和/或其它语法元素,并向解码器30的其它单元提供其它参数。视频解码器30可以接收视频条带级和/或视频块级的语法元素。除了条带和相应语法元素或作为条带和相应语法元素的替代,还可以接收和/或使用分块组和/或分块以及相应语法元素。
反量化
反量化单元310可用于从经编码的图像数据21(例如,通过熵解码单元304等解析和/或解码)接收量化参数(quantization parameter,QP)(或通常为与反量化相关的信息)和量化系数,并根据所述量化参数对经解码的量化系数309应用反量化以获得解量化系数311,所述解量化系数311也可以称为变换系数311。反量化过程可以包括使用视频编码器20对视频条带(或分块或分块组)中的每个视频块确定的量化参数来确定量化程度,同样确定需要应用的反量化的程度。
逆变换
逆变换处理单元312可以用于接收解量化系数311(也称为变换系数311),并对解量化系数311进行变换,得到样本域中的重建残差块213。重建残差块213也可以称为变换块313。变换可以为逆变换,例如逆DCT、逆DST、逆整数变换或概念上类似的逆变换过程。逆变换处理单元312还可以用于从经编码的图像数据21接收变换参数或对应信息(例如,通过熵解码单元304等解析和/或解码),以确定将应用于解量化系数311的变换。
重建
重建单元314(例如,加法器或求和器314)可用于通过将重建残差块313的样本值和预测块365的样本值相加等方式,将重建残差块313添加到预测块365,以获得样本域中的重建块315。
滤波
环路滤波单元320(在译码环路中或译码环路之后)用于对重建块315进行滤波,以获得滤波块321,以平滑像素转变或以其它方式提高视频质量等。环路滤波单元320可以包括一个或多个环路滤波器,如去块效应滤波器、样本自适应偏移(sample-adaptiveoffset,SAO)滤波器或一个或多个其它滤波器,例如自适应环路滤波器(adaptive loopfilter,ALF)、噪声抑制滤波器(noise suppression filter,NSF)或其任意组合。在一个示例中,环路滤波单元220可以包括去块效应滤波器、SAO滤波器和ALF。滤波过程的顺序可以是去块效应滤波器、SAO滤波器和ALF。在另一示例中,增加称为具有色度缩放的亮度映射(luma mapping with chroma scaling,LMCS)(即,自适应环内整形器)的过程。该过程在去块之前执行。在另一示例中,去块效应滤波过程也可以应用于内部子块边缘,例如仿射子块边缘、ATMVP子块边缘、子块变换(sub-block transform,SBT)边缘和帧内子分割(intrasub-partition,ISP)边缘。虽然环路滤波单元320在图3中示为环内滤波器,但是在其它配置中,环路滤波单元320可以实现为后环路滤波器。
解码图像缓冲器
然后,将图像的解码视频块321存储在解码图像缓冲器330中,所述解码图像缓冲器330存储作为参考图像的解码图像331,这些参考图像用于其它图像的后续运动补偿和/或用于分别输出到显示器。
解码器30用于通过输出端312等输出解码图像311,向用户呈现或供用户观看。
预测
帧间预测单元344的功能可以与帧间预测单元244(特别是运动补偿单元)相同,帧内预测单元354的功能可以与帧间预测单元254相同,并根据从经编码的图像数据21接收的分割和/或预测参数或相应信息(例如,通过熵解码单元304等解析和/或解码)决定划分或分割并执行预测。模式应用单元360可用于根据重建图像、块或相应样本(经滤波或未经滤波)对每个块执行预测(帧内或帧间预测),以获得预测块365。
当将视频条带编码为帧内编码(intra coded,I)条带时,模式应用单元360的帧内预测单元354用于根据指示的帧内预测模式和来自当前图像的先前解码块的数据生成当前视频条带的图像块的预测块365。当将视频图像编码为帧间编码(即,B或P)条带时,模式应用单元360的帧间预测单元344(例如,运动补偿单元)用于根据运动矢量和从熵解码单元304接收的其它语法元素产生当前视频条带的视频块的预测块365。对于帧间预测,可以根据其中一个参考图像列表内的其中一个参考图像产生这些预测块。视频解码器30可以根据存储在DPB 330中的参考图像,使用默认构建技术来构建参考帧列表:列表0和列表1。除了条带(例如视频条带)或作为条带的替代,相同或类似的过程可应用于使用分块组(例如视频分块组)和/或分块(例如视频分块)的实施例或由这些实施例应用,例如可以使用I、P或B分块组和/或分块对视频进行译码。
模式选择单元360用于通过解析运动矢量或相关信息和其它语法元素来确定当前视频条带的视频块的预测信息,并使用所述预测信息针对所解码的当前视频块生成预测块。例如,模式应用单元360使用接收到的一些语法元素确定用于对视频条带的视频块进行译码的预测模式(例如,帧内预测或帧间预测)、帧间预测条带类型(例如B条带、P条带或GPB条带)、条带的一个或多个参考图像列表的构建信息、条带的每个帧间编码视频块的运动矢量、条带的每个帧间编码视频块的帧间预测状态、以及其它信息,以对当前视频条带内的视频块进行解码。除了条带(例如视频条带)或作为条带的替代,相同或类似的过程可应用于使用分块组(例如视频分块组)和/或分块(例如视频分块)的实施例或由这些实施例应用,例如可以使用I、P或B分块组和/或分块对视频进行译码。
图3所示的视频解码器30的实施例可以用于使用条带(也称为视频条带)对图像进行分割和/或解码,其中,可以使用一个或多个条带(通常为不重叠的)对图像进行分割或解码。每个条带可以包括一个或多个块(例如,CTU)或一个或多个块组(例如,分块(H.265/HEVC和VVC)或砖(VVC))。
图3所示的视频解码器30的实施例可以用于使用条带/分块组(也称为视频分块组)和/或分块(也称为视频分块)对图像进行分割和/或解码,其中,可以使用一个或多个条带/分块组(通常为不重叠的)对图像进行分割或解码。每个条带/分块组可以包括一个或多个块(例如CTU)或一个或多个分块等,其中,每个分块可以为矩形等形状,可以包括一个或多个完整或部分块等块(例如CTU)。
可以使用视频解码器30的其它变体对经编码的图像数据21进行解码。例如,解码器30可以在没有环路滤波单元320的情况下产生输出视频流。例如,基于非变换的解码器30可以在某些块或帧没有逆变换处理单元312的情况下直接反量化残差信号。在另一种实现方式中,视频解码器30中,反量化单元310和逆变换处理单元312可以组合成一个单元。
应理解,在编码器20和解码器30中,可以对当前步骤的处理结果做进一步处理,然后输出到下一步骤。例如,在插值滤波、运动矢量推导或环路滤波之后,可以对插值滤波、运动矢量推导或环路滤波的处理结果进行进一步运算,如修正(clip)或移位(shift)运算。
需要说明的是,可以对当前块的推导运动矢量(包括但不限于仿射模式的控制点运动矢量,仿射模式、平面模式、ATMVP模式的子块运动矢量,时间运动矢量等)进行进一步运算。例如,根据运动矢量的表示位将运动矢量的值限制在预定义范围内。如果运动矢量的表示位为bitDepth,则范围为–2^(bitDepth–1)至2^(bitDepth–1)–1,其中“^”表示幂次方。例如,如果bitDepth设置为16,则范围为–32768-32767;如果bitDepth设置为18,则范围为–131072-131071。例如,推导运动矢量的值(例如一个8×8块中的4个4×4子块的MV)被限制,使得所述4个4×4子块MV的整数部分之间的最大差值不超过N个像素,如不超过1个像素。这里提供了两种根据bitDepth限制运动矢量的方法。
图4为本发明实施例提供的视频编码设备400的示意图。视频译码设备400适用于实现本文描述的公开实施例。在一个实施例中,视频译码设备400可以是解码器(如图1A的视频解码器30)或编码器(如图1A的视频编码器20)。
视频译码设备400包括:入端口410(或输入端口410)和接收单元(Rx)420,用于接收数据;处理器、逻辑单元或中央处理单元(central processing unit,CPU)430,用于处理数据;发送单元(Tx)440和出端口450(或输出端口450),用于发送数据;存储器460,用于存储数据。视频译码设备400还可以包括与入端口410、接收单元420、发送单元440和出端口450耦合的光电(optical-to-electrical,OE)组件和电光(electrical-to-optical,EO)组件,用作光信号或电信号的出口或入口。
处理器430通过硬件和软件实现。处理器430可实现为一个或多个CPU芯片、核(例如多核处理器)、FPGA、ASIC和DSP。处理器430与入端口410、接收单元420、发送单元440、出端口450和存储器460通信。处理器430包括译码模块470。译码模块470用于实现上述公开的实施例。例如,译码模块470用于实现、处理、准备或提供各种译码操作。因此,包括译码模块470使得视频译码设备400的功能得到了显著改进,实现了视频译码设备400不同状态的转换。或者,以存储在存储器460中并由处理器430执行的指令来实现译码模块470。
存储器460可以包括一个或多个磁盘、磁带机和固态硬盘,可用作溢出数据存储设备,以在选择执行程序时存储这类程序,并存储在程序执行期间读取的指令和数据。例如,存储器460可以是易失性和/或非易失性的,并且可以是只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、三态内容寻址存储器(ternarycontent-addressable memory,TCAM)和/或静态随机存取存储器(static random-accessmemory,SRAM)。
图5为示例性实施例提供的装置500的简化框图,其中,装置500可用作图1中的源设备12和目的地设备14中的任一个或两个。
装置500中的处理器502可以是中央处理单元。或者,处理器502可以是现有的或今后将开发出的能够操控或处理信息的任何其它类型的设备或多个设备。虽然可以使用如图所示的处理器502等单个处理器来实现所公开的实现方式,但使用一个以上处理器可以提高速度和效率。
在一种实现方式中,装置500中的存储器504可以是只读存储器(read-onlymemory,ROM)设备或随机存取存储器(random access memory,RAM)设备。任何其它合适类型的存储设备都可以用作存储器504。存储器504可以包括处理器502通过总线512访问的代码和数据506。存储器504还可包括操作***508和应用程序510,其中,应用程序510包括允许处理器502执行本文所述方法的至少一个程序。例如,应用程序510可以包括应用1至N,还可以包括执行本文所述方法的视频译码应用。
装置500还可以包括一个或多个输出设备,如显示器518。在一个示例中,显示器518可以是将显示器与触敏元件组合的触敏显示器,该触敏元件能够用于感测触摸输入。显示器518可以通过总线512与处理器502耦合。
虽然装置500的总线512在本文中描述为单个总线,但是总线512可以包括多个总线。此外,辅助存储器514可以直接与装置500中的其它组件耦合或可以通过网络访问,并且可以包括单个集成单元(例如一个存储卡)或多个单元(例如多个存储卡)。因此,装置500可以通过多种配置实现。
解码参数集(DPS)
提出语法结构包含最大子层数(如HEVC中)和profile_level()语法结构,该profile_level()语法结构表示能够解码码流的档次(profile)和级别(level),并且包括施加于码流的限制。
DPS语法表的示例如下:
Figure BDA0003714506160000221
DPS原始字节序列有效载荷(raw byte sequence payload,RBSP)可用于解码过程供参考,包括在时域标识符(TemporalId)等于0的至少一个AU中,或通过外部手段提供。
注1-需要DPS NAL单元可用于解码过程(在码流中或通过外部手段用于解码过程)供参考。然而,DPS RBSP包含执行本规范中第2条至第9条中指定的解码过程不需要的信息。
dps_decoding_parameter_set_id标识供其它语法元素参考的DPS。dps_decoding_parameter_set_id的值应大于0。
dps_max_sublayers_minus1+1表示参考DPS的每个CVS中的某一层中可以存在的最大时间子层数。dps_max_sublayers_minus1的取值范围应为0到6(包括端值)。
在符合本规范这一版本的码流中,dps_reserved_zero_5bits应等于0。保留dps_reserved_zero_5bits的其它值以供ITU-T|ISO/IEC使用。
dps_num_ptls_minus1+1表示DPS中profile_tier_level()语法结构的数量。
当DPS中存在一个以上profile_tier_level()语法结构时,码流符合性要求码流中的每个CVS符合profile_tier_level()语法结构中的至少一个。
dps_extension_flag等于0表示DPS RBSP语法结构中不存在dps_extension_data_flag语法元素。dps_extension_flag等于1表示DPS RBSP语法结构中存在dps_extension_data_flag语法元素。
dps_extension_data_flag可以任意取值。其存在和值不影响解码器符合附录A中指定的档次。符合本规范这一版本的解码器应忽略所有dps_extension_data_flag语法元素。
序列参数集RBSP语法
Figure BDA0003714506160000231
sps_ptl_dpb_hrd_params_present_flag等于1表示:SPS中存在profile_tier_level()语法结构和dpb_parameters()语法结构,并且SPS中也可以存在general_hrd_parameters()语法结构和ols_hrd_parameters()语法结构。sps_ptl_dpb_hrd_params_present_flag等于0表示SPS中不存在这四种语法结构。sps_ptl_dpb_hrd_params_present_flag的值应等于vps_independent_layer_flag[GeneralLayerIdx[nuh_layer_id]]。
如果vps_independent_layer_flag[GeneralLayerIdx[nuh_layer_id]]等于1,则将变量MaxDecPicBuffMinus1设置为等于SPS中dpb_parameters()语法结构中的max_dec_pic_buffering_minus1[sps_max_sublayers_minus1]。否则,将MaxDecPicBuffMinus1设置为等于VPS中layer_nonoutput_dpb_params_idx[GeneralLayerIdx[nuh_layer_id]]-thdpb_parameters()语法结构中的max_dec_pic_buffering_minus1[sps_max_sublayers_minus1]。
通用档次、层次(tier)和级别语法
Figure BDA0003714506160000232
Figure BDA0003714506160000241
通用档次、层次和级别语义
profile_tier_level()语法结构提供级别信息,并可选地提供档次、层次、子档次和通用限制信息。
当profile_tier_level()语法结构包含在DPS中时,OlsInScope为包括参考DPS的整个码流中的所有层的OLS。当profile_tier_level()语法结构包含在VPS中时,OlsInScope为VPS指定的一个或多个OLS。当profile_tier_level()语法结构包含在SPS中时,OlsInScope为只包含参考SPS的层中的最低层的OLS,并且该最低层为独立层。
general_profile_idc表示附录A指定、OlsInScope所符合的档次。码流所包含的general_profile_idc值应为附录A中指定的值。保留general_profile_idc的其余值以供ITU-T|ISO/IEC使用。
general_tier_flag表示用于解释如附录A中所指定的general_level_idc的层次上下文。
general_level_idc表示附录A指定、OlsInScope所符合的级别。码流所包含的general_level_idc值应为附录A中指定的值。保留general_level_idc的其余值以供ITU-T|ISO/IEC使用。
注1-general_level_idc的值越大,表示级别越高。在DPS中为OlsInScope指示的最大级别可能高于在SPS中为OlsInScope内所包含的CVS指示的级别。
注2-当OlsInScope符合多个档次时,general_profile_idc应表示提供优选解码结果或优选码流标识的档次,由编码器确定(以本规范未指定的方式)。
注3-当profile_tier_level()语法结构包含在DPS中,且OlsInScope的CVS符合不同的档次时,general_profile_idc和level_idc应表示能够解码OlsInScope的解码器的档次和级别。
num_sub_profiles表示general_sub_profile_idc[i]语法元素的数量。
general_sub_profile_idc[i]表示按参考文档ITU-T T.35(其内容在本规范中未具体指定)指定,记录的第i个互操作元数据。
sublayer_level_present_flag[i]等于1表示在profile_tier_level()语法结构中存在TemporalId等于i的子层表示的级别信息。sublayer_level_present_flag[i]等于0表示在profile_tier_level()语法结构中不存在TemporalId等于i的子层表示的级别信息。
ptl_alignment_zero_bits应等于0。
除了对非存在值推断的说明以外,语法元素sublayer_level_idc[i]的语义与语法元素general_level_idc相同,但适用于TemporalId等于i的子层表示。
当不存在时,sublayer_level_idc[i]的值推断如下:
–推断sublayer_level_idc[maxNumSubLayersMinus1]等于相同profile_tier_level()结构的general_level_idc;
–当i为maxNumSubLayersMinus1–1到0(按i值的降序排列)(包括端值)时,推断sublayer_level_idc[i]等于sublayer_level_idc[i+1]。
图像头RBSP语法
Figure BDA0003714506160000251
pic_alf_enabled_present_flag等于1表示PH中存在pic_alf_enabled_flag、pic_num_alf_aps_ids_luma、pic_alf_aps_id_luma[i]、pic_alf_chroma_idc和pic_alf_aps_id_chroma。pic_alf_enabled_present_flag等于0表示PH中不存在pic_alf_enabled_flag、pic_num_alf_aps_ids_luma、pic_alf_aps_id_luma[i]、pic_alf_chroma_idc和pic_alf_aps_id_chroma。当pic_alf_enabled_present_flag不存在时,推断它等于0。
pic_alf_enabled_flag等于1表示对与PH关联的所有条带执行自适应环路滤波,并且可以对条带中的Y、Cb或Cr颜色分量执行自适应环路滤波。pic_alf_enabled_flag等于0表示可以不对与PH关联的一个或多个或所有条带执行自适应环路滤波。当pic_alf_enabled_flag不存在时,推断它等于0。
pic_num_alf_aps_ids_luma表示与PH关联的条带所参考的ALF APS的数量。
pic_alf_aps_id_luma[i]表示与PH关联的条带的亮度分量所参考的第i个ALFAPS的adaptation_parameter_set_id。
aps_params_type等于ALF_APS且adaptation_parameter_set_id等于pic_alf_aps_id_luma[i]的APS NAL单元的alf_luma_filter_signal_flag的值应等于1。
pic_alf_chroma_idc等于0表示不对Cb和Cr颜色分量执行自适应环路滤波。pic_alf_chroma_idc等于1表示对Cb颜色分量执行自适应环路滤波。pic_alf_chroma_idc等于2表示对Cr颜色分量执行自适应环路滤波。pic_alf_chroma_idc等于3表示对Cb和Cr颜色分量执行自适应环路滤波。当pic_alf_chroma_idc不存在时,推断它等于0。
pic_alf_aps_id_chroma表示与PH关联的条带的色度分量所参考的ALF APS的adaptation_parameter_set_id。
aps_params_type等于ALF_APS且adaptation_parameter_set_id等于pic_alf_aps_id_chroma的APS NAL单元的alf_chroma_filter_signal_flag的值应等于1。
PPS
Figure BDA0003714506160000261
Figure BDA0003714506160000271
pps_subpic_id_signalling_present_flag等于1表示在PPS中指示子图像ID映射。pps_subpic_id_signalling_present_flag等于0表示不在PPS中指示子图像ID映射。当sps_subpic_id_present_flag为0或sps_subpic_id_signalling_present_flag等于1时,pps_subpic_id_signalling_present_flag应等于0。
pps_num_subpics_minus1+1表示参考PPS的编码图像中的子图像数量。
码流符合性要求pps_num_subpic_minus1的值应等于sps_num_subpics_minus1。
pps_subpic_id_len_minus1+1表示用于表示语法元素pps_subpic_id[i]的位数。pps_subpic_id_len_minus1的取值范围应为0到15(包括端值)。
码流符合性要求:对于CLVS中编码图像所参考的所有PPS,pps_subpic_id_len_minus1的值应相同。
pps_subpic_id[i]表示第i个子图像的子图像ID。pps_subpic_id[i]语法元素的长度为pps_subpic_id_len_minus1+1位。
no_pic_partition_flag等于1表示不对参考PPS的每个图像进行图像分割。no_pic_partition_flag等于0表示可以将参考PPS的每个图像分割为一个以上分块或条带。
码流符合性要求:对于CLVS中编码图像所参考的所有PPS,no_pic_partition_flag的值应相同。
码流符合性要求:当sps_num_subpics_minus1+1的值大于1时,no_pic_partition_flag的值不应等于1。
pps_log2_ctu_size_minus5+5表示每个CTU的亮度编码树块大小。pps_log2_ctu_size_minus5应等于sps_log2_ctu_size_minus5。
num_exp_tile_columns_minus1+1表示显式提供的分块列宽度的数值。num_exp_tile_columns_minus1的取值范围应为0到PicWidthInCtbsY–1(包括端值)。当no_pic_partition_flag等于1时,推断num_exp_tile_columns_minus1的值等于0。
num_exp_tile_rows_minus1+1表示显式提供的分块行高度的数值。num_exp_tile_rows_minus1的取值范围应为0到PicHeightInCtbsY–1(包括端值)。当no_pic_partition_flag等于1时,推断num_tile_rows_minus1的值等于0。
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。
rect_slice_flag等于0表示每个条带内的分块按光栅扫描顺序排列,并且条带信息不在PPS中指示。rect_slice_flag等于1表示每个条带内的分块覆盖图像的矩形区域,并且条带信息在PPS中指示。当rect_slice_flag不存在时,推断它等于1。当subpics_present_flag等于1时,rect_slice_flag的值应等于1。
single_slice_per_subpic_flag等于1表示每个子图像由且仅由一个矩形条带组成。single_slice_per_subpic_flag等于0表示每个子图像可以由一个或多个矩形条带组成。当subpics_present_flag等于0时,single_slice_per_subpic_flag应等于0。当single_slice_per_subpic_flag等于1时,推断num_slices_in_pic_minus1等于sps_num_subpics_minus1。
num_slices_in_pic_minus1+1表示参考PPS的每个图像中的矩形条带数量。num_slices_in_pic_minus1的取值范围应为0到MaxSlicesPerPicture–1(包括端值),其中,MaxSlicesPerPicture在附录A中指定。当no_pic_partition_flag等于1时,推断num_slices_in_pic_minus1的值为0。
tile_idx_delta_present_flag等于0表示:在PPS中不存在tile_idx_delta值,并且根据第6.5.1条中定义的过程,按栅格顺序指定参考PPS的图像中的所有矩形条带。tile_idx_delta_present_flag等于1表示:在PPS中可以存在tile_idx_delta值,并且参考PPS的图像中的所有矩形条带按照tile_idx_delta的值指示的顺序指定。
slice_width_in_tiles_minus1[i]+1表示第i个矩形条带以分块列为单位的宽度。slice_width_in_tiles_minus1[i]的取值范围应为0到NumTileColumns–1(包括端值)。如果slice_width_in_tiles_minus1[i]不存在,则slice_width_in_tiles_minus1[i]的值按照第6.5.1条中所指定进行推断。
slice_height_in_tiles_minus1[i]+1表示第i个矩形条带以分块行为单位的高度。slice_height_in_tiles_minus1[i]的取值范围应为0到NumTileRows–1(包括端值)。如果slice_height_in_tiles_minus1[i]不存在,则slice_height_in_tiles_minus1[i]的值按照第6.5.1条中所指定进行推断。
num_slices_in_tile_minus1[i]+1表示针对第i个条带包含单个分块中的CTU行子集的情况,当前分块中的条带数。num_slices_in_tile_minus1[i]的取值范围应为0到RowHeight[tileY]–1(包括端值),其中,tileY为包含第i个条带的分块行索引。当num_slices_in_tile_minus1[i]不存在时,推断num_slices_in_tile_minus1[i]的值等于0。
slice_height_in_ctu_minus1[i]+1表示针对第i个条带包含单个分块中的CTU行子集的情况,第i个矩形条带以CTU行为单位的高度。slice_height_in_ctu_minus1[i]的取值范围应为0到RowHeight[tileY]–1(包括端值),其中,tileY为包含第i个条带的分块行索引。
tile_idx_delta[i]表示第i个矩形条带与第(i+1)个矩形条带之间的分块索引差值。tile_idx_delta[i]的取值范围应为–NumTilesInPic+1到NumTilesInPic–1(包括端值)。当tile_idx_delta[i]不存在时,推断tile_idx_delta[i]的值等于0。在所有其它情况下,tile_idx_delta[i]的值不应等于0。
6.5.1CTB光栅扫描、分块扫描、子图像扫描过程
变量NumTileColumns表示分块列的数量,列表colWidth[i](i的取值范围为0到NumTileColumn–1(包括端值))表示第i个分块列以CTB为单位的宽度,两者推导如下:
Figure BDA0003714506160000291
变量NumTileRows表示分块行的数量,列表RowHeight[j](j的取值范围为0到NumTileRows–1(包括端值))表示第j个分块行以CTB为单位的高度,两者推导如下:
Figure BDA0003714506160000292
Figure BDA0003714506160000301
将变量NumTilesInPic设置为等于NumTileColumns×NumTileRows。
列表tileColBd[i](i的范围为0到NumTileColumns(包括端值))表示第i个分块列边界以CTB为单位的位置,该列表tileColBd[i]推导如下:
for(tileColBd[0]=0,i=0;i<NumTileColumns;i++)tileColBd[i+1]=tileColBd[i]+colWidth[i] (25)
列表tileRowBd[j](j的范围为0到NumTileRows(包括端值))表示第j个分块行边界以CTB为单位的位置,该列表tileRowBd[j]推导如下:
for(tileRowBd[0]=0,j=0;j<NumTileRows;j++)tileRowBd[j+1]=tileRowBd[j]+RowHeight[j] (26)
列表CtbToTileColBd[ctbAddrX](ctbAddrX的范围为0到PicWidthInCtbsY(包括端值))表示以CTB为单位从水平CTB地址到左分块列边界的转换,该列表CtbToTileColBd[ctbAddrX]推导如下:
Figure BDA0003714506160000302
列表CtbToTileRowBd[ctbAddrY](ctbAddrY的范围为0到PicHeightInCtbsY(包括端值))表示以CTB为单位从垂直CTB地址到上分块列边界的转换,该列表CtbToTileRowBd[ctbAddrY]推导如下:
Figure BDA0003714506160000303
对于矩形条带,列表NumCtuInSlice[i](i的范围为0到num_slices_in_pic_minus1(包括端值))表示第i个条带中的CTU数量;矩阵CtbAddrInSlice[i][j](i的范围为0到num_slices_in_pic_minus1(包括端值);j的范围为0到NumCtuInSlice[i]–1(包括端值))表示第i个条带内第j个CTB的图像栅格扫描地址,两者推导如下:
Figure BDA0003714506160000311
Figure BDA0003714506160000321
其中,函数AddCtbsToSlice(sliceIdx,startX,stopX,startY,stopY)指定如下:
Figure BDA0003714506160000322
码流符合性要求NumCtuInSlice[i](i的范围为0到num_slices_in_pic_minus1(包括端值))的值应大于0。此外,码流符合性要求:矩阵CtbAddrInSlice[i][j](i的范围为0到num_slices_in_pic_minus1(包括端值);j的范围为0到NumCtuInSlice[i]–1(包括端值))应包括一次且仅包括一次范围为0到PicSizeInCtbsY–1的所有CTB地址。
列表CtbToSubPicIdx[ctbAddrRs](ctbAddrRs的范围为0到PicSizeInCtbsY–1(包括端值))表示从图形光栅扫描中的CTB地址到子图像索引的转换,该列表CtbToSubPicIdx[ctbAddrRs]推导如下:
Figure BDA0003714506160000323
列表NumSlicesInSubpic[i]表示第i个子图像中矩形条带的数量,SliceSubpicToPicIdx[i][k]表示第i个子图像中第k个条带的图像级条带索引,两者推导如下:
Figure BDA0003714506160000324
Figure BDA0003714506160000331
目前,DPS具有DPS ID,DPS NAL单元内容与ID值的对应关系不受限制。
而且,DPS可以在码流中存在的次数不受限制。如果码流中有多个DPS,且这些DPS的DPS ID相同,则解码器不知道选择哪个DPS。
DPS中指示的级别应该是整个码流的最坏情况能力(worst-case capability),因此DPS中指示的级别不应小于SPS中指示的级别。
APS NAL单元的TemporalId以及与图像头(picture header,PH)关联的图像的TemporalId当前不受限制。然而,当nal_unit_type等于PPS_NUT、PREFIX_APS_NUT或SUFFIX_APS_NUT时,TemporalId应大于或等于包含NAL单元的PU的TemporalId,并且在码流提取场景下,应该对APS NAL单元的TemporalId以及与PH关联的图像的TemporalId施加限制。
因为分块相对变量tile_column_width_minus1[i]、tile_row_height_minus1[i]、tile_idx_delta[i]都不能超出图像范围,所以应对任何分块的这些变量施加一些限制,以确保这些变量的正确值。并且,分块列和分块高度应大于0。
实施例:
选择A:增加DPS最多只能在码流中存在一次的限制。这意味着,码流中不一定存在DPS,如果码流包含DPS,则码流中只能有一个DPS。
DPS RBSP应可用于解码过程,以供参考,包括在TemporalId等于0的至少一个AU中,或通过外部手段提供。
注1–码流中最多存在一个DPS NAL单元。
注2-需要DPS NAL单元可用于解码过程(在码流中或通过外部手段用于解码过程),以供参考。然而,DPS RBSP包含执行本规范中第2条至第9条中指定的解码过程不需要的信息。
选择B:增加码流中具有dps_decoding_parameter_set_id的特定值的所有DPSNAL单元应具有相同内容的限制。在这种情况下,一个DPS ID不能关联(对应)一个以上DPS内容。
例如:
DPS RBSP应可用于解码过程,以供参考,包括在TemporalId等于0的至少一个AU中,或通过外部手段提供。
注1-需要DPS NAL单元可用于解码过程(在码流中或通过外部手段用于解码过程),以供参考。然而,DPS RBSP包含执行本规范中第2条至第9条中指定的解码过程不需要的信息。
码流中具有dps_decoding_parameter_set_id的特定值的所有DPS NAL单元应具有相同的内容。
增加DPS中指示的级别不应小于SPS中指示的级别的限制。
general_level_idc表示附录A指定、OlsInScope所符合的级别。码流所包含的general_level_idc值应为附录A中指定的值。保留general_level_idc的其余值以供ITU-T|ISO/IEC使用。
(1)general_level_idc的值越大,表示级别越高。在DPS中为OlsInScope指示的最大级别不应小于在SPS中为OlsInScope内所包含的CVS指示的级别。
(2)当OlsInScope符合多个档次时,general_profile_idc应表示提供优选解码结果或优选码流标识的档次,由编码器确定(以本规范未指定的方式)。
(3)当profile_tier_level()语法结构包含在DPS中,且OlsInScope的CVS符合不同的档次时,general_profile_idc和level_idc应表示能够解码OlsInScope的解码器的档次和级别。
对ALF NAL单元的限制
pic_alf_aps_id_luma[i]表示与PH关联的条带的亮度分量所参考的第i个ALFAPS的adaptation_parameter_set_id。
aps_params_type等于ALF_APS且adaptation_parameter_set_id等于pic_alf_aps_id_luma[i]的APS NAL单元的alf_luma_filter_signal_flag的值应等于1。
aps_params_type等于ALF_APS且adaptation_parameter_set_id等于pic_alf_aps_id_luma[i]的APS NAL单元的TemporalId应小于或等于与PH关联的图像的TemporalId。
pic_alf_aps_id_chroma表示与PH关联的条带的色度分量所参考的ALF APS的adaptation_parameter_set_id。
aps_params_type等于ALF_APS且adaptation_parameter_set_id等于pic_alf_aps_id_chroma的APS NAL单元的alf_chroma_filter_signal_flag的值应等于1。
aps_params_type等于ALF_APS且adaptation_parameter_set_id等于pic_alf_aps_id_chroma的APS NAL单元的TemporalId应小于或等于与PH关联的图像的TemporalId。
对分块相对变量的限制
应对分块相对变量tile_column_width_minus1[i]、tile_row_height_minus1[i]、tile_idx_delta[i]施加限制,以确保这些变量的正确值。
选择A:
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。tile_column_width_minus1[i]的取值范围应为0到PicWidthInCtbsY–1(包括端值)。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。
当i的范围为0到num_exp_tile_columns_minus1–1时,tile_column_width_minus1[i]之和应小于PicWidthInCtbsY。
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。tile_row_height_minus1[i]的取值范围应为0到PicHeightInCtbsY–1(包括端值)。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1–1时,tile_row_height_minus1[i]之和应小于PicHeightInCtbsY。
选择A':
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。
当i的范围为0到num_exp_tile_columns_minus1–1(包括端值)时,(tile_column_width_minus1[i]+1)之和应小于或等于PicWidthInCtbsY。
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1–1(包括端值)时,(tile_row_height_minus1[i]+1)之和应小于或等于PicHeightInCtbsY。
选择B:
tile_idx_delta[i]表示第i个矩形条带与第(i+1)个矩形条带之间的分块索引差值。tile_idx_delta[i]的取值范围应为–NumTilesInPic+1到NumTilesInPic–1(包括端值)。当tile_idx_delta[i]不存在时,推断tile_idx_delta[i]的值等于0。在所有其它情况下,tile_idx_delta[i]的值不应等于0。当i的范围为0到num_slices_in_pic_minus1–1(包括端值)时,tile_idx_delta[i]之和应小于NumTilesInPic。
选择C:选择A+选择B
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。tile_column_width_minus1[i]的取值范围应为0到PicWidthInCtbsY–1(包括端值)。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。
当i的范围为0到num_exp_tile_columns_minus1–1时,tile_column_width_minus1[i]之和应小于PicWidthInCtbsY。
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。tile_row_height_minus1[i]的取值范围应为0到PicHeightInCtbsY–1(包括端值)。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1–1时,tile_row_height_minus1[i]之和应小于PicHeightInCtbsY。
tile_idx_delta[i]表示第i个矩形条带与第(i+1)个矩形条带之间的分块索引差值。tile_idx_delta[i]的取值范围应为–NumTilesInPic+1到NumTilesInPic–1(包括端值)。当tile_idx_delta[i]不存在时,推断tile_idx_delta[i]的值等于0。在所有其它情况下,tile_idx_delta[i]的值不应等于0。当i的范围为0到num_slices_in_pic_minus1–1时,tile_idx_delta[i]之和应小于NumTilesInPic。
选择C':选择A'+选择B
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。
当i的范围为0到num_exp_tile_columns_minus1–1(包括端值)时,(tile_column_width_minus1[i]+1)之和应小于或等于PicWidthInCtbsY。
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1–1(包括端值)时,(tile_row_height_minus1[i]+1)之和应小于或等于PicHeightInCtbsY。
tile_idx_delta[i]表示第i个矩形条带与第(i+1)个矩形条带之间的分块索引差值。tile_idx_delta[i]的取值范围应为–NumTilesInPic+1到NumTilesInPic–1(包括端值)。当tile_idx_delta[i]不存在时,推断tile_idx_delta[i]的值等于0。在所有其它情况下,tile_idx_delta[i]的值不应等于0。当i的范围为0到num_slices_in_pic_minus1–1(包括端值)时,tile_idx_delta[i]之和应小于NumTilesInPic。
选择D:(选择A'的替代方法)
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。
当i的范围为0到num_exp_tile_columns_minus1(包括端值)时,(tile_column_width_minus1[i]+1)之和应小于或等于PicWidthInCtbsY。
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1(包括端值)时,(tile_row_height_minus1[i]+1)之和应小于或等于PicHeightInCtbsY。
选择E:选择D+选择B
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。
当i的范围为0到num_exp_tile_columns_minus1(包括端值)时,(tile_column_width_minus1[i]+1)之和应小于或等于PicWidthInCtbsY。
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1(包括端值)时,(tile_row_height_minus1[i]+1)之和应小于或等于PicHeightInCtbsY。
tile_idx_delta[i]表示第i个矩形条带与第(i+1)个矩形条带之间的分块索引差值。tile_idx_delta[i]的取值范围应为–NumTilesInPic+1到NumTilesInPic–1(包括端值)。当tile_idx_delta[i]不存在时,推断tile_idx_delta[i]的值等于0。在所有其它情况下,tile_idx_delta[i]的值不应等于0。当i的范围为0到num_slices_in_pic_minus1–1(包括端值)时,tile_idx_delta[i]之和应小于NumTilesInPic。
选择F:(选择A'的替代方法)
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。
当i的范围为0到num_exp_tile_columns_minus1–1(包括端值)时,(tile_column_width_minus1[i]+1)之和应小于或等于PicWidthInCtbsY。tile_column_width_minus1[num_exp_tile_columns_minus1]的值应小于PicWidthInCtbsY
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1–1(包括端值)时,(tile_row_height_minus1[i]+1)之和应小于或等于PicHeightInCtbsY。tile_row_height_minus1[num_exp_tile_rows_minus1]的值应小于PicHeightInCtbsY。
选择G:选择F+选择B
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。
当i的范围为0到num_exp_tile_columns_minus1–1(包括端值)时,(tile_column_width_minus1[i]+1)之和应小于或等于PicWidthInCtbsY。tile_column_width_minus1[num_exp_tile_columns_minus1]的值应小于PicWidthInCtbsY
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1–1(包括端值)时,(tile_row_height_minus1[i]+1)之和应小于或等于PicHeightInCtbsY。tile_row_height_minus1[num_exp_tile_rows_minus1]的值应小于PicHeightInCtbsY。
tile_idx_delta[i]表示第i个矩形条带与第(i+1)个矩形条带之间的分块索引差值。tile_idx_delta[i]的取值范围应为–NumTilesInPic+1到NumTilesInPic–1(包括端值)。当tile_idx_delta[i]不存在时,推断tile_idx_delta[i]的值等于0。在所有其它情况下,tile_idx_delta[i]的值不应等于0。当i的范围为0到num_slices_in_pic_minus1–1(包括端值)时,tile_idx_delta[i]之和应小于NumTilesInPic。
在上文中,有关两个值M和N“M应小于或等于N”的描述也可以描述为:“M不应大于N”。
本申请的不同实现方式如下。
第一实施例[DPS ID]
目前,DPS具有DPS ID,DPS NAL单元内容与ID值的对应关系不受限制。
而且,DPS可以在码流中存在的次数不受限制。如果码流中有多个DPS,且这些DPS的DPS ID相同,则解码器难以确定选择哪个DPS。
有两种选择可以解决该问题。
选择A:增加DPS最多只能在码流中存在一次的限制,这意味着,码流中不一定存在DPS,如果码流包含DPS,则码流中只能有一个DPS。
DPS RBSP应可用于解码过程,以供参考,包括在TemporalId等于0的至少一个AU中,或通过外部手段提供。
注1-码流中最多存在一个DPS NAL单元。
注2-需要DPS NAL单元可用于解码过程(在码流中或通过外部手段用于解码过程),以供参考。然而,DPS RBSP包含执行本规范中第2条至第9条中指定的解码过程不需要的信息。
选择B:增加码流中具有dps_decoding_parameter_set_id的特定值的所有DPSNAL单元应具有相同内容的限制。在这种情况下,一个DPS ID不能关联(对应)一个以上DPS内容。
例如:
DPS RBSP应可用于解码过程,以供参考,包括在TemporalId等于0的至少一个AU中,或通过外部手段提供。
注1-需要DPS NAL单元可用于解码过程(在码流中或通过外部手段用于解码过程),以供参考。然而,DPS RBSP包含执行本规范中第2条至第9条中指定的解码过程不需要的信息。
码流中具有dps_decoding_parameter_set_id的特定值的所有DPS NAL单元应具有相同的内容。
第二实施例[DPS级别]
DPS中指示的级别应该是或应该表示整个码流的最坏情况能力,因此DPS中指示的级别不应小于SPS中指示的级别。
可以施加DPS中指示的级别不应小于SPS中指示的级别的限制。
general_level_idc表示附录A指定、OlsInScope所符合的级别。码流所包含的general_level_idc值应为附录A中指定的值。保留general_level_idc的其余值以供ITU-T|ISO/IEC使用。
注1-general_level_idc的值越大,表示级别越高。在DPS中为OlsInScope指示的最大级别不应小于在SPS中为OlsInScope内所包含的CVS指示的级别。
注2-当OlsInScope符合多个档次时,general_profile_idc应表示提供优选解码结果或优选码流标识的档次,由编码器确定(以本规范未指定的方式)。
注3-当profile_tier_level()语法结构包含在DPS中,且OlsInScope的CVS符合不同的档次时,general_profile_idc和level_idc应表示能够解码OlsInScope的解码器的档次和级别。
第三实施例[ALF NALU的TID]
APS NAL单元的TemporalId以及与PH关联的图像的TemporalId当前不受限制。然而,当nal_unit_type等于PPS_NUT、PREFIX_APS_NUT或SUFFIX_APS_NUT时,TemporalId应大于或等于包含NAL单元的PU的TemporalId,并且在码流提取场景下时,应该对APS NAL单元的TemporalId以及与PH关联的图像的TemporalId施加限制。
对ALF NAL单元的限制
pic_alf_aps_id_luma[i]表示与PH关联的条带的亮度分量所参考的第i个ALFAPS的adaptation_parameter_set_id。
aps_params_type等于ALF_APS且adaptation_parameter_set_id等于pic_alf_aps_id_luma[i]的APS NAL单元的alf_luma_filter_signal_flag的值应等于1。
aps_params_type等于ALF_APS且adaptation_parameter_set_id等于pic_alf_aps_id_luma[i]的APS NAL单元的TemporalId应小于或等于与PH关联的图像的TemporalId。
pic_alf_aps_id_chroma表示与PH关联的条带的色度分量所参考的ALF APS的adaptation_parameter_set_id。
aps_params_type等于ALF_APS且adaptation_parameter_set_id等于pic_alf_aps_id_chroma的APS NAL单元的alf_chroma_filter_signal_flag的值应等于1。
aps_params_type等于ALF_APS且adaptation_parameter_set_id等于pic_alf_aps_id_chroma的APS NAL单元的TemporalId应小于或等于与PH关联的图像的TemporalId。
第四实施例[分块]
应对分块相对变量tile_column_width_minus1[i]、tile_row_height_minus1[i]、tile_idx_delta[i]施加限制,以确保这些变量的正确值。
这是因为任何分块的这些变量都不能超出图像范围。并且,分块列和分块高度应大于0。
选择A:
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。tile_column_width_minus1[i]的取值范围应为0到PicWidthInCtbsY–1(包括端值)。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。当i的范围为0到num_exp_tile_columns_minus1–1时,tile_column_width_minus1[i]之和应小于PicWidthInCtbsY。
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。tile_row_height_minus1[i]的取值范围应为0到PicHeightInCtbsY–1(包括端值)。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1–1时,tile_row_height_minus1[i]之和应小于PicHeightInCtbsY。
选择A':
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。当i的范围为0到num_exp_tile_columns_minus1–1(包括端值)时,(tile_column_width_minus1[i]+1)之和应小于或等于PicWidthInCtbsY。
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1–1(包括端值)时,(tile_row_height_minus1[i]+1)之和应小于或等于PicHeightInCtbsY。
选择B:
为了确保矩形条带应该包含在图像中。
tile_idx_delta[i]表示第i个矩形条带与第(i+1)个矩形条带之间的分块索引差值。tile_idx_delta[i]的取值范围应为–NumTilesInPic+1到NumTilesInPic–1(包括端值)。当tile_idx_delta[i]不存在时,推断tile_idx_delta[i]的值等于0。在所有其它情况下,tile_idx_delta[i]的值不应等于0。当i的范围为0到num_slices_in_pic_minus1–1(包括端值)时,tile_idx_delta[i]之和应小于NumTilesInPic。
选择C:选择A+选择B
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。tile_column_width_minus1[i]的取值范围应为0到PicWidthInCtbsY–1(包括端值)。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。当i的范围为0到num_exp_tile_columns_minus1–1时,tile_column_width_minus1[i]之和应小于PicWidthInCtbsY。
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。tile_row_height_minus1[i]的取值范围应为0到PicHeightInCtbsY–1(包括端值)。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1–1时,tile_row_height_minus1[i]之和应小于PicHeightInCtbsY。
tile_idx_delta[i]表示第i个矩形条带与第(i+1)个矩形条带之间的分块索引差值。tile_idx_delta[i]的取值范围应为–NumTilesInPic+1到NumTilesInPic–1(包括端值)。当tile_idx_delta[i]不存在时,推断tile_idx_delta[i]的值等于0。在所有其它情况下,tile_idx_delta[i]的值不应等于0。当i的范围为0到num_slices_in_pic_minus1–1时,tile_idx_delta[i]之和应小于NumTilesInPic。
选择C':选择A'+选择B
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。当i的范围为0到num_exp_tile_columns_minus1–1(包括端值)时,(tile_column_width_minus1[i]+1)之和应小于或等于PicWidthInCtbsY。
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1–1(包括端值)时,(tile_row_height_minus1[i]+1)之和应小于或等于PicHeightInCtbsY。
tile_idx_delta[i]表示第i个矩形条带与第(i+1)个矩形条带之间的分块索引差值。tile_idx_delta[i]的取值范围应为–NumTilesInPic+1到NumTilesInPic–1(包括端值)。当tile_idx_delta[i]不存在时,推断tile_idx_delta[i]的值等于0。在所有其它情况下,tile_idx_delta[i]的值不应等于0。当i的范围为0到num_slices_in_pic_minus1–1(包括端值)时,tile_idx_delta[i]之和应小于NumTilesInPic。
选择D:(选择A'的替代方法)
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。
当i的范围为0到num_exp_tile_columns_minus1(包括端值)时,(tile_column_width_minus1[i]+1)之和应小于或等于PicWidthInCtbsY。
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1(包括端值)时,(tile_row_height_minus1[i]+1)之和应小于或等于PicHeightInCtbsY。
选择E:选择D+选择B
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。
当i的范围为0到num_exp_tile_columns_minus1(包括端值)时,(tile_column_width_minus1[i]+1)之和应小于或等于PicWidthInCtbsY。
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1(包括端值)时,(tile_row_height_minus1[i]+1)之和应小于或等于PicHeightInCtbsY。
tile_idx_delta[i]表示第i个矩形条带与第(i+1)个矩形条带之间的分块索引差值。tile_idx_delta[i]的取值范围应为–NumTilesInPic+1到NumTilesInPic–1(包括端值)。当tile_idx_delta[i]不存在时,推断tile_idx_delta[i]的值等于0。在所有其它情况下,tile_idx_delta[i]的值不应等于0。当i的范围为0到num_slices_in_pic_minus1–1(包括端值)时,tile_idx_delta[i]之和应小于NumTilesInPic。
选择F:(选择A'的替代方法)
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。
当i的范围为0到num_exp_tile_columns_minus1–1(包括端值)时,(tile_column_width_minus1[i]+1)之和应小于或等于PicWidthInCtbsY。tile_column_width_minus1[num_exp_tile_columns_minus1]的值应小于PicWidthInCtbsY
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1–1(包括端值)时,(tile_row_height_minus1[i]+1)之和应小于或等于PicHeightInCtbsY。tile_row_height_minus1[num_exp_tile_rows_minus1]的值应小于PicHeightInCtbsY。
选择G:选择F+选择B
tile_column_width_minus1[i]+1表示第i个分块列以CTB为单位的宽度,i的范围为0到num_exp_tile_columns_minus1–1(包括端值)。tile_column_width_minus1[num_exp_tile_columns_minus1]用于推导索引大于或等于num_exp_tile_columns_minus1的分块列的宽度,如第6.5.1条指定。当tile_column_width_minus1[0]不存在时,推断tile_column_width_minus1[0]的值等于PicWidthInCtbsY–1。
当i的范围为0到num_exp_tile_columns_minus1–1(包括端值)时,(tile_column_width_minus1[i]+1)之和应小于或等于PicWidthInCtbsY。tile_column_width_minus1[num_exp_tile_columns_minus1]的值应小于PicWidthInCtbsY
tile_row_height_minus1[i]+1表示第i个分块行以CTB为单位的高度,i的范围为0到num_exp_tile_rows_minus1–1(包括端值)。tile_row_height_minus1[num_exp_tile_rows_minus1]用于推导索引大于或等于num_exp_tile_rows_minus1的分块行的高度,如第6.5.1条指定。当tile_row_height_minus1[0]不存在时,推断tile_row_height_minus1[0]的值等于PicHeightInCtbsY–1。当i的范围为0到num_exp_tile_rows_minus1–1(包括端值)时,(tile_row_height_minus1[i]+1)之和应小于或等于PicHeightInCtbsY。tile_row_height_minus1[num_exp_tile_rows_minus1]的值应小于PicHeightInCtbsY。
tile_idx_delta[i]表示第i个矩形条带与第(i+1)个矩形条带之间的分块索引差值。tile_idx_delta[i]的取值范围应为–NumTilesInPic+1到NumTilesInPic–1(包括端值)。当tile_idx_delta[i]不存在时,推断tile_idx_delta[i]的值等于0。在所有其它情况下,tile_idx_delta[i]的值不应等于0。当i的范围为0到num_slices_in_pic_minus1–1(包括端值)时,tile_idx_delta[i]之和应小于NumTilesInPic。
在上文中,有关两个值M和N“M应小于或等于N”的描述也可以描述为:“M不应大于N”。
(1)限制和另一种方法中的机制减少或消除了解码端的歧义,其中,所述限制为:DPS最多只能在码流中存在一次;所述机制为:如果码流可以具有一个以上DPS,则码流中具有dps_decoding_parameter_set_id的特定值的所有DPS NAL单元应具有相同内容。
(2)DPS中指示的级别应该是整个码流的最坏情况能力,因此DPS中指示的级别不应小于SPS中指示的级别。否则,DPS中的参数没有意义。
(3)根据NALU的TID,对ALF NALU的TID增加限制,以确保正确进行码流提取。
(4)从符合性角度看:应该将分块相对变量限制在有效范围内,以确保每个分块至少有一个CTU,并且每个分块应包含在图像内。此外,为了确保矩形条带应该包含在图像中。
下面对上述实施例中所示的编码方法和解码方法的应用以及使用这些应用的***进行解释说明。
图6为示出用于实现内容分发业务的内容供应***的框图。该内容供应***3100包括捕获设备3102、终端设备3106,并可选地包括显示器3126。捕获设备3102通过通信链路3104与终端设备3106通信。通信链路可以包括上文描述的通信信道13。通信链路3104的示例包括但不限于WIFI、以太网、有线、无线(3G/4G/5G)、USB或其任意类型组合等。
捕获设备3102生成数据,并可以通过如上述实施例中所示的编码方法对数据进行编码。或者,捕获设备3102可以将数据分发到流媒体服务器(图中未示出),该服务器对数据进行编码,并将编码数据发送到终端设备3106。捕获设备3102的示例包括但不限于摄像机、智能手机或平板电脑、计算机或笔记本电脑、视频会议***、PDA、车载设备或其任意组合等。例如,捕获设备3102可以包括上述源设备12。当数据包括视频时,捕获设备3102中包括的视频编码器20实际上可执行视频编码处理。当数据包括音频(即语音)时,捕获设备3102中包括的音频编码器可以实际执行音频编码处理。对于一些实际场景,捕获设备3102通过将经编码的视频数据和经编码的音频数据一起复用来分发经编码的视频数据和经编码的音频数据。对于其它实际场景,例如在视频会议***中,不复用经编码的音频数据和经编码的视频数据。捕获设备3102将经编码的音频数据和经编码的视频数据分别分发到终端设备3106。
在内容供应***3100中,终端设备3106接收并再现编码数据。终端设备3106可以为具有数据接收和恢复能力的设备,如智能手机或平板电脑3108、计算机或膝上型电脑3110、网络视频录像机(network video recorder,NVR)/数字视频录像机(digital videorecorder,DVR)3112、电视3114、机顶盒(set top box,STB)3116、视频会议***3118、视频监控***3120、个人数字助理(personal digital assistant,PDA)3122、车载设备3124或其任意组合,或能够对上述编码数据进行解码的此类设备。例如,终端设备3106可以包括上述目的地设备14。当编码数据包括视频时,终端设备中的视频解码器30优先进行视频解码。当编码数据包括音频时,终端设备中包括的音频解码器优先进行音频解码处理。
对于带显示器的终端设备,如智能手机或平板电脑3108、计算机或膝上型电脑3110、网络视频录像机(network video recorder,NVR)/数字视频录像机(digital videorecorder,DVR)3112、电视3114、个人数字助理(personal digital assistant,PDA)3122、或车载设备3124,终端设备可以将解码数据发送到其显示器。对于不带显示器的终端设备,如STB 3116、视频会议***3118或视频监控***3120,将外接显示器3126与终端设备连接,以接收并显示解码数据。
当此***中的每个设备执行编码或解码时,可以使用如上述实施例中所示的图像编码设备或图像解码设备。
图7为示出终端设备3106的示例结构的图。在终端设备3106从捕获设备3102接收到流之后,协议处理单元3202分析流的传输协议。所述协议的示例包括但不限于实时流传输协议(Real Time Streaming Protocol,RTSP)、超文本传输协议(Hyper Text TransferProtocol,HTTP)、HTTP直播流传输协议(HTTP Live Streaming protocol,HLS)、MPEG-DASH、实时传输协议(Real-time Transport Protocol,RTP)、实时消息传输协议(RealTime Messaging Protocol,RTMP)或其任意组合等。
在协议处理单元3202对流进行处理之后,生成流文件。文件被输出到解复用单元3204。解复用单元3204可以将复用数据分离为经编码的音频数据和经编码的视频数据。如上所述,在一些场景中,例如在视频会议***中,不复用经编码的音频数据和经编码的视频数据。在这种情况下,不通过解复用单元3204,将编码数据发送到视频解码器3206和音频解码器3208。
通过解复用处理,生成视频基本流(elementary stream,ES)、音频ES和可选的字幕。视频解码器3206,包括上述实施例所描述的视频解码器30,通过上述实施例所示的解码方法对视频ES进行解码以生成视频帧,并将该数据发送到同步单元3212。音频解码器3208对音频ES进行解码以生成音频帧,并将该数据发送至同步单元3212。或者,可以在将视频帧发送至同步单元3212之前存储在缓冲器(图7中未示出)中。类似地,可以在将视频帧发送至同步单元3212之前存储在缓冲器(图7中未示出)中。
同步单元3212同步视频帧和音频帧,并将视频/音频提供给视频/音频显示器3214。例如,同步单元3212同步视频和音频信息的呈现。信息可以使用与译码音频和可视数据呈现相关的时间戳和与数据流发送相关的时间戳,在语法中进行译码。
如果流中包括字幕,则字幕解码器3210对字幕进行解码,并使字幕与视频帧和音频帧同步,并将视频/音频/字幕提供给视频/音频/字幕显示器3216。
本发明的实施例并不限于上述***,上述实施例中的图像编码设备或图像解码设备都可以包括在汽车***等其它***中。
数学运算符
本申请中使用的数学运算符与C编程语言中的类似,但是本申请准确定义了整除运算和算术移位运算结果,并且还定义了其它运算,例如幂运算和实值除法。编号和计数规范通常从零开始,例如,“第一个”相当于第0个,“第二个”相当于第1个,等等。
算术运算符
以下算术运算符定义如下:
+ 加法
– 减法(作为双参数运算符)或者非运算(作为一元前缀运算符)
* 乘法,包括矩阵乘法
Figure BDA0003714506160000466
Figure BDA0003714506160000465
÷ 用来表示数学等式中的除法,没有截断或四舍五入。
Figure BDA0003714506160000463
用来表示数学等式中的除法,没有截断或四舍五入。
Figure BDA0003714506160000464
f(i)的求和,其中i取从x到y(包括y)的所有整数值。
x%y 取模运算。x除y的余数,这里x和y都必须是整数,并且x≥0和y>0。
逻辑运算符
以下逻辑运算符定义如下:
x&&y x和y的布尔逻辑“与”运算
x||y x和y的布尔逻辑“或”运算
!布尔逻辑“非”运算
x?y:z如果x为真(TRUE)或不等于0,则求y的值,否则,求z的值。
关系运算符
以下关系运算符定义如下:
>大于
>=大于或等于
<小于
<=小于或等于
==等于
!=不等于
当一个关系运算符应用于一个已被赋值“na”(不适用,not applicable)的语法元素或变量时,值“na”被视为该语法元素或变量的不同值。值“na”被视为不等于任何其它值。
按位运算符
以下按位运算符定义如下:
&按位“与”。当对整数参数运算时,运算的是整数值的二的补码表示。当对二进制参数运算时,如果它包含的位比另一个参数少,则通过添加更多等于0的有效位来扩展较短的参数。
|按位“或”。当对整数参数运算时,运算的是整数值的二的补码表示。当对二进制参数运算时,如果它包含的位比另一个参数少,则通过添加更多等于0的有效位来扩展较短的参数。
^按位“异或”。当对整数参数运算时,运算的是整数值的二的补码表示。当对二进制参数运算时,如果它包含的位比另一个参数少,则通过添加更多等于0的有效位来扩展较短的参数。
x>>y x的二的补码整数表示算术右移y个二进制位。只有y为非负整数值时才有这个函数定义。右移的结果是移进最高有效位(most significant bit,MSB)的比特位等于移位运算之前的x的MSB。
x<<y x的二的补码整数表示算术左移y个二进制位。只有y为非负整数值时才有这个函数定义。左移的结果是移进最低有效位(least significant bit,LSB)的比特位等于0。
赋值运算符
以下算术运算符定义如下:
=赋值运算符
++递增,即,x++等于x=x+1;当在阵列索引中使用时,等于增运算之前变量的值。
––递减,即,x––等于x=x–1;当在阵列索引中使用时,等于减运算之前变量的值。
+=增加指定量,即,x+=3等于x=x+3,x+=(–3)等于x=x+(–3)。
–=减少指定量,即,x–=3等于x=x–3,x–=(–3)等于x=x–(–3)。
范围表示法
以下符号用来说明值的范围:
x=y..z x取从y到z(包括端值)的整数值,其中x、y和z是整数,z大于y。
数学函数
数学函数定义如下:
Figure BDA0003714506160000471
Asin(x)三角反正弦函数,对参数x运算,x的范围为–1.0到1.0(包括端值),输出值的范围为–π÷2到π÷2(包括端值),单位为弧度。
Atan(x)三角反正切函数,对参数x运算,输出值的范围为–π÷2到π÷2(包括端值),单位为弧度。
Figure BDA0003714506160000472
Ceil(x)大于或等于x的最小整数。
Clip1Y(x)=Clip3(0,(1<<BitDepthY)–1,x)
Clip1C(x)=Clip3(0,(1<<BitDepthC)–1,x)
Figure BDA0003714506160000481
Cos(x)三角余弦函数,对参数x运算,单位弧度。
Floor(x)小于或等于x的最大整数。
Figure BDA0003714506160000482
Ln(x)x的自然对数(以e为底的对数,其中e是自然对数底数常数2.718 281828……)。
Log2(x)x以2为底的对数。
Log10(x)x以10为底的对数。
Figure BDA0003714506160000483
Figure BDA0003714506160000484
Round(x)=Sign(x)*Floor(Abs(x)+0.5)
Figure BDA0003714506160000485
Sin(x)三角正弦函数,对参数x运算,单位为弧度。
Figure BDA0003714506160000486
Swap(x,y)=(y,x)
Tan(x)三角正切函数,对参数x运算,单位为弧度。
运算优先级顺序
当没有使用括号来显式指示表达式中的优先顺序时,适应以下规则:
-高优先级的运算在低优先级的任何运算之前计算。
-相同优先级的运算从左到右依次计算。
下表从最高到最低说明运算的优先级,表中位置越高,优先级越高。
对于C编程语言中也使用的运算符,本规范中使用的优先级顺序与在C编程语言中使用的优先级顺序相同。
表:运算优先级按照最高(表格顶部)到最低(表格底部)排序
Figure BDA0003714506160000487
Figure BDA0003714506160000491
逻辑运算的文本描述
在文本中,逻辑运算的语句用数学形式描述如下:
Figure BDA0003714506160000492
可以用以下方式描述:
……如下/……以下为准:
–如果条件0,则语句0
–否则,如果条件1,则语句1
-……
–否则(关于剩余条件的提示性说明),则语句n
文本中的每个“如果……否则,如果……否则,……”语句都以“……如下”或“……以下适用”开头,紧接“如果……”。“如果……,否则,如果……,否则,……”的最后一个条件始终是“否则,……”。中间的“如果……否则,如果……否则,……”语句可以通过使“……如下”或“……以下适用”与结尾“否则,……”匹配来识别。
在文本中,逻辑运算的语句用数学形式描述如下:
Figure BDA0003714506160000493
Figure BDA0003714506160000501
可以用以下方式描述:
……如下/……以下为准:
–如果满足以下所有条件,则语句0:
–条件0a
–条件0b
–否则,如果满足以下一个或多个条件,则语句1:
–条件1a
–条件1b
-……
–否则,语句n
在文本中,逻辑运算的语句用数学形式描述如下:
Figure BDA0003714506160000502
可以用以下方式描述:
当条件0,则语句0
当条件1,则语句1
尽管本发明实施例主要根据视频译码进行了描述,但需要说明的是,译码***10、编码器20和解码器30(相应地,***10)的实施例以及本文描述的其它实施例也可以用于静态图像处理或译码,即,对视频译码中独立于任何先前或连续图像的单个图像进行处理或译码。通常,如果图像处理译码限于单个图像17,仅帧间预测单元244(编码器)和344(解码器)可能不可用。视频编码器20和视频解码器30的所有其它功能(也称为工具或技术)同样可用于静态图像处理,例如残差计算204/304、变换206、量化208、反量化210/310、(逆)变换212/312、分割262/362、帧内预测254/354和/或环路滤波220/320、熵编码270和熵解码304。
编码器20和解码器30等的实施例,以及本文描述的与编码器20和解码器30等有关的功能可以硬件、软件、固件或其任意组合来实现。如果以软件来实现,则各种功能可作为一个或多个指令或代码存储在计算机可读介质中或通过通信介质传输,且由基于硬件的处理单元执行。计算机可读介质可以包括与有形介质(如数据存储介质)对应的计算机可读存储介质,或包括任何便于将计算机程序从一处传送到另一处的介质(例如根据通信协议)的通信介质。通过这种方式,计算机可读介质通常可以对应(1)非瞬时性的有形计算机可读存储介质,或(2)如信号或载波等通信介质。数据存储介质可以是可由一个或多个计算机或一个或多个处理器访问以检索用于实现本发明中描述的技术的指令、代码和/或数据结构的任何可用介质。计算机程序产品可以包括计算机可读介质。
特别地,提供了一种在解码器中实现的对经编码的视频码流进行解码的方法,如图8所示,所述方法包括:S801:通过解析所述视频码流,获取包含在所述当前图像的图像头中的图像级语法元素,其中,所述图像级语法元素(例如pic_alf_enabled_flag)用于指示是否对所述当前图像执行自适应环路滤波(adaptive loop filter,ALF)。S802:在所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波的情况下,获取所述图像头中包括的参数集标识符(例如pic_alf_aps_id_luma[i]),其中,所述参数集标识符用于表示包括一组ALF参数的第一参数集(例如APS),并且所述第一参数集的时域标识符(例如TemporalId)小于或等于所述当前图像的时域标识符。S803:根据所述第一参数集,对所述当前图像的至少一个条带执行所述自适应环路滤波。
当前图像是包含在图像单元(picture unit,PU)中的编码图像,其中,PU是按照指定的分类规则相互关联的NAL单元的集合,这些NAL单元在解码顺序上是连续的。
网络抽象层(network abstraction layer,NAL)单元是一种语法结构,包含要遵循的数据类型的指示和字节,这些字节包含当前图像、图像头或包含一组ALF参数的参数集的全部编码数据或一部分编码数据。其中,每个NAL单元具有时域标识符。
第一参数集的时域标识符(例如TemporalId)为aps_params_type等于ALF_APS的APS NAL单元的TemporalId。aps_params_type等于ALF_APS表示APS携带ALF参数。APS NAL单元为包含APS的NAL单元。
如果第一NAL单元的时域标识符小于同一层的第二NAL单元的时域标识符,则可以在不参考第二NAL单元封装的数据的情况下对第一NAL单元封装的数据进行解码。时域标识符也可以用于子码流提取过程,通过该过程,从码流中去除由目标最高时域标识符确定的、码流中不属于目标集合的NAL单元,其中,输出子码流包括所述码流中属于所述目标集合的NAL单元。
时域标识符可以与解码顺序相关。
根据所述第一参数集对所述当前图像的至少一个条带执行所述自适应环路滤波包括:根据所述第一参数集对所述当前图像的至少一个条带的亮度分量执行自适应环路滤波。
当对CTB启用ALF时,使用ALF对CU内的每个样本R(i,j)进行滤波,得到样本值R'(i,j),如下所示:
Figure BDA0003714506160000511
其中,f(k,l)表示经解码的滤波系数,K(x,y)为修正函数,c(k,l)表示经解码的修正参数。变量k和l在–L/2与L/2之间变化,其中L表示滤波长度。修正函数K(x,y)=min(y,max(–y,x)),与函数Clip3(–y,y,x)对应。修正运算引入非线性,通过减少与当前样本值差异太大的相邻样本值的影响,提高ALF的效率。
ALF滤波器参数(或ALF参数)在自适应参数集(adaptation parameter set,APS)中指示。在一个APS中,可以指示最多25组亮度滤波系数和修正值索引,以及最多8组色度滤波系数和修正值索引。为了减少位开销,可以对亮度分量的不同类别的滤波系数进行合并。在图像头中,指示用于当前图像的APS索引。
从APS解码的修正值索引可以使用亮度和色度分量的修正值表来确定修正值。这些修正值取决于内部位深度(internal bitdepth)。更确切地说,修正值通过以下等式获得:
AlfClip={round(2B-α*n),n∈[0..N–1]}
其中,B等于内部位深度,α为等于2.35的预定义常量值,N等于4,N为VVC中允许修正值的数量。然后,将AlfClip舍入到最接近的值,格式为2的幂。
在条带头中,可以指示最多7个APS索引以指示用于当前条带的亮度滤波器集合。可以在CTB级别进一步控制滤波过程。总是指示标志来表示是否对亮度CTB使用ALF。亮度CTB可以从16个固定滤波器集合中选择一个滤波器集合,并从APS中选择多个滤波器集合。对亮度CTB指示滤波器集合索引以表示使用的滤波器集合。在编码器和解码器中对16个固定滤波器集合进行预先定义和硬译码。
对于色度分量,在条带头中指示APS索引以表示用于当前条带的色度滤波器集合。在CTB级别,如果APS中有一个以上色度滤波器集合,则为每个色度CTB指示滤波器索引。
量化滤波系数,范数等于128。为了限制乘法复杂度,采用码流符合性,使得非中心位置的系数值的范围为–27到27–1(包括端值)。不在码流中指示中心位置系数,视为等于128。
所述方法还可以包括:当所述图像级语法元素(例如pic_alf_enabled_flag)指示对所述当前图像执行所述自适应环路滤波时,获取所述图像头中包括的另一参数集标识符,其中,所述参数集标识符(例如pic_alf_aps_id_chroma)用于表示包括一组ALF参数的第二参数集(例如APS),并且所述第二参数集的时域标识符小于或等于所述当前图像的时域标识符;根据所述第二参数集,对所述当前图像的至少一个条带的色度分量执行自适应环路滤波。
类似地,提供了一种在编码器中实现的对包括编码数据的视频码流进行编码的方法,如图9所示。所述方法包括:S901:确定是否对所述当前图像执行自适应环路滤波(adaptive loop filter,ALF)。S903:根据是否对所述当前图像执行自适应环路滤波(adaptive loop filter,ALF)的确定结果,将图像级语法元素(例如pic_alf_enabled_flag)编码到所述当前图像的图像头中,其中,所述图像级语法元素用于指示是否对所述当前图像启用自适应环路滤波(adaptive loop filter,ALF)。S905:当对所述当前图像执行自适应环路滤波时,将参数集标识符(例如pic_alf_aps_id_luma[i])编码到所述图像头中,其中,所述参数集标识符用于表示包括自适应环路滤波的一组ALF参数的第一参数集(例如APS);其中,所述第一参数集的时域标识符(例如TemporalId)设置为小于或等于所述当前图像的时域标识符。
所述方法还可以包括:将所述第一参数集的所述时域标识符和所述当前图像的所述时域标识符编码到所述视频码流中。
所述第一参数集包括对所述当前图像的至少一个条带的所述亮度分量执行自适应环路滤波的一组ALF参数。
所述方法还可以包括:在所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波的情况下,将另一参数集标识符编码到所述图像头中;其中,所述参数集标识符(例如pic_alf_aps_id_chroma)用于表示第二参数集(例如APS),所述第二参数集包括对所述当前图像的至少一个条带的所述色度分量执行自适应环路滤波的一组ALF参数,并且所述第二参数集的时域标识符设置为小于或等于所述当前图像的时域标识符。
图10示出了用于解码包括多个图像的编码数据的视频码流的解码器1000。所示示例提供的解码器1000包括:获取单元1010,用于通过解析所述视频码流,获取包含在所述当前图像的图像头中的图像级语法元素,其中,所述图像级语法元素用于指示是否对所述当前图像启用自适应环路滤波(adaptive loop filter,ALF)。获取单元1010还用于:在所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波的情况下,获取所述图像头中包括的参数集标识符,其中,所述参数集标识符用于表示包括一组ALF参数的第一参数集,并且所述第一参数集的时域标识符小于或等于所述当前图像的时域标识符。所述解码器1000还包括:滤波单元1020,用于根据所述第一参数集,对所述当前图像的至少一个条带执行所述自适应环路滤波。
获取单元1010可以为熵解码单元304。滤波单元1020可以为环路滤波器320。解码器1000可以为目的地设备14、解码器30、装置500、视频解码器3206或终端设备3106。
类似地,提供了一种编码器1100,用于对包括多个图像的编码数据的视频码流进行编码,如图11所示。编码器1100包括:确定单元1110,用于确定是否对所述当前图像执行自适应环路滤波(adaptive loop filter,ALF);编码单元1120,用于根据是否对所述当前图像执行自适应环路滤波(adaptive loop filter,ALF)的确定结果,将图像级语法元素编码到所述当前图像的图像头中,其中,所述图像级语法元素用于指示是否对所述当前图像启用自适应环路滤波(adaptive loop filter,ALF)。编码单元1120还用于:当对所述当前图像执行自适应环路滤波时,将参数集标识符编码到所述图像头中,其中,所述参数集标识符用于表示包括自适应环路滤波的一组ALF参数的第一参数集;其中,所述第一参数集的时域标识符设置为小于或等于所述当前图像的时域标识符。
编码单元1120可以为熵编码单元270。确定单元1110可以为环路滤波器220。编码器1100可以为源设备12、编码器20或装置500。
作为示例而非限制,这类计算机可读存储介质可以包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储器、磁盘存储器或其它磁性存储设备、闪存或可用于存储指令或数据结构形式的所需程序代码并且可由计算机访问的任何其它介质。此外,任何连接都可以适当地称为计算机可读介质。例如,如果使用同轴电缆、光缆、双绞线、数字用户线(digitalsubscriber line,DSL)或如红外线、无线电和微波等无线技术从网站、服务器或其它远程资源传输指令,则在介质定义中包括同轴电缆、光缆、双绞线、DSL或如红外线、无线电和微波等无线技术。然而,应理解,计算机可读存储介质和数据存储介质并不包括连接、载波、信号或其它瞬时性介质,而是针对非瞬时性有形存储介质。本文所使用的磁盘和光盘包括压缩光盘(compact disc,CD)、激光光盘、光学光盘、数字多功能光盘(digital versatiledisc,DVD)、软盘和蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光以光学方式再现数据。以上各项的组合也应包括在计算机可读介质的范围内。
可通过如一个或多个数字信号处理器(digital signal processor,DSP)、通用微处理器、专用集成电路(application specific integrated circuit,ASIC)、现场可编程逻辑阵列(field programmable logic array,FPGA)或其它等效集成或离散逻辑电路等一个或多个处理器来执行指令。因此,本文所使用的术语“处理器”可指前述结构或适合于实现本文描述的技术的任何其它结构中的任一者。另外,在一些方面中,本文描述的各种功能可以提供在用于编码和解码的专用硬件和/或软件模块内,或者并入组合编解码器中。而且,所述技术可以完全在一个或多个电路或逻辑元件中实现。
本发明的技术可以在多种设备或装置中实现,这些设备或装置包括无线手机、集成电路(integrated circuit,IC)或一组IC(例如芯片组)。本发明描述了各种组件、模块或单元,以强调用于执行所公开技术的设备的功能方面,但未必需要由不同的硬件单元实现。实际上,如上所述,各种单元可以结合合适的软件和/或固件组合在编解码器硬件单元中,或者通过互操作硬件单元(包括如上所述的一个或多个处理器)的集合来提供。

Claims (14)

1.一种由解码设备实现的对视频码流进行解码的方法,其特征在于,所述视频码流包括表示当前图像的数据,所述方法包括:
通过解析所述视频码流,获取包含在所述当前图像的图像头中的图像级语法元素,其中,所述图像级语法元素用于指示是否对所述当前图像启用自适应环路滤波(adaptiveloop filter,ALF);
在所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波的情况下,获取所述图像头中包括的参数集标识符,其中,所述参数集标识符用于表示包括一组ALF参数的第一参数集,并且所述第一参数集的时域标识符小于或等于所述当前图像的时域标识符;
根据所述第一参数集,对所述当前图像的至少一个条带执行所述自适应环路滤波。
2.根据权利要求1所述的方法,其特征在于,所述根据所述第一参数集对所述当前图像的至少一个条带执行所述自适应环路滤波包括:根据所述第一参数集对所述当前图像的至少一个条带的亮度分量执行自适应环路滤波。
3.根据权利要求2所述的方法,其特征在于,所述方法还包括:在所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波的情况下,获取所述图像头中包括的另一参数集标识符,其中,所述参数集标识符用于表示包括一组ALF参数的第二参数集,并且所述第二参数集的时域标识符小于或等于所述当前图像的时域标识符;根据所述第二参数集,对所述当前图像的至少一个条带的色度分量执行自适应环路滤波。
4.一种由编码设备实现的对视频码流进行编码的方法,其特征在于,所述视频码流包括表示当前图像的数据,所述方法包括:
确定是否对所述当前图像启用自适应环路滤波(adaptive loop filter,ALF);
根据是否对所述当前图像启用自适应环路滤波(adaptive loop filter,ALF)的所述确定结果,将图像级语法元素编码到所述当前图像的图像头中;其中,所述图像级语法元素用于指示是否对所述当前图像启用自适应环路滤波(adaptive loop filter,ALF);
在对所述启用图像执行自适应环路滤波的情况下,将参数集标识符编码到所述图像头中,其中,所述参数集标识符用于表示包括自适应环路滤波的一组ALF参数的第一参数集;其中,所述第一参数集的时域标识符设置为小于或等于所述当前图像的时域标识符。
5.根据权利要求4所述的方法,其特征在于,所述方法还包括:将所述第一参数集的所述时域标识符和所述当前图像的所述时域标识符编码到所述视频码流中。
6.根据权利要求4或5所述的方法,其特征在于,所述第一参数集包括对所述当前图像的至少一个条带的所述亮度分量执行的自适应环路滤波的一组ALF参数。
7.根据权利要求6所述的方法,其特征在于,所述方法还包括:在所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波的情况下,将另一参数集标识符编码到所述图像头中;其中,所述参数集标识符用于表示第二参数集,所述第二参数集包括对所述当前图像的至少一个条带的所述色度分量执行的自适应环路滤波的一组ALF参数,并且所述第二参数集的时域标识符设置为小于或等于所述当前图像的时域标识符。
8.一种编码器,其特征在于,包括处理电路,用于执行根据权利要求4至7中任一项所述的方法。
9.一种解码器,其特征在于,包括处理电路,用于执行根据权利要求1至3中任一项所述的方法。
10.一种包括程序代码的计算机程序产品,其特征在于,当所述程序代码在计算机或处理器中执行时,所述程序代码用于执行根据上述权利要求中任一项所述的方法。
11.一种解码器,其特征在于,所述解码器包括:
一个或多个处理器;
非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的程序,其中,当所述一个或多个处理器执行所述程序时,使所述解码器执行根据上述权利要求中任一项所述的方法。
12.一种编码器,其特征在于,所述编码器包括:
一个或多个处理器;
非瞬时性计算机可读存储介质,与所述一个或多个处理器耦合并存储由所述一个或多个处理器执行的程序,其中,当所述一个或多个处理器执行所述程序时,使所述编码器执行根据上述权利要求中任一项所述的方法。
13.一种携带程序代码的非瞬时性计算机可读存储介质,其特征在于,当计算机设备执行所述程序代码时,所述计算机设备执行根据上述权利要求中任一项所述的方法。
14.一种非瞬时性存储介质,其特征在于,包括由图像解码设备解码的编码码流,所述码流通过将视频信号或图像信号的当前图像划分为多个块来生成,并且包括多个语法元素,其中,所述多个语法元素包括包含在所述当前图像的图像头中的图像级语法元素图像级语法元素,所述图像级语法元素通过解析所述视频码流来获取,其中,所述图像级语法元素用于指示是否对所述当前图像启用自适应环路滤波(adaptive loop filter,ALF);在所述图像级语法元素指示对所述当前图像启用所述自适应环路滤波的情况下,所述码流还包括包含在所述图像头中的参数集标识符,其中,所述参数集标识符用于表示包括一组ALF参数的第一参数集,并且所述第一参数集的时域标识符设置为小于或等于所述当前图像的时域标识符。
CN202080090491.7A 2019-12-31 2020-12-30 编码器、解码器及对应方法 Pending CN114868392A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310513068.9A CN116489389B (zh) 2019-12-31 2020-12-30 编码器、解码器及对应方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN2019130581 2019-12-31
CNPCT/CN2019/130581 2019-12-31
CN2020070155 2020-01-02
CNPCT/CN2020/070155 2020-01-02
PCT/CN2020/141139 WO2021136322A1 (en) 2019-12-31 2020-12-30 An encoder, a decoder and corresponding methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310513068.9A Division CN116489389B (zh) 2019-12-31 2020-12-30 编码器、解码器及对应方法

Publications (1)

Publication Number Publication Date
CN114868392A true CN114868392A (zh) 2022-08-05

Family

ID=76686555

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202080090491.7A Pending CN114868392A (zh) 2019-12-31 2020-12-30 编码器、解码器及对应方法
CN202310513068.9A Active CN116489389B (zh) 2019-12-31 2020-12-30 编码器、解码器及对应方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202310513068.9A Active CN116489389B (zh) 2019-12-31 2020-12-30 编码器、解码器及对应方法

Country Status (10)

Country Link
US (1) US20220337881A1 (zh)
EP (1) EP4070551A4 (zh)
KR (1) KR20220123056A (zh)
CN (2) CN114868392A (zh)
AU (1) AU2020416421A1 (zh)
BR (1) BR112022012850A2 (zh)
CA (1) CA3163430A1 (zh)
MX (1) MX2022008176A (zh)
TW (1) TWI782382B (zh)
WO (1) WO2021136322A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020203330B2 (en) * 2020-05-21 2022-12-01 Canon Kabushiki Kaisha Method, apparatus and system for encoding and decoding a block of video samples

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9001883B2 (en) * 2011-02-16 2015-04-07 Mediatek Inc Method and apparatus for slice common information sharing
CN103096047B (zh) * 2011-11-01 2018-06-19 中兴通讯股份有限公司 一种分片层参数集解码及编码方法和装置
US20130188686A1 (en) * 2012-01-19 2013-07-25 Magnum Semiconductor, Inc. Methods and apparatuses for providing an adaptive reduced resolution update mode
US9398284B2 (en) * 2012-08-16 2016-07-19 Qualcomm Incorporated Constructing reference picture lists for multi-view or 3DV video coding
US10419755B2 (en) * 2016-05-16 2019-09-17 Qualcomm Incorporated Confusion of multiple filters in adaptive loop filtering in video coding
JPWO2019069968A1 (ja) * 2017-10-06 2020-11-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 符号化装置、復号装置、符号化方法および復号方法

Also Published As

Publication number Publication date
TWI782382B (zh) 2022-11-01
BR112022012850A2 (pt) 2022-09-27
US20220337881A1 (en) 2022-10-20
MX2022008176A (es) 2022-10-10
CN116489389A (zh) 2023-07-25
WO2021136322A1 (en) 2021-07-08
AU2020416421A1 (en) 2022-07-21
JP2023509052A (ja) 2023-03-06
CN116489389B (zh) 2024-02-13
EP4070551A1 (en) 2022-10-12
KR20220123056A (ko) 2022-09-05
CA3163430A1 (en) 2021-07-08
EP4070551A4 (en) 2023-01-25
TW202133618A (zh) 2021-09-01

Similar Documents

Publication Publication Date Title
CN115567717B (zh) 编码器、解码器及对应方法和装置
CN114902662A (zh) 用于视频译码的跨分量自适应环路滤波
CN115209153B (zh) 编码器、解码器及对应方法
CN113508592A (zh) 编码器、解码器及相应的帧间预测方法
CN112673626A (zh) 各分割约束元素之间的关系
CN114450958A (zh) 用于减小增强插值滤波器的内存带宽的仿射运动模型限制
CN115023953A (zh) 指示高级语法的编码器、解码器以及对应方法
CN114503592A (zh) 简化指示图像头的编码器、解码器及对应方法
CN114586362A (zh) 色度量化参数指示方法和装置
CN114342403A (zh) 用于加权预测的高级指示的方法和装置
CN114946181A (zh) 用于视频译码的参考图像管理方法
CN115349260A (zh) 编码器、解码器及对应的方法
CN114679583B (zh) 视频编码器、视频解码器及对应方法
CN115349257A (zh) 基于dct的内插滤波器的使用
CN114830665A (zh) 仿射运动模型限制
CN116489389B (zh) 编码器、解码器及对应方法
CN114556923B (zh) 编码器、解码器和使用插值滤波的对应方法
CN113228632B (zh) 用于局部亮度补偿的编码器、解码器、以及对应方法
CN114930840A (zh) 增强型插值滤波器的运动矢量范围的推导
CN114930834A (zh) 编码器、解码器及灵活档次配置的对应方法
CN114424554A (zh) 色度qp偏移表指示和推导的方法和装置
JP7524327B2 (ja) エンコーダ、デコーダ、および対応する方法
CN114503593B (zh) 编码器、解码器及对应方法
CN114830654A (zh) 译码块分割限制推导的编码器、解码器和对应方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40070093

Country of ref document: HK