CN114243007A - 一种二硫化镍/碳纳米管复合电极材料及制备方法和应用 - Google Patents
一种二硫化镍/碳纳米管复合电极材料及制备方法和应用 Download PDFInfo
- Publication number
- CN114243007A CN114243007A CN202111618863.1A CN202111618863A CN114243007A CN 114243007 A CN114243007 A CN 114243007A CN 202111618863 A CN202111618863 A CN 202111618863A CN 114243007 A CN114243007 A CN 114243007A
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- electrode material
- nickel
- nickel disulfide
- nanotube composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 118
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 109
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 107
- NKHCNALJONDGSY-UHFFFAOYSA-N nickel disulfide Chemical compound [Ni+2].[S-][S-] NKHCNALJONDGSY-UHFFFAOYSA-N 0.000 title claims abstract description 100
- 239000007772 electrode material Substances 0.000 title claims abstract description 76
- 239000002131 composite material Substances 0.000 title claims abstract description 59
- 238000002360 preparation method Methods 0.000 title claims abstract description 28
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims abstract description 67
- 229910001425 magnesium ion Inorganic materials 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 19
- 238000011065 in-situ storage Methods 0.000 claims abstract description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 44
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 40
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 25
- 238000001035 drying Methods 0.000 claims description 20
- 239000003792 electrolyte Substances 0.000 claims description 20
- 239000011777 magnesium Substances 0.000 claims description 20
- 229910052749 magnesium Inorganic materials 0.000 claims description 20
- -1 polytetrafluoroethylene Polymers 0.000 claims description 20
- 239000011248 coating agent Substances 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 13
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 13
- 239000011889 copper foil Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000004140 cleaning Methods 0.000 claims description 11
- 239000012153 distilled water Substances 0.000 claims description 10
- 235000019441 ethanol Nutrition 0.000 claims description 10
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 claims description 9
- 235000019345 sodium thiosulphate Nutrition 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- 239000000853 adhesive Substances 0.000 claims description 8
- 230000001070 adhesive effect Effects 0.000 claims description 8
- 239000006258 conductive agent Substances 0.000 claims description 8
- 238000005520 cutting process Methods 0.000 claims description 8
- 239000002105 nanoparticle Substances 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical group CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 6
- 239000002033 PVDF binder Substances 0.000 claims description 6
- 244000137852 Petrea volubilis Species 0.000 claims description 6
- 239000006230 acetylene black Substances 0.000 claims description 6
- 238000000227 grinding Methods 0.000 claims description 6
- 238000003475 lamination Methods 0.000 claims description 6
- 239000004570 mortar (masonry) Substances 0.000 claims description 6
- 238000004806 packaging method and process Methods 0.000 claims description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 6
- 238000004080 punching Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 4
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 claims description 4
- 239000006229 carbon black Substances 0.000 claims description 3
- 238000005498 polishing Methods 0.000 claims description 3
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium chloride Substances Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- 238000001548 drop coating Methods 0.000 claims description 2
- 239000003365 glass fiber Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000004528 spin coating Methods 0.000 claims description 2
- 238000009210 therapy by ultrasound Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 5
- 238000004729 solvothermal method Methods 0.000 abstract description 3
- 239000007774 positive electrode material Substances 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 abstract description 2
- 238000000840 electrochemical analysis Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 22
- 229910052802 copper Inorganic materials 0.000 description 13
- 239000010949 copper Substances 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 9
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 238000001291 vacuum drying Methods 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000005303 weighing Methods 0.000 description 4
- 229910000861 Mg alloy Inorganic materials 0.000 description 3
- NFKKYXUEWARHFP-UHFFFAOYSA-N [C].[Ni](=S)=S Chemical compound [C].[Ni](=S)=S NFKKYXUEWARHFP-UHFFFAOYSA-N 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- QENHCSSJTJWZAL-UHFFFAOYSA-N magnesium sulfide Chemical compound [Mg+2].[S-2] QENHCSSJTJWZAL-UHFFFAOYSA-N 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910019094 Mg-S Inorganic materials 0.000 description 1
- 229910019397 Mg—S Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000011853 conductive carbon based material Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011263 electroactive material Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000012621 metal-organic framework Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002815 nickel Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/11—Sulfides; Oxysulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明属于镁离子电池电极材料领域,特别是指一种二硫化镍/碳纳米管复合电极材料及制备方法和应用。通过一步溶剂热法,使得二硫化镍原位生长在碳纳米管上,将二硫化镍/碳纳米管作为正极材料,应用在镁离子电池上并测试其电化学性能。本发明提供的二硫化镍/碳纳米管复合电极材料的制备方法具有成本低、工艺简单、效率高等优点。通过电化学测试,以二硫化镍/碳纳米管复合电极材料作为正极在镁离子电池具有比容量高,倍率性能好以及长循环性能优异等优点。
Description
技术领域
本发明属于镁离子电池电极材料领域,特别是指一种二硫化镍/碳纳米管复合电极材料及制备方法和应用。
背景技术
综合性能优良的储能装置,可促进可持续绿色能源的大规模应用,被广泛认为是实现碳中和的关键。目前,在各类储能装置中,锂离子电池的市场份额、研究和发展都处于领先地位。然而,锂最终将供不应求,而且锂枝晶的形成会带来了一些安全问题。因此,迫切需要一种低成本和安全的金属阳极来替代锂。由于元素周期表的独特对角线规则,镁和锂是对角线元素,因此二者具有非常相似的化学性质。镁在地壳中含量丰富,大约是锂含量的104倍。除此之外,研究表明,镁离子电池在电沉积过程中会形成镁枝晶,这极大地提高了电池的安全性能,因此镁离子电池拥有广泛的应用前景。但是,目前能够存储镁离子的正极材料有限。当具有高电荷密度的镁离子***材料的晶体结构时,周围的宿主晶格的静电场发生了巨大的变化,导致镁离子具有高扩散势垒,这将使得镁离子***过程变得困难或迟缓。同样在循环过程中,电极材料的体积变化会导致容量的快速衰减。目前缺乏合适的电极材料。
比容量是评价电极材料性能的重要因素,开发具有优良储镁性能的电极材料被认为是促进镁离子电池商业化的有效措施。已知电极材料中非金属元素的增加有利于理论比容量的增加,这些非金属元素形成的阴离子能够为活性的金属离子嵌入提供可逆的氧化还原活性位点。因此,富含阴离子的电极材料受到了广泛关注。然而,材料富含阴离子的特性导致了较差的电子导电性,所以电极材料与高导电性碳基材料复合被认为是提高其导电性的有效方法。根据最近的研究,复合方法可分为碳涂层技术和碳负载技术。碳涂层技术不仅可以提高电极材料的导电性,而且能够提高电极材料的机械强度用来防止材料变形,提高了电极材料的利用率和循环寿命。但,碳涂层技术减少了电极材料和电解液之间的接触面积,从而导致浓度极化。尽管碳负载技术可以在不削弱电解液和电极材料之间的接触面积的情况下提高电极材料的导电性,但电极材料的结构变形而导致的结构坍塌并未得到改善。因此,为了获得储镁性能优异的材料,需要进一步优化这两种复合技术。众所周知,电极材料结构的不可逆变形和内外形变率的巨大差异是导致电极材料结构崩塌的主要因素。人们认识到,具有纳米结构的电极材料能够缩短离子和电子传输路径,增加活性位点,从而削弱极化现象引起的不可逆变形,并通过提高电极材料的利用率来改善了电极材料的变形均匀性。因此使用纳米材料在高导电碳材料表面的原位生长的方法有望制备出优异的镁存储材料。
因此,利用溶剂热的方法,通过调整镍基碳纳米管的投放量,使得二硫化镍原位生在碳纳米管表面,进一步洗涤干燥,得到具有交织网状结构的二硫化镍/碳纳米管复合电极材料。最后将其作为镁离子电池的正极材料,考察其电化学性能,并探究其储镁机制。
发明内容
针对镁离子电池中镁离子***动力学缓慢的技术问题,本发明提出一种二硫化镍/碳纳米管复合电极材料及制备方法和应用,本发明方法制备的二硫化镍/碳纳米管复合电极材料具有导电性能好,倍率性能好,长循环以及性能优异的特点。
为了达到上述目的,本发明的技术方案是这样实现的:
一种二硫化镍/碳纳米管复合电极材料,为二硫化镍纳米颗粒原位生长在碳纳米管上形成,其分子式为NiS2/CNTs,其中二硫化镍纳米颗粒直径为10~100 nm。
一种二硫化镍/碳纳米管复合电极材料的制备方法,步骤如下:
(1)电极材料的制备:将六水合硝酸镍、硫代硫酸钠、镍基碳纳米管和无水乙醇加入聚四氟乙烯反应釜内,搅拌均匀后于超声波清洗器内超声,在聚四氟乙烯反应釜内恒温反应,得到二硫化镍/碳纳米管复合电极材料浑浊液;
(2)电极材料成品的制备:将步骤(1)制备的二硫化镍/碳纳米管复合电极材料浑浊液冷却至室温,经过离心、清洗、干燥得到二硫化镍/碳纳米管复合电极材料成品。
所述步骤(1)中六水合硝酸镍的质量份数为0.1-0.4份,硫代硫酸钠的质量份数为0.1-2份,镍基碳纳米管的质量份数为1-50份,无水乙醇的质量份数为16份。
所述步骤(1)中聚四氟乙烯反应釜反应温度为120-160℃,反应时间为12-36 h。
所述步骤(2)中离心液为乙醇和去离子水,干燥温度为60-80℃,干燥时间为6-20h。
上述的二硫化镍/碳纳米管复合电极材料在镁离子电池领域的应用。
一种镁离子电池,包括正极、负极、电解液和隔膜,所述正极包括导电剂、正极粘合剂、正极集流体和上述的二硫化镍/碳纳米管复合电极材料。
所述正极的制备方法为:将二硫化镍/碳纳米管复合材料、导电剂、正极粘合剂加入到研钵中,研磨,加入有机溶剂,搅拌均匀后涂覆在铜箔上,干燥;所述导电剂为乙炔黑或炭黑;所述正极粘合剂为聚偏氟乙烯或聚四氟乙烯;二硫化镍/碳纳米管复合电极材料、导电剂和正极粘合剂质量比为(8-A-B):(1+A):(1+B),其中0≤A≤2,0≤B≤1,正极的质量为30-60 mg,有机溶剂为N-甲基吡咯烷酮,涂覆方式为刮涂、旋涂、滴涂中的任意一种,铜箔厚度为14-21 μm,铜箔圆片直径为8mm,每片铜箔的负载的活性质量为0.48-0.64 mg,涂覆后干燥温度为70 ℃,干燥时间为6-12 h。
所述负极的制备方法为:使用砂纸打磨镁片,打磨至两面光滑,然后使用稀盐酸溶液清洗打磨后的镁片;再分别使用蒸馏水和无水乙醇冲洗镁片,得到表面光滑的镁负极,然后使用冲压机将镁片裁成一个圆片;其中稀盐酸的浓度为0.1-0.5 M,镁圆片的直径为8-13mm。
上述镁离子电池的组装方法为:在手套箱内,使用硬币型电池CR2032,分别将正极、隔膜、负极通过叠片的方式复合在一起,同时滴加电解液,最后使用封口机对电池进行封装,得到镁离子电池;其中玻璃纤维隔膜作为隔膜,电解液为(MgphCl)2/THF-AlCl3,电解液浓度为0.4 M。
本发明具有以下有益效果:
1、本发明首次使用二硫化镍作为镁离子电池的电极材料。二硫化镍本身制备简单,对环境污染小。在二硫化镍的晶体结构中,既具有高电负性S-S键,又具有丰富且规则的一维孔结构,类似于金属有机骨架。S-S键中的硫阴离子可以对镁离子产生吸引力,以促进镁离子的嵌入。二硫化镍的孔径(最小孔径为2.39 Å)比镁离子(1.44 Å)大得多,可以作为镁离子的定向传输通道,而且镁离子的单一传输方向可以保证镁离子更高效的传输。
2、本发明使用碳纳米管与二硫化镍进行复合。通过溶剂热法制备出的二硫化镍/碳纳米管,二硫化镍纳米颗粒可以原位生长在碳纳米管表面上。碳纳米管具有网状结构,可以缩短离子穿梭路径并促进电子传导,使电子能够轻松地在集流体和电活性材料之间移动。而在碳纳米管原位生长的二硫化镍纳米颗粒可以被分解成更小的部分,从而提高二硫化镍/碳纳米管的表面活性。
3、本发明方法制备的二硫化镍/碳纳米管复合材料用于镁离子电池上,表现出良好的协同效应和良好的稳定性。同时由于碳纳米管的网状结构提供了较大的比表面积,从而增强了电极和电解质之间的电荷转移,促进了镁离子的扩散。经过测试,二硫化镍/碳纳米管复合电极材料在50 mA/g下的放电容量可以达到245 mAh/g。同样表现出优异的长循环性能,在200 mA/g下进行2000次循环后容量保持率为58%。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1中二硫化镍/碳纳米管复合材料的X射线衍射图谱(XRD)。
图2为本发明实施例1中二硫化镍/碳纳米管复合材料的扫描电镜照片。
图3为本发明实施例1中二硫化镍/碳纳米管复合材料的透射电子显微镜照片。
图4为本发明实施例1中碳纳米管的扫描电子显微照片和相应的元素图谱,其中图a和b分别为碳纳米管不同放大倍数的扫描电子显微照片,图c为碳纳米管扫描电子显微照片,图d为碳纳米管中镍元素图谱,图e为碳纳米管中氧元素图谱,图f为碳纳米管中碳元素图谱。
图5为本发明实施例1中二硫化镍的晶体结构示意图。
图6为本发明实施例1中以二硫化镍/碳纳米管复合材料为正极的镁离子电池的倍率循环图。
图7为本发明实施例1中以二硫化镍/碳纳米管复合材料为正极的镁离子电池的长循环图。
图8为本发明实施例1中以二硫化镍/碳纳米管复合材料为正极的镁离子电池在不同充放电状态下X射线光电子能谱图(XPS),其中图a为镍元素XPS图,图b为硫元素XPS图,图c为镁元素XPS图。
图9为本发明实施例1中二硫化镍的储镁机理图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明的范围。
实施例1
A.一种二硫化镍/碳纳米管复合电极材料的制备方法,步骤如下:
(1)电极材料的制备:在30mL聚四氟乙烯高压釜中加入称量好的硝酸镍(0.4362g)和硫代硫酸钠(1 g)。然后加入乙醇溶液(16 mL),搅拌至所有的固体溶解,随后把镍基碳纳米管粉末(30 mg)加入聚四氟乙烯高压釜中,超声处理30 min,直到所有的碳纳米管粉末完全分散在溶剂中。最后,把高压釜放在150℃的恒温鼓风干燥箱中加热36 h。
(2)电极材料成品的制备:当高压釜自然冷却到室温时,打开高压釜,将上清液倒出,得到黑色沉淀。用离心机分离底部沉淀物,用蒸馏水和乙醇分别洗涤三次,在80℃的真空干燥箱中干燥12 h,得到黑色粉末状固体为二硫化镍/碳纳米管材料。
为了更好的说明二硫化镍/碳纳米管复合材料的特性,对所制备的材料进行X射线衍射,扫描电子显微镜,透射电子显微镜分析,结果分别如图1,图2,图3所示。对碳纳米管进行扫面电子显微镜分析和元素组成分析,如图4所示。并且通过对二硫化镍的标准卡片模拟出了二硫化镍的晶体结构,如图5所示。
图1中,二硫化镍/碳纳米管复合材料的X射线衍射图案与标准卡(JCPDS编号73-574)一致,表明合成的二硫化镍纯度高。由于碳纳米管的加入,在26°处可以观察到明显的衍射峰,对应于(002)晶面,证实了二硫化镍/碳纳米管复合材料的合成。
图2中,二硫化镍/碳纳米管复合材料的扫描电镜照片,这张图片展示了在纠缠的碳纳米管结构,二硫化镍纳米颗粒粘附在碳纳米管上。二硫化镍的平均值约为20~100 nm。大比表面积为电化学反应提供了更多的活性位点。碳纳米管的团聚网状结构也有利于电解液的渗透。结果表明,碳纳米管和二硫化镍具有良好的复合性。通过透射电子显微镜图3进一步表征了所制备材料的微观结构。
图4中,碳纳米管的扫描电镜照片和相应的元素图谱,由于使用的是镍基碳纳米管,在扫描出的元素图谱中可以观察到少量镍的存在,由于碳纳米管上存在少量镍,在反应过程中可以吸引硫代硫酸钠释放的硫阴离子,进而促进二硫化镍直接在碳纳米管上原位生长。
图5中,展示了二硫化镍的晶体结构,由晶体结构中可以看出,一个镍原子与六个硫原子相连。一个S-S键连接两个硫原子。二硫化镍的孔径比镁离子大得多,可以作为镁离子的定向传输通道,而且镁离子的单一传输方向可以保证镁离子更高效的传输。
B.一种镁离子电池的制备方法,步骤如下:
a. 正极的制备:由A制得的二硫化镍/碳纳米管复合电极材料、乙炔黑和聚偏氟乙烯按质量比为8:1:1的比例,称取一共30 mg置入研钵中,研磨30 min后,加入有机溶剂N-甲基吡咯烷酮,搅拌均匀后涂覆在铜箔上,铜箔的厚度为14μm。然后放入70℃真空干燥箱中12h,经冲压机裁成直径为8 mm的圆铜片,每个铜片上负载二硫化镍/碳纳米管的质量大约为0.48 mg。
b. 负极的制备:使用400目的砂纸打磨镁片,打磨至两面光滑。然后使用0.1 M的稀盐酸溶液清洗打磨后的镁片,再分别使用蒸馏水和无水乙醇冲洗镁片,得到表面光滑的镁负极。最后使用冲压机将镁片裁成一个直径为13 mm的圆盘。
c. 镁离子电池的组装:在手套箱内,使用硬币型电池(CR2032),分别将正极、隔膜、负极通过叠片的方式复合在一起,同时滴加0.4 M的APC电解液,最后使用封口机对电池进行封装。
对以二硫化镍/碳纳米管复合材料作为正极的镁离子电池进行电化学性能测试,分别测试了镁离子电池的倍率循环图、镁离子电池的长循环图、镁离子电池在不同充放电状态下的X射线光电子能谱图(XPS),分别如图6、7、8所示。
二硫化镍的储镁机理图如图9所示。
组装的镁离子电池在不同电流密度下循环性能如图6所示,可以看出,该材料有优异的倍率性能,在50 mA/g下的放电容量为245 mAh/g,在1000 mA/g下的放电容量为95mAh/g。
组装的镁离子电池在200 mA/g的电流密度下的长循环图如图7所示,二硫化镍/碳纳米管材料具有下的优异循环稳定性,循环2000周后,可逆容量仍然保持在95 mAh/g,容量保持率高达58%。材料的结构更有利于二硫化镍纳米颗粒与电解质之间的接触。碳纳米管的网状结构具有丰富的缓冲区,可以作为局部存储器来保存电解液,减少长循环过程中的体积变化,加速电化学反应动力学。
非原位XPS研究了二硫化镍/碳纳米管电极反应机理。图8显示了不同放电状态下的XPS光谱。XPS结果可以解释镁的储存机理。在放电过程中,二硫化镍发生还原反应。在温和条件下,四氢呋喃体系的电解液可促进二硫化镍中S-S键的断裂,从而与镁离子结合生成硫化镁。
图9所示的机理解释了在放电过程中二硫化镍的储镁机理,由于二硫化镍晶体结构中有足够大的孔径,镁离子可以自由通过。在温和条件下,四氢呋喃溶液可促进二硫化镍中S-S键的断裂,产生硫离子。带正价镁离子被带负价的硫离子吸引产生硫化镁。由于S-S键之间的间距仅为2.07 Å,镁离子不容易***S-S键之间,这将导致Mg-S键较弱,并且在充电过程中镁离子更易脱出以完成充放电循环。
实施例2
A.一种二硫化镍/碳纳米管复合电极材料的制备方法,步骤如下:
(1)电极材料的制备:在30 mL聚四氟乙烯高压釜中加入称量好的硝酸镍(0.4362g)和硫代硫酸钠(1 g)。然后加入乙醇溶液(16 mL),搅拌至所有的固体溶解,随后把镍基碳纳米管粉末(50 mg)加入聚四氟乙烯高压釜中,超声处理30 min,直到所有的碳纳米管粉末完全分散在溶剂中。最后,把高压釜放在150℃的恒温鼓风干燥箱中加热36 h;
(2)电极材料成品的制备:当高压釜自然冷却到室温时,打开高压釜,将上清液倒出,得到黑色沉淀。用离心机分离底部沉淀物,用蒸馏水和乙醇分别洗涤三次,在80℃的真空干燥箱中干燥12 h,得到黑色粉末状固体为二硫化镍/碳纳米管材料。
B.一种镁离子电池的制备方法,步骤如下:
a. 正极的制备:由A制得的二硫化镍/碳纳米管复合电极材料、乙炔黑和聚偏氟乙烯按质量比为7:2:1的比例,一共称取30 mg置入研钵中,研磨30 min后,加入有机溶剂N-甲基吡咯烷酮,搅拌均匀后涂覆在铜箔上,铜箔的厚度为14μm。然后放入70℃真空干燥箱中12h,经冲压机裁成直径为8 mm的圆铜片,每个铜片上负载二硫化镍/碳纳米管的质量大约为0.48 mg;
b. 负极的制备:首先使用400目的砂纸对镁片进行打磨,打磨至两面光滑。然后使用0.1 M的稀盐酸溶液清洗打磨后的镁片,再分别使用蒸馏水和无水乙醇清洗镁片,得到表面光滑的镁负极。最后使用充压机将镁片裁成一个直径为13 mm的圆盘;
c. 镁离子电池的组装:在手套箱内,使用硬币型电池(CR2032),分别将正极、隔膜、负极通过叠片的方式复合在一起,同时滴加0.4 M的APC电解液,最后使用封口机对电池进行封装。
组装的镁离子电池在50 mA/g下的放电容量为231mAh/g,在1000 mA/g下的放电容量为85 mAh/g。
组装的镁离子电池在循环2000周后,可逆容量仍然保持在76mAh/g,容量保持率达46%。
实施例3
A.一种二硫化镍/碳纳米管复合电极材料的制备方法,步骤如下:
(1)电极材料的制备:在30 mL聚四氟乙烯高压釜中加入称量好的硝酸镍(0.4362g)和硫代硫酸钠(1 g)。然后加入乙醇溶液(16 mL),搅拌至所有的固体溶解,随后把镍基碳纳米管粉末(50 mg)加入聚四氟乙烯高压釜中,超声处理30 min,直到所有的碳纳米管粉末完全分散在溶剂中。最后,把高压釜放在120℃的恒温鼓风干燥箱中加热36 h;
(2)电极材料成品的制备:当高压釜自然冷却到室温时,打开高压釜,将上清液倒出,得到黑色沉淀。用离心机分离底部沉淀物,用蒸馏水和乙醇分别洗涤三次,在80℃的真空干燥箱中干燥20 h,得到黑色粉末状固体为二硫化镍/碳纳米管材料。
B.一种镁离子电池的制备方法,步骤如下:
a. 正极的制备:由A制得的二硫化镍/碳纳米管复合电极材料、炭黑和聚四氟乙烯按质量比为8:1:1的比例,一共称取60 mg置入研钵中,研磨30 min后,加入有机溶剂N-甲基吡咯烷酮,搅拌均匀后涂覆在铜箔上,铜箔的厚度为14μm。然后放入70℃真空干燥箱中6 h,经冲压机裁成直径为8 mm的圆铜片,每个铜片上负载二硫化镍/碳纳米管的质量大约为0.64 mg;
b. 负极的制备:首先使用400目的砂纸对镁片进行打磨,打磨至两面光滑。然后使用0.3 M的稀盐酸溶液清洗打磨后的镁片,再分别使用蒸馏水和无水乙醇清洗镁片,得到表面光滑的镁负极。最后使用充压机将镁片裁成一个直径为8 mm的圆盘;
c. 镁离子电池的组装:在手套箱内,使用硬币型电池(CR2032),分别将正极、隔膜、负极通过叠片的方式复合在一起,同时滴加0.4 M的APC电解液,最后使用封口机对电池进行封装。
组装的镁离子电池在50 mA/g下的放电容量为213 mAh/g,在1000 mA/g下的放电容量为73 mAh/g。
组装的镁离子电池在循环2000周后,可逆容量仍然保持在40 mAh/g,容量保持率达36%。
实施例4
A.一种二硫化镍/碳纳米管复合电极材料的制备方法,步骤如下:
(1)电极材料的制备:在30 mL聚四氟乙烯高压釜中加入称量好的硝酸镍(0.4362g)和硫代硫酸钠(1 g)。然后加入乙醇溶液(16 mL),搅拌至所有的固体溶解,随后把镍基碳纳米管粉末(50 mg)加入聚四氟乙烯高压釜中,超声处理30 min,直到所有的碳纳米管粉末完全分散在溶剂中。最后,把高压釜放在160℃的恒温鼓风干燥箱中加热12 h;
(2)电极材料成品的制备:当高压釜自然冷却到室温时,打开高压釜,将上清液倒出,得到黑色沉淀。用离心机分离底部沉淀物,用蒸馏水和乙醇分别洗涤三次,在80℃的真空干燥箱中干燥6 h,得到黑色粉末状固体为二硫化镍/碳纳米管材料。
B.一种镁离子电池的制备方法,步骤如下:
a. 正极的制备:由A制得的二硫化镍/碳纳米管复合电极材料、乙炔黑和聚偏氟乙烯按质量比为7:1:2的比例,一共称取45 mg置入研钵中,研磨30 min后,加入有机溶剂N-甲基吡咯烷酮,搅拌均匀后涂覆在铜箔上,铜箔的厚度为14 μm。然后放入70℃真空干燥箱中12 h,经冲压机裁成直径为8 mm的圆片,每个铜片上负载二硫化镍/碳纳米管的质量大约为0.48 mg;
b. 负极的制备:首先使用400目的砂纸对镁片进行打磨,打磨至两面光滑。然后使用0.5 M的稀盐酸溶液清洗打磨后的镁片,再分别使用蒸馏水和无水乙醇清洗镁片,得到表面光滑的镁负极。最后使用充压机将镁片裁成一个直径为8 mm的圆盘;
c. 镁离子电池的组装:在手套箱内,使用硬币型电池(CR2032),分别将正极、隔膜、负极通过叠片的方式复合在一起,同时滴加0.4 M的APC电解液,最后使用封口机对电池进行封装。
组装的镁离子电池在50 mA/g下的放电容量为183 mAh/g,在1000 mA/g下的放电容量为56 mAh/g。
组装的镁离子电池在循环2000周后,可逆容量仍然保持在45 mAh/g,容量保持率达41 %。
表1为不同二硫化镍碳纳米管复合电极材料在镁离子电池上的电化学性能表。按照二硫化镍/碳纳米管复合电极材料、乙炔黑和聚偏氟乙烯按质量比为8:1:1的比例所制备的正极材料放电容量最高,循环稳定性最好。二硫化镍碳纳米管复合电极材料制备过程中,反应温度越高,反应温度越长所制备出的材料性能越好。
表1 不同二硫化镍碳纳米管复合电极材料在镁离子电池上的电化学性能
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种二硫化镍/碳纳米管复合电极材料,其特征在于:所述二硫化镍/碳纳米管复合电极材料为二硫化镍纳米颗粒原位生长在碳纳米管上形成,其分子式为NiS2/CNTs,其中二硫化镍纳米颗粒直径为10~100 nm。
2.权利要求1所述的二硫化镍/碳纳米管复合电极材料的制备方法,其特征在于,步骤如下:
(1)电极材料的制备:将六水合硝酸镍、硫代硫酸钠、镍基碳纳米管和无水乙醇加入聚四氟乙烯反应釜内,搅拌均匀后于超声波清洗器内超声,在聚四氟乙烯反应釜内恒温反应,得到二硫化镍/碳纳米管复合电极材料浑浊液;
(2)电极材料成品的制备:将步骤(1)制备的二硫化镍/碳纳米管复合电极材料浑浊液冷却至室温,经过离心、清洗、干燥得到二硫化镍/碳纳米管复合电极材料成品。
3.根据权利要求2所述的二硫化镍/碳纳米管复合电极材料的制备方法,其特征在于:所述步骤(1)中六水合硝酸镍的质量份数为0.1-0.4份,硫代硫酸钠的质量份数为0.1-2份,镍基碳纳米管的质量份数为1-50份,无水乙醇的质量份数为16份。
4.根据权利要求2所述的二硫化镍/碳纳米管复合电极材料的制备方法,其特征在于:所述步骤(1)中聚四氟乙烯反应釜反应温度为120-160℃,反应时间为12-36 h。
5.根据权利要求2所述的二硫化镍/碳纳米管复合电极材料的制备方法,其特征在于:所述步骤(2)中离心液为乙醇和去离子水,干燥温度为60-80℃,干燥时间为6-20 h。
6.权利要求1所述的二硫化镍/碳纳米管复合电极材料在镁离子电池领域的应用。
7.一种镁离子电池,其特征在于,包括正极、负极、电解液和隔膜,所述正极包括导电剂、正极粘合剂、正极集流体和权利要求1所述的二硫化镍/碳纳米管复合电极材料。
8.根据权利要求7所述的镁离子电池,其特征在于:所述正极的制备方法为:将二硫化镍/碳纳米管复合材料、导电剂、正极粘合剂加入到研钵中,研磨,加入有机溶剂,搅拌均匀后涂覆在铜箔上,干燥;所述导电剂为乙炔黑或炭黑;所述正极粘合剂为聚偏氟乙烯或聚四氟乙烯;二硫化镍/碳纳米管复合电极材料、导电剂和正极粘合剂质量比为(8-A-B):(1+A):(1+B),其中0≤A≤2,0≤B≤1,正极的质量为30-60 mg,有机溶剂为N-甲基吡咯烷酮,涂覆方式为刮涂、旋涂、滴涂中的任意一种,铜箔厚度为14-21 μm,铜箔圆片直径为8mm,每片铜箔的负载的活性质量为0.48-0.64 mg,涂覆后干燥温度为70 ℃,干燥时间为6-12 h。
9.权利要求7所述的镁离子电池,其特征在于:所述负极的制备方法为:使用砂纸打磨镁片,打磨至两面光滑,然后使用稀盐酸溶液清洗打磨后的镁片;再分别使用蒸馏水和无水乙醇冲洗镁片,得到表面光滑的镁负极,然后使用冲压机将镁片裁成一个圆片;其中稀盐酸的浓度为0.1-0.5 M,镁圆片的直径为8-13 mm。
10.权利要求7-9任一项所述的镁离子电池的制备方法,其特征在于:在手套箱内,使用硬币型电池CR2032,分别将正极、隔膜、负极通过叠片的方式复合在一起,同时滴加电解液,最后使用封口机对电池进行封装,得到镁离子电池;其中玻璃纤维隔膜作为隔膜,电解液为(MgphCl)2/THF-AlCl3,电解液浓度为0.4 M。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111618863.1A CN114243007B (zh) | 2021-12-28 | 2021-12-28 | 一种二硫化镍/碳纳米管复合电极材料及制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111618863.1A CN114243007B (zh) | 2021-12-28 | 2021-12-28 | 一种二硫化镍/碳纳米管复合电极材料及制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114243007A true CN114243007A (zh) | 2022-03-25 |
CN114243007B CN114243007B (zh) | 2024-05-14 |
Family
ID=80763848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111618863.1A Active CN114243007B (zh) | 2021-12-28 | 2021-12-28 | 一种二硫化镍/碳纳米管复合电极材料及制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114243007B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115417465A (zh) * | 2022-10-19 | 2022-12-02 | 中原工学院 | 一种二硫化镍电极材料及制备方法和应用 |
WO2024152461A1 (zh) * | 2023-01-17 | 2024-07-25 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种水系镁离子正极材料羟基氧化镍/碳纳米管复合物及其制备方法和应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105914345A (zh) * | 2016-05-10 | 2016-08-31 | 湖南大学 | 一种空心纳米过渡金属硫化物/碳复合材料及制备方法 |
CN106669739A (zh) * | 2016-12-30 | 2017-05-17 | 温州大学 | 一种过渡金属硫化物/碳纳米管复合材料及其制备方法与应用 |
CN109873156A (zh) * | 2019-02-18 | 2019-06-11 | 上海交通大学 | 一种高容量镁二次电池硫化钴正极材料的制备方法及其电池组装 |
CN110336012A (zh) * | 2019-07-11 | 2019-10-15 | 燕山大学 | 一种碳复合的硫族化合物复合材料及其制备方法和应用 |
CN110611083A (zh) * | 2018-06-15 | 2019-12-24 | 天津大学 | 硫化镍/碳纳米管柔性复合薄膜材料在锂离子电池负电极中的应用 |
CN110627047A (zh) * | 2019-10-24 | 2019-12-31 | 福建宸琦新材料科技有限公司 | 石墨烯/碳纳米管/二硫化镍复合气凝胶的制备方法 |
CN112010360A (zh) * | 2020-07-29 | 2020-12-01 | 北京理工大学 | 一种通用的合成多种形貌的碳包覆的镍金属化合物的制备方法 |
CN112038591A (zh) * | 2019-06-04 | 2020-12-04 | 中国科学院物理研究所 | 镁硫电池及过渡金属硫化物/硫复合正极材料和复合方法 |
-
2021
- 2021-12-28 CN CN202111618863.1A patent/CN114243007B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105914345A (zh) * | 2016-05-10 | 2016-08-31 | 湖南大学 | 一种空心纳米过渡金属硫化物/碳复合材料及制备方法 |
CN106669739A (zh) * | 2016-12-30 | 2017-05-17 | 温州大学 | 一种过渡金属硫化物/碳纳米管复合材料及其制备方法与应用 |
CN110611083A (zh) * | 2018-06-15 | 2019-12-24 | 天津大学 | 硫化镍/碳纳米管柔性复合薄膜材料在锂离子电池负电极中的应用 |
CN109873156A (zh) * | 2019-02-18 | 2019-06-11 | 上海交通大学 | 一种高容量镁二次电池硫化钴正极材料的制备方法及其电池组装 |
CN112038591A (zh) * | 2019-06-04 | 2020-12-04 | 中国科学院物理研究所 | 镁硫电池及过渡金属硫化物/硫复合正极材料和复合方法 |
CN110336012A (zh) * | 2019-07-11 | 2019-10-15 | 燕山大学 | 一种碳复合的硫族化合物复合材料及其制备方法和应用 |
CN110627047A (zh) * | 2019-10-24 | 2019-12-31 | 福建宸琦新材料科技有限公司 | 石墨烯/碳纳米管/二硫化镍复合气凝胶的制备方法 |
CN112010360A (zh) * | 2020-07-29 | 2020-12-01 | 北京理工大学 | 一种通用的合成多种形貌的碳包覆的镍金属化合物的制备方法 |
Non-Patent Citations (4)
Title |
---|
MOHAMMED M. RAHMAN ET AL.: "Development of 4-methoxyphenol chemical sensor based on NiS 2 -CNT nanocomposites", 《JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS》, vol. 64, pages 157 - 165, XP029561842, DOI: 10.1016/j.jtice.2016.04.009 * |
NING WANG ET AL.: "Octopus-Inspired Design of Apical NiS2 Nanoparticles Supported on Hierarchical Carbon Composites as an Efficient Host for Lithium Sulfur Batteries with High Sulfur Loading", 《ACS APPL. MATER. INTERFACES》, vol. 12, pages 17528 - 17537 * |
ZICHAO YAN ET AL.: "Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries", 《NATURE COMMUNICATIONS》, vol. 10, pages 4973 * |
ZISEN YE ET AL.: "In Situ Anchoring Anion-Rich and Multi-Cavity NiS2 Nanoparticles on NCNTs for Advanced Magnesium-Ion Batteries", 《ADV. SCI.》, vol. 9, pages 2200067 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115417465A (zh) * | 2022-10-19 | 2022-12-02 | 中原工学院 | 一种二硫化镍电极材料及制备方法和应用 |
WO2024152461A1 (zh) * | 2023-01-17 | 2024-07-25 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种水系镁离子正极材料羟基氧化镍/碳纳米管复合物及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN114243007B (zh) | 2024-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113675408B (zh) | 一种用于高性能钾离子电池的MoS2/Ti3C2 MXene复合材料的制备方法 | |
CN108269982B (zh) | 一种复合材料、其制备方法及在锂离子电池中的应用 | |
CN107275578B (zh) | 一种采用氮掺杂多孔碳材料制作钾离子电池负极的方法 | |
CN108622928B (zh) | 一种形貌可控的锗酸锌纳米材料的制备方法及应用 | |
LU500866B1 (en) | CATHODE MATERIAL Mo-VS4/N-GNTS OF MAGNESIUM-ION BATTERY AND USE THEREOF | |
CN111463418B (zh) | 一种碳包覆硒化镍超薄纳米片复合材料及其制备方法 | |
CN110931741A (zh) | 硫化锡量子点负载的碳化钛复合纳米材料及其制备方法 | |
CN108172770A (zh) | 具有单分散结构特征的碳包覆NiPx纳米复合电极材料及其制备方法 | |
CN109671935B (zh) | 一种二氧化硅/生物炭复合材料的制备方法及其用途 | |
CN114243007B (zh) | 一种二硫化镍/碳纳米管复合电极材料及制备方法和应用 | |
Lu et al. | Recent development of graphene-based materials for cathode application in lithium batteries: a review and outlook | |
CN114291796A (zh) | 一种钾离子电池负极材料及其制备方法和应用 | |
CN108428882B (zh) | 一种硅酸锌/碳微纳分级结构复合物及其制备方法 | |
CN103400980A (zh) | 三氧化二铁/氧化镍核壳纳米棒阵列薄膜及其制备方法和应用 | |
CN112968173A (zh) | 多孔碳包覆硫空位复合电极材料、其制备方法及采用该材料的圆形电极 | |
CN110790248B (zh) | 具有花状结构的铁掺杂磷化钴微米球电极材料及其制备方法和应用 | |
CN113782713B (zh) | MoS2纳米片垂直内嵌生物碳纳米复合材料及其制备方法与应用 | |
CN109037623B (zh) | 一种镁二次电池的正极材料及其制备方法 | |
Huang et al. | Three-dimensional carbon cloth-supported ZnO nanorod arrays as a binder-free anode for lithium-ion batteries | |
CN107565114B (zh) | 一种无粘结剂钠离子电池负极材料及其制备方法 | |
CN113346064A (zh) | 硫掺杂石墨烯包覆的双金属硫化物复合材料及制备方法与其在钠离子电池中的应用 | |
CN109346713B (zh) | 钠离子电池硅负极材料 | |
CN112186166A (zh) | 一种钼/钴氧化物-碳复合材料及其制备方法、锂离子电池负极极片和锂离子电池 | |
CN109817899B (zh) | 一种杂元素掺杂碳纳米管封装金属硫化物复合负极材料的制备方法与应用 | |
CN108417824B (zh) | 一种高性能锂电池负极材料碳包覆钛酸锂的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |