CN114212829B - A kind of preparation method of zinc manganate nanosphere material - Google Patents
A kind of preparation method of zinc manganate nanosphere material Download PDFInfo
- Publication number
- CN114212829B CN114212829B CN202111525334.7A CN202111525334A CN114212829B CN 114212829 B CN114212829 B CN 114212829B CN 202111525334 A CN202111525334 A CN 202111525334A CN 114212829 B CN114212829 B CN 114212829B
- Authority
- CN
- China
- Prior art keywords
- solution
- preparation
- znmn
- nanosphere
- zif
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 45
- 239000002077 nanosphere Substances 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- XRFJZINEJXCFNW-UHFFFAOYSA-N [Zn+2].[O-][Mn]([O-])(=O)=O Chemical compound [Zn+2].[O-][Mn]([O-])(=O)=O XRFJZINEJXCFNW-UHFFFAOYSA-N 0.000 title claims abstract description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000013154 zeolitic imidazolate framework-8 Substances 0.000 claims abstract description 22
- MFLKDEMTKSVIBK-UHFFFAOYSA-N zinc;2-methylimidazol-3-ide Chemical compound [Zn+2].CC1=NC=C[N-]1.CC1=NC=C[N-]1 MFLKDEMTKSVIBK-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000001354 calcination Methods 0.000 claims abstract description 18
- 239000007787 solid Substances 0.000 claims abstract description 14
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 claims abstract description 13
- 239000002105 nanoparticle Substances 0.000 claims abstract description 10
- 239000002245 particle Substances 0.000 claims abstract description 9
- 238000004729 solvothermal method Methods 0.000 claims abstract description 8
- 239000002244 precipitate Substances 0.000 claims abstract description 7
- CLRRAZXGIQEOKG-UHFFFAOYSA-L [Cl-].[Mn+2].O.O.O.O.C(C)O.[Cl-] Chemical compound [Cl-].[Mn+2].O.O.O.O.C(C)O.[Cl-] CLRRAZXGIQEOKG-UHFFFAOYSA-L 0.000 claims abstract description 3
- 238000009388 chemical precipitation Methods 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 50
- 239000007864 aqueous solution Substances 0.000 claims description 12
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 11
- CNFDGXZLMLFIJV-UHFFFAOYSA-L manganese(II) chloride tetrahydrate Chemical compound O.O.O.O.[Cl-].[Cl-].[Mn+2] CNFDGXZLMLFIJV-UHFFFAOYSA-L 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 6
- 229910021641 deionized water Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000011592 zinc chloride Substances 0.000 claims description 6
- 235000005074 zinc chloride Nutrition 0.000 claims description 6
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 claims description 2
- 238000003837 high-temperature calcination Methods 0.000 claims description 2
- 229920000909 polytetrahydrofuran Polymers 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000001035 drying Methods 0.000 abstract description 4
- 235000019441 ethanol Nutrition 0.000 abstract 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 abstract 1
- 238000000227 grinding Methods 0.000 abstract 1
- 238000002156 mixing Methods 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000003463 adsorbent Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000012467 final product Substances 0.000 description 5
- 229910001437 manganese ion Inorganic materials 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000002073 nanorod Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- -1 zeolite imidazolium salt Chemical class 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 240000002853 Nelumbo nucifera Species 0.000 description 2
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 2
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000012621 metal-organic framework Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003777 experimental drug Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Complex oxides containing manganese and at least one other metal element
- C01G45/1207—Permanganates ([MnO4)-] or manganates ([MnO4)2-]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Inorganic Chemistry (AREA)
Abstract
Description
技术领域Technical field
本发明涉及纳米材料生产技术领域,特别涉及一种锰酸锌纳米球材料的制备方法。The invention relates to the technical field of nanomaterial production, and in particular to a preparation method of zinc manganate nanosphere material.
背景技术Background technique
组成ZnMn2O4这一物质的元素在地球上储量丰富,环境友好,被认为是具有潜力应用在气敏传感器敏感材料、锂离子电池电极材料以及光催化材料等领域的材料之一。同样的,对ZnMn2O4材料的形貌设计和纳米化处理就显得尤为重要。The elements that make up ZnMn 2 O 4 are abundant on the earth and are environmentally friendly. It is considered to be one of the materials with potential applications in fields such as gas sensor sensitive materials, lithium-ion battery electrode materials, and photocatalytic materials. Similarly, the morphology design and nanotechnology treatment of ZnMn 2 O 4 materials are particularly important.
中国专利CN 106848289 B公开了一种类藕片状尖晶石型ZnMn2O4粉体的制备方法,通过微波辐照使反应溶液快速达到180℃左右的反应温度,反应3h左右得到特定形貌的前驱产物,前驱产物通过600℃左右高温煅烧即制得类藕片状尖晶石型ZnMn2O4粉体。该方法不仅能让ZnMn2O4粉体分散均匀,而且制备的ZnMn2O4粉体拥有独特的类藕片状结构,具有较大的比表面积及片状结构。但是该方法需要使用昂贵的微波辐照反应设备,且制备的纳米材料形貌单一,使用的反应溶剂对人体有害。Chinese patent CN 106848289 B discloses a method for preparing spinel-like ZnMn 2 O 4 powder. The reaction solution is quickly reached a reaction temperature of about 180°C through microwave irradiation, and the reaction takes about 3 hours to obtain a specific morphology. The precursor product is calcined at a high temperature of about 600°C to obtain lotus root-like spinel ZnMn 2 O 4 powder. This method not only allows the ZnMn 2 O 4 powder to be dispersed evenly, but also the prepared ZnMn 2 O 4 powder has a unique lotus root-like flake structure, a large specific surface area and a flaky structure. However, this method requires the use of expensive microwave irradiation reaction equipment, the prepared nanomaterials have a single morphology, and the reaction solvent used is harmful to the human body.
中国专利CN 102660770 A公开了αMnO2纳米棒模板法制备ZnMn2O4纳米棒的方法,使用αMnO2纳米棒为模板,加入锌盐溶液和碱性溶液后经过反应制得αMnO2/Zn(OH)2前驱体,最后通过锻烧得到ZnMn2O4纳米棒材料。该方法是典型的硬模板制备方法,合成样品形貌良好,结构有序性高。但是该方法操作流程繁琐,水热反应所需时间较长,整体效率低且制备过程需要使用HCI和NaOH溶液,产生的酸性和碱性废液,处理起来危险程度高。Chinese patent CN 102660770 A discloses a method for preparing ZnMn 2 O 4 nanorods by αMnO 2 nanorod template method. αMnO 2 nanorods are used as templates, zinc salt solution and alkaline solution are added and then reacted to prepare αMnO 2 /Zn(OH ) 2 precursor, and finally the ZnMn 2 O 4 nanorod material is obtained by calcining. This method is a typical hard template preparation method, and the synthesized sample has good morphology and high structural order. However, the operation process of this method is cumbersome, the hydrothermal reaction requires a long time, the overall efficiency is low, and the preparation process requires the use of HCI and NaOH solutions, resulting in acidic and alkaline waste liquids that are highly dangerous to handle.
发明内容Contents of the invention
本发明的目的在于提供一种锰酸锌纳米球材料的制备方法,简单易行,耗时短,成本低。The object of the present invention is to provide a preparation method of zinc manganate nanosphere material, which is simple, easy to implement, short in time consumption and low in cost.
本发明解决其技术问题所采用的技术方案是:The technical solutions adopted by the present invention to solve the technical problems are:
一种锰酸锌纳米球材料的制备方法,包括以下步骤:A preparation method of zinc manganate nanosphere material, including the following steps:
(1)室温下采用化学沉淀法制备含有实心菱形十二面体ZIF-8纳米颗粒的溶液,离心分离沉淀,无水乙醇洗涤,干燥后得实心菱形十二面体ZIF-8纳米颗粒;(1) Use a chemical precipitation method at room temperature to prepare a solution containing solid rhombic dodecahedral ZIF-8 nanoparticles, centrifuge the precipitate, wash with absolute ethanol, and dry to obtain solid rhombic dodecahedral ZIF-8 nanoparticles;
(2)将实心菱形十二面体ZIF-8乙醇溶液与四水合氯化锰乙醇溶液混合,进行溶剂热反应,得到含有ZnMn2O4纳米球的溶液,离心分离沉淀,无水乙醇洗涤,干燥后得到ZnMn2O4纳米球颗粒;(2) Mix the solid rhombohedral dodecahedral ZIF-8 ethanol solution and the manganese chloride tetrahydrate ethanol solution to perform a solvothermal reaction to obtain a solution containing ZnMn 2 O 4 nanospheres, centrifuge and precipitate, wash with absolute ethanol, and dry. Finally, ZnMn 2 O 4 nanosphere particles are obtained;
(3)将获得的ZnMn2O4纳米球颗粒研磨后高温煅烧,获得结晶度良好的锰酸锌纳米球材料。(3) Grind the obtained ZnMn 2 O 4 nanosphere particles and calcine them at high temperature to obtain zinc manganate nanosphere materials with good crystallinity.
本发明创新点是利用ZIFs材料的吸附特性来制备锰酸锌纳米球材料,ZIFs材料因其具有较大的比表面积和优良的孔结构,被用来作为废液吸附剂的研究越来越多,但还没有用来作为金属离子吸附剂合成具有规则形貌特定异金属氧化物的研究。本发明ZIF-8既能够作为吸附剂材料吸附溶液中的重金属锰离子,ZIF-8还可以作为锌源与四水合氯化锰反应形成ZnMn2O4纳米球颗粒,最后经过高温退火制备出结晶度良好的锰酸锌纳米球材料。The innovative point of this invention is to use the adsorption characteristics of ZIFs materials to prepare zinc manganate nanosphere materials. ZIFs materials are increasingly used as waste liquid adsorbents because of their large specific surface area and excellent pore structure. , but there has been no research on using it as a metal ion adsorbent to synthesize specific heterometal oxides with regular morphology. ZIF-8 of the present invention can not only be used as an adsorbent material to absorb heavy metal manganese ions in a solution, but also can be used as a zinc source to react with manganese chloride tetrahydrate to form ZnMn 2 O 4 nanosphere particles, and finally prepare crystals through high-temperature annealing Zinc manganate nanosphere material with good strength.
本发明产物的合成过程中,在极短时间内通过超声震荡使四价锰离子吸附在ZIF-8材料表面,通过溶剂热反应加快锰离子的扩散速率,使锰离子大部分吸附在ZIFs材料的内部,以及在较高温度80-85℃下促使锰酸锌颗粒的形核与长大,最终得到锰酸锌纳米球结构。During the synthesis process of the product of the present invention, tetravalent manganese ions are adsorbed on the surface of the ZIF-8 material through ultrasonic vibration in a very short time, and the diffusion rate of manganese ions is accelerated through solvothermal reaction, so that most of the manganese ions are adsorbed on the surface of the ZIFs material. Inside, and at a higher temperature of 80-85°C, the nucleation and growth of zinc manganate particles are promoted, and the zinc manganate nanosphere structure is finally obtained.
作为优选,步骤(1)的具体过程如下:As a preference, the specific process of step (1) is as follows:
室温下,分别配制含有2-甲基咪唑的水溶液A以及含有氯化锌的水溶液B;将水溶液B快速倒入水溶液A中,搅拌0.5-1h。At room temperature, separately prepare aqueous solution A containing 2-methylimidazole and aqueous solution B containing zinc chloride; quickly pour aqueous solution B into aqueous solution A and stir for 0.5-1h.
作为优选,水溶液A中,2-甲基咪唑:去离子水=8-10g∶150mL。Preferably, in aqueous solution A, 2-methylimidazole:deionized water=8-10g:150mL.
作为优选,水溶液B中,氯化锌:去离子水=200-300mg∶30mL。Preferably, in aqueous solution B, zinc chloride: deionized water = 200-300 mg: 30 mL.
作为优选,步骤(2)的具体过程如下:As a preference, the specific process of step (2) is as follows:
室温下,分别配制含有实心菱形十二面体ZIF-8纳米颗粒的乙醇溶液C以及含有四水合氯化锰的乙醇溶液D;然后将溶液C倒入溶液D中,超声震荡,最后倒入聚四氟乙烯内衬中并置于反应釜中进行溶剂热反应。At room temperature, prepare ethanol solution C containing solid rhombic dodecahedral ZIF-8 nanoparticles and ethanol solution D containing manganese chloride tetrahydrate respectively; then pour solution C into solution D, vibrate with ultrasonic, and finally pour in polytetrahydrofuran. Lined with vinyl fluoride and placed in a reactor for solvothermal reaction.
作为优选,溶液C中,实心菱形十二面体ZIF-8纳米颗粒与无水乙醇的质量体积比为100mg∶30-40mL。Preferably, in solution C, the mass-to-volume ratio of solid rhombic dodecahedral ZIF-8 nanoparticles to absolute ethanol is 100 mg:30-40 mL.
作为优选,溶液D中,四水合氯化锰与无水乙醇的质量体积比为100mg∶30-40mL。Preferably, in solution D, the mass-volume ratio of manganese chloride tetrahydrate to absolute ethanol is 100 mg:30-40 mL.
作为优选,溶剂热反应温度为80-85℃,反应时间为1.5-5h。Preferably, the solvothermal reaction temperature is 80-85°C and the reaction time is 1.5-5h.
作为优选,步骤(3)中,高温煅烧的温度为450-600℃,升温速率为2-5℃/min,煅烧1.5-5h。Preferably, in step (3), the temperature of high-temperature calcination is 450-600°C, the temperature rise rate is 2-5°C/min, and the calcination is 1.5-5h.
本发明的有益效果是:The beneficial effects of the present invention are:
1、作为金属有机骨架结构的一个分支,沸石咪唑盐骨架结构(ZIFs)由于其具有较高的热稳定性和化学稳定性,在构建空间形貌方面与其他MOFs相比具有明显的优势;1. As a branch of metal-organic framework structures, zeolite imidazolium salt framework structures (ZIFs) have obvious advantages over other MOFs in building spatial morphology due to their high thermal and chemical stability;
2、通过室温方法合成的ZIF-8尺寸均一,不易团聚且最终在较高温度下合成的ZnMn2O4纳米球材料具有规整的形貌;2. ZIF-8 synthesized by room temperature method has uniform size and is not easy to agglomerate, and the ZnMn 2 O 4 nanosphere material finally synthesized at higher temperature has regular morphology;
3、合成的ZnMn2O4纳米球材料具有多孔结构和较大的比表面积;3. The synthesized ZnMn 2 O 4 nanosphere material has a porous structure and a large specific surface area;
4、操作简单,无毒无公害,采用的均为普通化学实验药品,价格低廉,有利于工业化推广;4. It is simple to operate, non-toxic and pollution-free, and uses common chemical experimental drugs at low prices, which is conducive to industrial promotion;
5、制备时间较短,无需使用酸碱溶液,废液易处理,节约能源资源。5. The preparation time is short, there is no need to use acid and alkali solutions, the waste liquid is easy to process, and energy resources are saved.
附图说明Description of the drawings
图1是ZnMn2O4纳米球的合成示意图。Figure 1 is a schematic diagram of the synthesis of ZnMn 2 O 4 nanospheres.
图2是实施例1-4制备的ZnMn2O4纳米球的X射线衍射图。Figure 2 is an X-ray diffraction pattern of ZnMn 2 O 4 nanospheres prepared in Examples 1-4.
图3是实施例1-4制备的前体实心菱形十二面体ZIF-8的扫描电子显微镜(SEM)图片。Figure 3 is a scanning electron microscope (SEM) picture of the precursor solid rhombic dodecahedron ZIF-8 prepared in Examples 1-4.
图4是实施例1制备的最终产物ZnMn2O4的扫描电子显微镜(SEM)图片。Figure 4 is a scanning electron microscope (SEM) picture of the final product ZnMn 2 O 4 prepared in Example 1.
图5是实施例2制备的最终产物ZnMn2O4的扫描电子显微镜(SEM)图片。Figure 5 is a scanning electron microscope (SEM) picture of the final product ZnMn 2 O 4 prepared in Example 2.
图6是实施例3制备的最终产物ZnMn2O4的扫描电子显微镜(SEM)图片。Figure 6 is a scanning electron microscope (SEM) picture of the final product ZnMn 2 O 4 prepared in Example 3.
图7是实施例4制备的最终产物ZnMn2O4的扫描电子显微镜(SEM)图片。Figure 7 is a scanning electron microscope (SEM) picture of the final product ZnMn 2 O 4 prepared in Example 4.
图8是实施例3制备的最终产物ZnMn2O4的元素分布图谱(EDS)。Figure 8 is the element distribution spectrum (EDS) of the final product ZnMn 2 O 4 prepared in Example 3.
图9是对比例1制备的ZnMn2O4材料的X射线衍射图以及扫描图片。Figure 9 is the X-ray diffraction pattern and scanning picture of the ZnMn 2 O 4 material prepared in Comparative Example 1.
具体实施方式Detailed ways
下面通过具体实施例,对本发明的技术方案作进一步的具体说明。The technical solution of the present invention will be further described in detail below through specific examples.
本发明中,若非特指,所采用的原料和设备等均可从市场购得或是本领域常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。In the present invention, unless otherwise specified, the raw materials and equipment used can be purchased from the market or are commonly used in the field. The methods in the following examples are all conventional methods in the art unless otherwise specified.
实施例1:Example 1:
一种锰酸锌纳米球材料的制备方法,步骤如下:A preparation method of zinc manganate nanosphere material, the steps are as follows:
一、ZIF-8的合成:1. Synthesis of ZIF-8:
将272.6mg氯化锌溶于30mL去离子水中形成溶液A,快速搅拌10min,形成富含泡沫的透明乳状溶液;将9.08g 2甲基咪唑溶于150mL去离子水中形成溶液B,搅拌10min,使溶液搅拌均匀,呈无色透明状态;将溶液A快速溶于溶液B中,形成溶液C,室温搅拌1h,使溶液搅拌均匀,呈乳白色不透明状态;接下来对上述制得的溶液C进行离心操作,8000rpm离心4次,一次7min,无水乙醇洗涤沉淀,60℃干燥过夜得ZIF-8材料。扫描图如图3所示。Dissolve 272.6mg zinc chloride in 30mL deionized water to form solution A, stir quickly for 10 minutes to form a transparent milky solution rich in foam; dissolve 9.08g 2 methylimidazole in 150mL deionized water to form solution B, stir for 10 minutes, Stir the solution evenly and assume a colorless and transparent state; quickly dissolve solution A in solution B to form solution C, stir at room temperature for 1 hour until the solution is stirred evenly and assume a milky white and opaque state; then centrifuge the solution C prepared above. , centrifuge 4 times at 8000 rpm, 7 min each time, wash the precipitate with absolute ethanol, and dry at 60°C overnight to obtain ZIF-8 material. The scan is shown in Figure 3.
二、ZnMn2O4纳米球的合成:2. Synthesis of ZnMn 2 O 4 nanospheres:
(1)、首先,称取100mg干燥完备的ZIF-8材料放在含有30mL无水乙醇的烧杯中,超声2min(超声功率70W)使溶液较为均匀,继续搅拌5min得溶液C。其次,称取100mg四水合氯化锰放在含有30mL的无水乙醇中,搅拌5min使溶液均匀得溶液D。最后,将溶液C倒入溶液D中,超声1min(超声功率70W),搅拌2min;将搅拌好的溶液倒入80mL的聚四氟乙烯内衬中置于反应釜中,80℃保温,反应4h。反应完成后,将溶液进行离心清洗,无水乙醇洗涤离心4次,然后60℃烘干后收集,获得ZnMn2O4纳米球。(1) First, weigh 100 mg of completely dry ZIF-8 material and place it in a beaker containing 30 mL of absolute ethanol. Ultrasonic for 2 minutes (ultrasonic power 70W) to make the solution more uniform. Continue stirring for 5 minutes to obtain solution C. Secondly, weigh 100 mg of manganese chloride tetrahydrate and place it in 30 mL of absolute ethanol, and stir for 5 minutes to make the solution uniform to obtain solution D. Finally, pour solution C into solution D, ultrasonic for 1 minute (ultrasonic power 70W), and stir for 2 minutes; pour the stirred solution into an 80 mL polytetrafluoroethylene liner and place it in a reaction kettle, insulate it at 80°C, and react for 4 hours. . After the reaction is completed, the solution is centrifuged, washed and centrifuged 4 times with absolute ethanol, and then dried at 60°C and collected to obtain ZnMn 2 O 4 nanospheres.
(2)、为获得高结晶度的ZnMn2O4纳米球,我们将(1)中离心干燥获得的ZnMn2O4纳米球材料置于马弗炉中煅烧,设定保温温度为500℃,升温速率为2℃/min,随炉冷却至室温,煅烧3h后,即可得到结晶度高的ZnMn2O4纳米球材料。ZnMn2O4纳米球材料的合成流程图如图1所示。实施例1合成的ZnMn2O4纳米球材料扫描图如图4所示,X射线衍射图谱见图2(c)。(2) In order to obtain ZnMn 2 O 4 nanospheres with high crystallinity, we placed the ZnMn 2 O 4 nanosphere material obtained by centrifugal drying in (1) for calcination in a muffle furnace, and set the holding temperature to 500°C. The heating rate is 2°C/min, and the furnace is cooled to room temperature. After calcination for 3 hours, ZnMn 2 O 4 nanosphere material with high crystallinity can be obtained. The synthesis flow chart of ZnMn 2 O 4 nanosphere materials is shown in Figure 1. The scanning pattern of the ZnMn 2 O 4 nanosphere material synthesized in Example 1 is shown in Figure 4, and the X-ray diffraction pattern is shown in Figure 2(c).
实施例2:Example 2:
本实施例与实施例1不同的是:没有进行步骤二中马弗炉煅烧,其它与实施例1相同。扫描图如图5所示,X射线衍射图谱见图2(a)。The difference between this embodiment and Embodiment 1 is that the muffle furnace calcination in step 2 is not performed, and the rest is the same as Embodiment 1. The scanning image is shown in Figure 5, and the X-ray diffraction pattern is shown in Figure 2(a).
实施例3:Example 3:
本实施例与实施例1不同的是:步骤二中马弗炉煅烧设定的保温温度为450℃,煅烧时间为90min,其它与实施例1相同。扫描图如图6所示,X射线衍射图谱见图2(b),元素分布图(EDS)如图8所示。The difference between this embodiment and Embodiment 1 is that the heat preservation temperature set in the muffle furnace calcination in step 2 is 450°C, and the calcination time is 90 minutes. The rest is the same as Embodiment 1. The scanning pattern is shown in Figure 6, the X-ray diffraction pattern is shown in Figure 2(b), and the element distribution diagram (EDS) is shown in Figure 8.
实施例4:Example 4:
本实施例与实施例1不同的是:步骤二中马弗炉煅烧设定的保温温度为600℃,煅烧时间为5h,其它与实施例1相同。扫描图如图7所示,X射线衍射图谱见图2(d)。The difference between this embodiment and Embodiment 1 is that the heat preservation temperature set in the muffle furnace calcination in step 2 is 600°C, and the calcination time is 5 hours. The other steps are the same as in Embodiment 1. The scanning image is shown in Figure 7, and the X-ray diffraction pattern is shown in Figure 2(d).
对比例1:Comparative example 1:
分别称取100mg的氯化锌和100mg四水合氯化锰放在含有60mL的无水乙醇中,搅拌超声5min使溶液均匀。最后,将上述溶液混合搅拌5min;将搅拌好的溶液倒入80mL的聚四氟乙烯内衬中置于反应釜中,80℃保温,反应4h。反应完成后,将溶液进行离心清洗,无水乙醇洗涤离心4次,然后60℃烘干后收集,获得ZnMn2O4材料。Weigh 100 mg of zinc chloride and 100 mg of manganese chloride tetrahydrate respectively in 60 mL of absolute ethanol, stir and ultrasonic for 5 minutes to make the solution uniform. Finally, mix and stir the above solution for 5 minutes; pour the stirred solution into an 80 mL polytetrafluoroethylene liner and place it in a reaction kettle, insulate at 80°C, and react for 4 hours. After the reaction is completed, the solution is centrifuged and washed with absolute ethanol for 4 times, then dried at 60°C and collected to obtain ZnMn 2 O 4 material.
为获得高结晶度的ZnMn2O4纳米球,我们将离心干燥获得的ZnMn2O4材料置于马弗炉中煅烧,设定保温温度为500℃,升温速率为2℃/min,随炉冷却至室温,煅烧3h后,即可得到结晶度高的ZnMn2O4材料。In order to obtain ZnMn 2 O 4 nanospheres with high crystallinity, we put the ZnMn 2 O 4 material obtained by centrifugal drying into a muffle furnace and calcined it. The holding temperature was set to 500°C and the heating rate was 2°C/min. After cooling to room temperature and calcining for 3 hours, ZnMn 2 O 4 material with high crystallinity can be obtained.
X射线衍射图谱和扫描图如图9所示。The X-ray diffraction pattern and scanning pattern are shown in Figure 9.
接下来对发明制得的ZnMn2O4纳米球材料形貌进行分析表征:Next, the morphology of the ZnMn 2 O 4 nanosphere material prepared by the invention is analyzed and characterized:
从图2中实施例1、2、3、4中制备的ZnMn2O4纳米球材料的X射线衍射图片,未煅烧的材料以及在不同煅烧温度下制备的材料的 XRD 衍射峰都和四方晶系(JCPDS NO.24-1133)的ZnMn2O4的峰位一一对应,并没有出现其他物质的杂质峰,衍射峰在2θ= 29.3°、32.9°、36.4°、59.0°、60.8°分别对应ZnMn2O4的(112)、(103)、(211)、(321)、(224)晶面特征峰。说明获得的 ZnMn2O4 纳米球结构没有杂质,纯度很高。另外可以看到,随着处理温度的升高,材料的峰强逐渐升高,峰形越来越尖锐,也就是说,随着温度的升高,晶粒随之生长, 材料的有序性和结晶性不断增强。表明温度是影响材料性质的重要因素。From the X-ray diffraction pictures of ZnMn 2 O 4 nanosphere materials prepared in Examples 1, 2, 3, and 4 in Figure 2, the XRD diffraction peaks of uncalcined materials and materials prepared at different calcination temperatures are all consistent with tetragonal crystals. The peak positions of ZnMn 2 O 4 of the system (JCPDS NO.24-1133) correspond one to one, and there are no impurity peaks of other substances. The diffraction peaks are at 2θ = 29.3°, 32.9°, 36.4°, 59.0°, and 60.8° respectively. Corresponding to the (112), (103), (211), (321), (224) crystal plane characteristic peaks of ZnMn 2 O 4 . It shows that the ZnMn 2 O 4 nanosphere structure obtained has no impurities and is of high purity. In addition, it can be seen that as the processing temperature increases, the peak intensity of the material gradually increases and the peak shape becomes sharper. That is to say, as the temperature increases, the grains grow and the order of the material increases. and increasing crystallinity. It shows that temperature is an important factor affecting material properties.
图3是前体菱形十二面体ZIF-8的扫描电镜图片,从图片中可以明显的看出合成的ZIF-8是区别于球形的菱形十二面体结构,表面光滑,分散性好,粒径均匀,尺寸约为400~500纳米。Figure 3 is a scanning electron microscope picture of the precursor rhombohedral dodecahedron ZIF-8. From the picture, it can be clearly seen that the synthesized ZIF-8 has a rhombic dodecahedron structure that is different from the sphere. It has a smooth surface, good dispersion, and a small particle size. Uniform, with a size of about 400~500 nanometers.
图5是实施例2的扫描电镜图片。从图片中可以看出规则的球形形貌,且表面光滑,尺寸在0.9~1.5微米之间,分散性较好。Figure 5 is a scanning electron microscope picture of Example 2. It can be seen from the picture that it has a regular spherical shape with a smooth surface, a size between 0.9 and 1.5 microns, and good dispersion.
从图4、6、7中可以看出,煅烧温度在本发明中起着至关重要的作用,随着煅烧温度的升高,ZnMn2O4纳米球表面的晶粒逐渐长大,材料的有序性和结晶性不断增强,这里得出的结论与上述X射线衍射得到的结果一致。从图片中我们也可以看出随着煅烧温度与煅烧时间的增大,纳米球的尺寸也在逐渐变小,我们推测这是由于煅烧过程中C、H等元素充分的燃烧,导致失重比例越来越大,从而引起ZnMn2O4纳米球尺寸的收缩。It can be seen from Figures 4, 6 and 7 that the calcination temperature plays a vital role in the present invention. As the calcination temperature increases, the crystal grains on the surface of the ZnMn 2 O 4 nanospheres gradually grow, and the material's The ordering and crystallinity are continuously enhanced, and the conclusions drawn here are consistent with the results obtained by X-ray diffraction mentioned above. We can also see from the picture that as the calcination temperature and calcination time increase, the size of the nanospheres gradually becomes smaller. We speculate that this is due to the full combustion of C, H and other elements during the calcination process, resulting in a larger weight loss ratio. becomes larger, causing the size of ZnMn 2 O 4 nanospheres to shrink.
从图8扫描电子显微镜面扫元素分布可以看出Mn、O、Zn均匀的元素分布,更为直观清晰的表明合成的ZnMn2O4纳米球结构各个部分组分分布均匀。From the scanning electron microscope surface scanning element distribution in Figure 8, we can see the uniform element distribution of Mn, O, and Zn, which more intuitively and clearly shows that the components of each part of the synthesized ZnMn 2 O 4 nanosphere structure are evenly distributed.
通过对比例1,我们可以看出,没有ZIFs材料充当吸附剂的存在,在溶液中只加入锌离子与锰离子进行水热操作,制备的产物是ZnMn2O4材料,但是其没有特定的规则形貌,进一步印证了ZIFs材料充当吸附剂制备异金属氧化物的独特优势。From Comparative Example 1, we can see that there is no ZIFs material that acts as an adsorbent. Only zinc ions and manganese ions are added to the solution for hydrothermal operation. The prepared product is ZnMn 2 O 4 material, but there are no specific rules for it. The morphology further confirms the unique advantages of ZIFs materials acting as adsorbents to prepare heterometal oxides.
以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。The above-described embodiment is only a preferred solution of the present invention and does not limit the present invention in any form. There are other variations and modifications without exceeding the technical solution described in the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111525334.7A CN114212829B (en) | 2021-12-14 | 2021-12-14 | A kind of preparation method of zinc manganate nanosphere material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111525334.7A CN114212829B (en) | 2021-12-14 | 2021-12-14 | A kind of preparation method of zinc manganate nanosphere material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114212829A CN114212829A (en) | 2022-03-22 |
CN114212829B true CN114212829B (en) | 2023-09-15 |
Family
ID=80701686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111525334.7A Active CN114212829B (en) | 2021-12-14 | 2021-12-14 | A kind of preparation method of zinc manganate nanosphere material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114212829B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118341984B (en) * | 2024-06-12 | 2024-10-15 | 江苏大学 | Preparation method of manganese single atom nanocatalyst |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112694131A (en) * | 2020-12-28 | 2021-04-23 | 惠州亿纬锂能股份有限公司 | Zinc manganate negative electrode material, method for preparing same by adopting coprecipitation method and application of zinc manganate negative electrode material |
CN113697844A (en) * | 2021-08-26 | 2021-11-26 | 杭州恒毅智创科技有限公司 | Fe-doped ZnO nanoparticle with dodecahedron structure |
-
2021
- 2021-12-14 CN CN202111525334.7A patent/CN114212829B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112694131A (en) * | 2020-12-28 | 2021-04-23 | 惠州亿纬锂能股份有限公司 | Zinc manganate negative electrode material, method for preparing same by adopting coprecipitation method and application of zinc manganate negative electrode material |
CN113697844A (en) * | 2021-08-26 | 2021-11-26 | 杭州恒毅智创科技有限公司 | Fe-doped ZnO nanoparticle with dodecahedron structure |
Also Published As
Publication number | Publication date |
---|---|
CN114212829A (en) | 2022-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102030352B (en) | A method for preparing nanomaterials | |
CN108726579B (en) | Cobalt titanate porous material with core-shell structure and preparation method thereof | |
CN101973590A (en) | Preparation method for small-size mesoporous metal oxide | |
Pal et al. | Scalable synthesis of mesoporous titania microspheres via spray-drying method | |
CN105060351B (en) | Flower-like cobaltosic oxide material composed of nanoparticles and preparation method thereof | |
CN102826593A (en) | Preparation method for indium oxide nanometer material | |
CN103183374A (en) | Method for preparing monodisperse indium oxide nanometer porous microsphere | |
CN104310466B (en) | A kind of hollow titanium dioxide microballoon based on gel ball presoma and preparation method thereof | |
CN104891567A (en) | Preparation method of tubular TiO2/reduced graphene oxide composite | |
CN103928670B (en) | A kind of preparation method of lithium secondary battery cathode material LiMnO2 | |
CN114212829B (en) | A kind of preparation method of zinc manganate nanosphere material | |
CN101508462A (en) | Process for producing flower shaped indium hydroxide powder having high specific surface area | |
CN115501897B (en) | Nanocomposite, preparation method and application thereof in hydrogen production by visible light catalysis | |
CN106882842A (en) | A kind of mesoporous petal-shaped ZnCo2O4The preparation method of meter Sized Materials | |
CN105460964B (en) | Method for preparing nano-hydroxy aluminum oxide powder | |
CN108996557A (en) | A kind of hollow ball structure nickel oxide/copper oxide composite nano materials and preparation method thereof | |
CN100579911C (en) | A kind of method for synthesizing titanium dioxide nanopowder at low temperature | |
CN104556217B (en) | A method for preparing divalent metal titanate microspheres | |
CN108166051A (en) | A kind of morphology controllable potassium hexatitanate powder crystal material and its low energy consumption preparation method | |
CN108083315A (en) | A kind of preparation method of the spherical thorium anhydride nano material of sheet surface structure and thus obtained spherical thorium anhydride particle | |
CN109279656B (en) | Micro-nano mesoporous spherical Mn2O3Preparation method of (1) | |
CN103466721B (en) | Cobalt molybdate hollow ball powder body material preparation method and cobalt molybdate hollow ball powder body material | |
CN111701605A (en) | A method for preparing magnetic iodine pentabismuth heptaoxide composite photocatalytic material | |
CN105967228A (en) | Preparation method of graded porous barium titanate submicron-level particle sphere | |
CN112919523B (en) | Preparation method of hexagonal flaky rare earth cerium oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |