CN114147221B - A preparation method of Ag@CoMoO4 oxygen evolution electrocatalyst - Google Patents
A preparation method of Ag@CoMoO4 oxygen evolution electrocatalyst Download PDFInfo
- Publication number
- CN114147221B CN114147221B CN202111460990.3A CN202111460990A CN114147221B CN 114147221 B CN114147221 B CN 114147221B CN 202111460990 A CN202111460990 A CN 202111460990A CN 114147221 B CN114147221 B CN 114147221B
- Authority
- CN
- China
- Prior art keywords
- comoo
- methanol
- solution
- comoo4
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 239000001301 oxygen Substances 0.000 title claims abstract description 23
- 229910018864 CoMoO4 Inorganic materials 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000010411 electrocatalyst Substances 0.000 title claims abstract description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 90
- 239000003054 catalyst Substances 0.000 claims abstract description 46
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000002042 Silver nanowire Substances 0.000 claims abstract description 35
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 17
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 16
- 230000003197 catalytic effect Effects 0.000 claims abstract description 16
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims abstract description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 10
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000003756 stirring Methods 0.000 claims abstract description 9
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910001961 silver nitrate Inorganic materials 0.000 claims abstract description 8
- 239000011780 sodium chloride Substances 0.000 claims abstract description 8
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims abstract description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims abstract description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims abstract description 6
- 239000011684 sodium molybdate Substances 0.000 claims abstract description 6
- 235000015393 sodium molybdate Nutrition 0.000 claims abstract description 6
- -1 sodium molybdate nonahydrate Chemical class 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 10
- 238000012360 testing method Methods 0.000 claims description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 8
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 claims description 6
- 238000005868 electrolysis reaction Methods 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 6
- 229960004063 propylene glycol Drugs 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000003792 electrolyte Substances 0.000 claims description 4
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 3
- 238000005119 centrifugation Methods 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 19
- 239000000463 material Substances 0.000 abstract description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 7
- 239000001257 hydrogen Substances 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000001035 drying Methods 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 4
- 238000001075 voltammogram Methods 0.000 description 4
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- KYYSIVCCYWZZLR-UHFFFAOYSA-N cobalt(2+);dioxido(dioxo)molybdenum Chemical compound [Co+2].[O-][Mo]([O-])(=O)=O KYYSIVCCYWZZLR-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- JBFYUZGYRGXSFL-UHFFFAOYSA-N imidazolide Chemical compound C1=C[N-]C=N1 JBFYUZGYRGXSFL-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Catalysts (AREA)
Abstract
本发明涉及电解水催化材料技术领域,具体涉及一种Ag@CoMoO4析氧电催化剂的制备方法;包括以下步骤:(1)将聚乙烯吡咯烷酮与1,2‑丙二醇混合,一定温度下搅拌,之后加入一定浓度的氯化钠溶液和硝酸银溶液,制得银纳米线溶液;(2)将上述银纳米线采用丙酮纯化并洗涤数次备用;(3)称取2‑甲基咪唑于不同量的银纳米线和甲醇的混液中,加入六水合硝酸钴的甲醇溶液,以上混合液溶于乙醇进行常温搅拌;(4)步骤(3)中得到的产物中加入九水合钼酸钠,进行水热反应;待自然冷却至室温后,离心收集,乙醇洗涤数次,烘干后得到催化剂;本发明生产成本低,易实现规模化,能够在碱性条件下长时间保持自身的微观结构和良好的催化活性,在电催化产氢方面具有潜在的工业应用价值。
The invention relates to the technical field of electrolytic water catalytic materials, and specifically relates to a preparation method of Ag@CoMoO4 oxygen evolution electrocatalyst; it includes the following steps: (1) Mix polyvinylpyrrolidone and 1,2-propylene glycol, stir at a certain temperature, and then Add a certain concentration of sodium chloride solution and silver nitrate solution to prepare a silver nanowire solution; (2) Purify the above silver nanowires with acetone and wash several times for later use; (3) Weigh different amounts of 2-methylimidazole To a mixture of silver nanowires and methanol, add a methanol solution of cobalt nitrate hexahydrate, and dissolve the above mixture in ethanol and stir at room temperature; (4) Add sodium molybdate nonahydrate to the product obtained in step (3), and perform aqueous Thermal reaction; after natural cooling to room temperature, centrifuge collection, washing with ethanol several times, and drying to obtain the catalyst; the invention has low production cost, is easy to achieve scale, and can maintain its own microstructure and good quality for a long time under alkaline conditions. The catalytic activity has potential industrial application value in electrocatalytic hydrogen production.
Description
技术领域Technical field
本发明涉及电解水催化材料技术领域,具体涉及一种Ag@CoMoO4析氧电催化剂的制备方法。The invention relates to the technical field of water electrolysis catalytic materials, and specifically relates to a preparation method of Ag@CoMoO4 oxygen evolution electrocatalyst.
背景技术Background technique
能源危机的日益严重和化石燃料引起的环境污染成为目前人类社会可持续发展的两大阻碍, 可再生能源的开发和储存问题引起了国内外科研工作者的广泛关注。电化学过程可以实现电能与储存在化学键中的化学能的相互转换,从而可以用来解决能源存储与转化过程中所涉及到的以下几个关键难题:第一,电化学的能源转换为带电界面反应,因此电化学电池转化率理论上远高于传统的热效率;第二,电化学体系为能量转换和存储提供了一个高效稳定的平台;第三,电化学体系的整个过程都是环境友好的反应,不会引起环境污染及其它环境问题氢能具有能量转换效率高、能量密度高、二氧化碳零排放、环境相容性好等优点,被认为是替代传统化石燃料的理想能源。基于电化学分解水的原理,利用可再生太阳能或者电能将水驱动分解成氢气和氧气,这被认为是一种高效的和可持续产氢的途径。电解水过程包括两个半反应,即析氧反应(OER)和析氢反应,析氧反应是一个四电子转移过程,催化机理较为复杂,其反应动力学缓慢,所需的过电位较高,是限制水电解效率的关键一环。到目前为止,贵金属催化剂二氧化钌(RuO2)和二氧化铱(IrO2)被认为是高效的OER电催化剂,但由于其储量稀少、价格昂贵,直接制约了其商业化应用。因此,迫切需要开发廉价、高效、耐用的OER电催化剂来替代贵金属催化剂。近年来,以铁、钴、镍、铜、钼和锰为基的过渡金属基纳米材料表现出优异的电化学活性,但由于其催化析氧反应中的耐久性比较差,尤其是在强碱性电解液和高电位等恶劣环境下,因此,开发高效的碱性产氧电催化剂成为现在研究的重中之重。The increasingly serious energy crisis and environmental pollution caused by fossil fuels have become two major obstacles to the sustainable development of human society. The development and storage of renewable energy has attracted widespread attention from domestic and foreign researchers. The electrochemical process can realize the mutual conversion of electrical energy and chemical energy stored in chemical bonds, which can be used to solve the following key problems involved in the energy storage and conversion process: First, electrochemical energy conversion into a charged interface reaction, so the electrochemical cell conversion rate is theoretically much higher than the traditional thermal efficiency; second, the electrochemical system provides an efficient and stable platform for energy conversion and storage; third, the entire process of the electrochemical system is environmentally friendly Reaction, will not cause environmental pollution and other environmental problems. Hydrogen energy has the advantages of high energy conversion efficiency, high energy density, zero carbon dioxide emissions, and good environmental compatibility. It is considered an ideal energy source to replace traditional fossil fuels. Based on the principle of electrochemical water splitting, using renewable solar energy or electrical energy to drive the decomposition of water into hydrogen and oxygen is considered to be an efficient and sustainable way to produce hydrogen. The process of electrolyzing water includes two half-reactions, namely oxygen evolution reaction (OER) and hydrogen evolution reaction. The oxygen evolution reaction is a four-electron transfer process. The catalytic mechanism is relatively complex, the reaction kinetics are slow, and the required overpotential is high. A key link that limits the efficiency of water electrolysis. So far, the precious metal catalysts ruthenium dioxide (RuO2) and iridium dioxide (IrO2) are considered to be efficient OER electrocatalysts, but their scarce reserves and high prices directly restrict their commercial application. Therefore, there is an urgent need to develop cheap, efficient, and durable OER electrocatalysts to replace noble metal catalysts. In recent years, transition metal-based nanomaterials based on iron, cobalt, nickel, copper, molybdenum and manganese have shown excellent electrochemical activity, but their durability in catalytic oxygen evolution reactions is relatively poor, especially in strong alkalis. Therefore, the development of efficient alkaline oxygen-generating electrocatalysts has become a top priority in current research.
发明内容Contents of the invention
本发明克服现有技术的不足,提供一种Ag@CoMoO4析氧电催化剂的制备方法。The present invention overcomes the shortcomings of the existing technology and provides a preparation method of Ag@CoMoO4 oxygen evolution electrocatalyst.
为解决上述技术问题,本发明所采用的技术方案为:一种Ag@CoMoO4析氧电催化剂的制备方法,包括以下步骤:In order to solve the above technical problems, the technical solution adopted by the present invention is: a preparation method of Ag@CoMoO4 oxygen evolution electrocatalyst, which includes the following steps:
(1) 将聚乙烯吡咯烷酮与1, 2-丙二醇混合,一定温度下搅拌,之后加入一定浓度的氯化钠溶液和硝酸银溶液,制得银纳米线溶液;(1) Mix polyvinylpyrrolidone and 1, 2-propylene glycol, stir at a certain temperature, and then add a certain concentration of sodium chloride solution and silver nitrate solution to prepare a silver nanowire solution;
(2) 将上述银纳米线采用丙酮纯化并洗涤数次备用;(2) Purify the above-mentioned silver nanowires with acetone and wash them several times for later use;
(3) 称取2-甲基咪唑于不同量的银纳米线和甲醇的混液中,加入六水合硝酸钴的甲醇溶液,以上混合液溶于乙醇进行常温搅拌;(3) Weigh 2-methylimidazole into a mixture of different amounts of silver nanowires and methanol, add a methanol solution of cobalt nitrate hexahydrate, and dissolve the above mixture in ethanol and stir at room temperature;
(4) 步骤(3)中得到的产物中加入九水合钼酸钠,进行水热反应;待自然冷却至室温后,离心收集,乙醇洗涤数次,烘干后得到Ag@CoMoO4、CoMoO4、Ag5@CoMoO4及Ag20@CoMoO4四种催化剂。(4) Add sodium molybdate nonahydrate to the product obtained in step (3) to perform a hydrothermal reaction; after naturally cooling to room temperature, collect by centrifugation, wash with ethanol several times, and dry to obtain Ag@CoMoO 4 and CoMoO 4 , Ag 5 @CoMoO 4 and Ag 20 @CoMoO 4 four catalysts.
本发明利用ZIF-67(沸石咪唑酯骨架结构材料)的框架结构分离堆积的银纳米线。ZIF-67具有多孔结构,从而提高催化剂的比表面积;银纳米线具有优异的导电性,可以有效地促进界面电子的转移,从而提高催化材料的电流密度。本发明中所设计的Ag@CoMoO4催化材料的制备工艺,充分利用了ZIF-67结构有序、比表面积大和银纳米线导电性优良等优点,制备所得的Ag@CoMoO4催化材料结构均匀、电催化析氧性能优异,而且所采用的均为常规设备,廉价易得、制备工艺简单易行、适合工业化大规模生产。The present invention uses the framework structure of ZIF-67 (zeolite imidazolate framework material) to separate stacked silver nanowires. ZIF-67 has a porous structure, thereby increasing the specific surface area of the catalyst; silver nanowires have excellent conductivity, which can effectively promote the transfer of interface electrons, thereby increasing the current density of the catalytic material. The preparation process of the Ag@CoMoO 4 catalytic material designed in the present invention makes full use of the advantages of ZIF-67's ordered structure, large specific surface area and excellent conductivity of silver nanowires. The prepared Ag@CoMoO 4 catalytic material has a uniform structure, The electrocatalytic oxygen evolution performance is excellent, and all conventional equipment is used, which is cheap and easy to obtain, the preparation process is simple and easy, and is suitable for industrial large-scale production.
本发明操作简单,生产成本低,易实现规模化,能够在碱性条件下长时间保持自身的微观结构和良好的催化活性,在电催化产氢方面具有潜在的工业应用价值。The invention is simple to operate, has low production cost, is easy to achieve scale, can maintain its own microstructure and good catalytic activity for a long time under alkaline conditions, and has potential industrial application value in electrocatalytic hydrogen production.
进一步的,步骤(1)中所述氯化钠溶液的浓度为10 mM,硝酸银溶液的浓度为0.15M。Further, the concentration of the sodium chloride solution in step (1) is 10 mM, and the concentration of the silver nitrate solution is 0.15M.
进一步的,步骤(1)中聚乙烯吡咯烷酮、1, 2-丙二醇、氯化钠溶液及硝酸银溶液的质量体积比为:75 mg:5 mL:50 μL:2 mL。Further, the mass volume ratio of polyvinylpyrrolidone, 1, 2-propylene glycol, sodium chloride solution and silver nitrate solution in step (1) is: 75 mg: 5 mL: 50 μL: 2 mL.
进一步的,步骤(3)中2-甲基咪唑、银纳米线和甲醇的混合液、六水合硝酸钴的质量体积比为0.3284 g:20mL: 0.291 g;六水合硝酸钴的甲醇溶液中六水合硝酸钴与甲醇的质量体积比为0.291 g:20mL。Further, in step (3), the mass and volume ratio of the mixture of 2-methylimidazole, silver nanowires and methanol and cobalt nitrate hexahydrate is 0.3284 g: 20 mL: 0.291 g; the cobalt nitrate hexahydrate in the methanol solution is hydrated The mass-volume ratio of cobalt nitrate to methanol is 0.291 g: 20 mL.
进一步的,所述银纳米线和甲醇的混合液中,当银纳米线与甲醇的体积比为1:1时,得到Ag@CoMoO4催化剂;当银纳米线与甲醇的体积比为0:2时,得到CoMoO4催化剂;当银纳米线与甲醇的体积比为1:3时,得到Ag5@CoMoO4催化剂;当银纳米线与甲醇的体积比为2:0时,得到Ag20@CoMoO4催化剂。Further, in the mixed solution of silver nanowires and methanol, when the volume ratio of silver nanowires to methanol is 1:1, an Ag@CoMoO 4 catalyst is obtained; when the volume ratio of silver nanowires to methanol is 0:2 When, a CoMoO 4 catalyst is obtained; when the volume ratio of silver nanowires to methanol is 1:3, an Ag 5 @CoMoO 4 catalyst is obtained; when the volume ratio of silver nanowires to methanol is 2:0, Ag 20 @CoMoO is obtained 4 Catalyst.
进一步的,步骤(4)中九水合钼酸钠与步骤(3)中2-甲基咪唑的质量比为1:5。Further, the mass ratio of sodium molybdate nonahydrate in step (4) and 2-methylimidazole in step (3) is 1:5.
另外,本发明还提供上述的制备方法所制备的Ag@CoMoO4催化剂在电解水析氧电催化中的应用。In addition, the present invention also provides the application of the Ag@CoMoO4 catalyst prepared by the above preparation method in water electrolysis and oxygen evolution electrocatalysis.
本发明还提供上述的制备方法所制备的Ag@CoMoO4催化剂应用于电解水析氧电催化中的催化性能测试方法,将Ag@CoMoO4催化剂溶解在乙醇和萘酚的混合溶液中,超声分散至均匀,将所得分散液滴在碳纸上,以此作为工作电极,利用电化学工作站进行测试。The present invention also provides a method for testing the catalytic performance of the Ag@CoMoO4 catalyst prepared by the above preparation method when used in electrocatalysis of oxygen evolution in water electrolysis. The Ag@CoMoO4 catalyst is dissolved in a mixed solution of ethanol and naphthol and dispersed evenly by ultrasonic. , the obtained dispersion was dropped on carbon paper, which was used as a working electrode and tested using an electrochemical workstation.
进一步的,乙醇和萘酚的混合溶液中萘酚的质量分数为5 Wt%。Further, the mass fraction of naphthol in the mixed solution of ethanol and naphthol is 5 Wt%.
进一步的,所述测试方法采用三电极工作体系,以Hg/HgO作为参比电极,以碳棒作为对电极,以氢氧化钾溶液作为电解液。Further, the test method adopts a three-electrode working system, using Hg/HgO as the reference electrode, carbon rod as the counter electrode, and potassium hydroxide solution as the electrolyte.
与现有技术相比本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1.本发明制备的催化剂采用的原料成本较低,操作周期短,重复性高,易规模化生产。1. The catalyst prepared by the present invention uses low raw material cost, short operation cycle, high repeatability, and is easy to be produced on a large scale.
2. 本发明所述制备方法过程中仅需要烘箱,油浴锅,离心机,磁力搅拌器等常规反应设备,设备廉价易得,操作简单。2. The preparation method of the present invention only requires conventional reaction equipment such as an oven, an oil bath, a centrifuge, a magnetic stirrer, etc. The equipment is cheap and easy to obtain, and the operation is simple.
3. 本发明制得的材料具有优异的析氧能力,仅需要236 mV的过电势即可使电流密度达到10 mA cm-2,性能甚至优于贵金属催化剂;在长达16个小时的稳定性测试中,催化活性没有衰减。3. The material produced by the present invention has excellent oxygen evolution ability. It only requires an overpotential of 236 mV to reach a current density of 10 mA cm -2 , and its performance is even better than that of precious metal catalysts; its stability is up to 16 hours. During the test, there was no decrease in catalytic activity.
4. 本发明充分利用银纳米线具有优异的导电性,可有效促进界面电子转移,提高催化材料的电流密度的特点,利用钼酸钴稳定性好,活性位点多的特点,表现出良好的电催化性能。4. The present invention makes full use of the excellent conductivity of silver nanowires, which can effectively promote interface electron transfer and improve the current density of catalytic materials. It also utilizes the characteristics of cobalt molybdate with good stability and many active sites to show good performance. Electrocatalytic performance.
附图说明Description of the drawings
图1为实施例1中获得的Ag@CoMoO4催化剂的XRD谱图;Figure 1 is the XRD spectrum of the Ag@CoMoO 4 catalyst obtained in Example 1;
图2为实施例1中制备的银纳米线和实施例2中制备的CoMoO4催化剂的SEM照片;Figure 2 is an SEM photo of the silver nanowires prepared in Example 1 and the CoMoO 4 catalyst prepared in Example 2;
图3为实施例1中获得的Ag@CoMoO4催化剂的SEM照片;Figure 3 is an SEM photo of the Ag@CoMoO 4 catalyst obtained in Example 1;
图4为实施例1中获得的Ag@CoMoO4催化剂的EDX mapping图;Figure 4 is an EDX mapping diagram of the Ag@CoMoO 4 catalyst obtained in Example 1;
图5为实施例1中获得的Ag@CoMoO4催化剂的EDX 能谱图;Figure 5 is the EDX energy spectrum of the Ag@CoMoO 4 catalyst obtained in Example 1;
图6为实施例1中获得的Ag@CoMoO4催化剂的XPS谱图;Figure 6 is the XPS spectrum of the Ag@CoMoO 4 catalyst obtained in Example 1;
图7为实施例1中获得的Ag@CoMoO4及IrO2和实施例2中获得的CoMoO4催化剂的线性扫描伏安图;Figure 7 is a linear scan voltammogram of the Ag@CoMoO 4 and IrO 2 obtained in Example 1 and the CoMoO 4 catalyst obtained in Example 2;
图8为实施例1中获得的Ag@CoMoO4、实施例3中获得的Ag5@CoMoO4及实施例4中获得的Ag20@CoMoO4材料的线性扫描伏安图;Figure 8 is a linear scan voltammogram of the Ag@CoMoO 4 obtained in Example 1, the Ag 5 @CoMoO 4 obtained in Example 3, and the Ag 20 @CoMoO 4 material obtained in Example 4;
图9为实施例1中获得的Ag@CoMoO4和IrO2催化剂在碱性(1M KOH)电解液中的EIS测试曲线;Figure 9 is the EIS test curve of the Ag@CoMoO 4 and IrO 2 catalysts obtained in Example 1 in alkaline (1M KOH) electrolyte;
图10为实施例1中获得的Ag@CoMoO4催化剂在碱性(1M KOH)电解液中的电压-时间稳定性测试曲线。Figure 10 is the voltage-time stability test curve of the Ag@CoMoO 4 catalyst obtained in Example 1 in alkaline (1M KOH) electrolyte.
具体实施方式Detailed ways
以下结合具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific examples.
实施例1Example 1
取375 mg聚乙烯吡咯烷酮 (55000) 和25 mL1,2-丙二醇分别加入到100 mL圆底烧瓶中,于160℃下在油浴锅中磁力搅拌1 h。加入250 μL氯化钠溶液和10 mL硝酸银溶液,继续反应40 min。待自然冷却至室温后,将所得混合液置于离心管中,加丙酮至45 mL,离心(转速为8000 rmp,时间为5 min)。倒尽上清液,加乙醇至10 mL,超声分散至均匀,再加丙酮至45 mL,离心。重复上述操作。将以上所得产物分散至120 mL甲醇中,储存备用,定量约为1mg/mL。Add 375 mg of polyvinylpyrrolidone (55000) and 25 mL of 1,2-propanediol into a 100 mL round-bottom flask, and stir magnetically in an oil bath at 160°C for 1 h. Add 250 μL sodium chloride solution and 10 mL silver nitrate solution, and continue the reaction for 40 minutes. After naturally cooling to room temperature, place the resulting mixture into a centrifuge tube, add acetone to 45 mL, and centrifuge (speed: 8000 rpm, time: 5 min). Pour off the supernatant, add ethanol to 10 mL, disperse by ultrasonic until uniform, add acetone to 45 mL, and centrifuge. Repeat the above steps. The product obtained above was dispersed into 120 mL methanol and stored for later use. The quantitative value was approximately 1 mg/mL.
称取0.3284 g 2-甲基咪唑于50 mL的圆底烧瓶中,加入10 mL甲醇和10 mL银纳米线,磁力搅拌。称取0.291 g 六水合硝酸钴溶于20 mL甲醇中,倒入圆底烧瓶中,搅拌2 h。离心 (转速为5000 rmp,时间为5 min),乙醇洗涤数次后分散于10 mL去离子水中。Weigh 0.3284 g of 2-methylimidazole into a 50 mL round-bottomed flask, add 10 mL of methanol and 10 mL of silver nanowires, and stir magnetically. Weigh 0.291 g of cobalt nitrate hexahydrate and dissolve it in 20 mL of methanol, pour it into a round-bottomed flask, and stir for 2 h. Centrifuge (speed: 5000 rpm, time: 5 min), wash with ethanol several times and disperse in 10 mL of deionized water.
称取0.309 g 九水合钼酸钠溶于10 mL去离子水中,加入上述混合液中,于50 mL反应釜中进行水热反应,反应温度为100℃,反应时间为3 h。离心 (转速为5000 rmp,时间为5 min),乙醇洗涤数次后,加乙醇至15 mL备用,最终得到Ag@CoMoO4催化剂。Weigh 0.309 g of sodium molybdate nonahydrate and dissolve it in 10 mL of deionized water, add it to the above mixture, and perform a hydrothermal reaction in a 50 mL reaction kettle. The reaction temperature is 100°C and the reaction time is 3 h. Centrifuge (speed: 5000 rpm, time: 5 min), wash with ethanol several times, add ethanol to 15 mL for later use, and finally obtain the Ag@CoMoO 4 catalyst.
实施例2Example 2
与实施例1相同,只是将10 mL甲醇和10 mL银纳米线的混合液变为20 mL甲醇溶液,其它合成条件均不发生改变,可得到CoMoO4催化剂。It is the same as Example 1, except that the mixture of 10 mL methanol and 10 mL silver nanowires is changed to 20 mL methanol solution, and other synthesis conditions remain unchanged, and a CoMoO 4 catalyst can be obtained.
实施例3Example 3
与实施例1相同,只是将10 mL甲醇和10 mL银纳米线的混合液变为5 mL银纳米线和15 mL甲醇的混合液,其它合成条件均不发生改变,可得到Ag5@CoMoO4催化剂。The same as Example 1, except that the mixture of 10 mL methanol and 10 mL silver nanowires is changed to a mixture of 5 mL silver nanowires and 15 mL methanol. The other synthesis conditions remain unchanged, and Ag 5 @CoMoO 4 can be obtained. catalyst.
实施例4Example 4
与实施例1相同,只是将10 mL甲醇和10 mL银纳米线的混合液变为20 mL银纳米线溶液,其它合成条件均不发生改变,可得到Ag20@CoMoO4催化剂。It is the same as Example 1, except that the mixture of 10 mL methanol and 10 mL silver nanowires is changed to 20 mL silver nanowire solution, and other synthesis conditions remain unchanged, and the Ag 20 @CoMoO 4 catalyst can be obtained.
本发明中对上述方法制备的催化剂进行必要的结构表征和电化学性能测试。图1为催化剂Ag@CoMoO4的X射线衍射(XRD)图谱,与标准卡片(04-0783和26-0477)进行比对,衍射峰在2θ 值约为38.1°、44.3°、64.4°和77.5°分别对应于Ag (JCPDF no.04-0783)的(111)、(200)、(220)和(311)晶面,衍射峰在2θ 值约为23.5°、26.6°、32.3°和53.9°分别对应于CoMoO4 (JCPDF no.26-0477)的(021)、(012)、(022)和(133)晶面,这表明成功地合成了Ag@CoMoO4。图2为制备的银纳米线和CoMoO4的SEM照片,可以看出银纳米线的直径大约几十纳米,CoMoO4呈片状结构。图3为催化剂Ag@CoMoO4的SEM照片,可以看出银纳米线将片状CoMoO4很好地串在一起,极大地增强了催化剂的比表面积,进而提升了Ag@CoMoO4的OER催化活性。图4为所得Ag@CoMoO4的EDX mapping图,可以看出材料中包含Ag、Co、Mo、O四种元素,且四种元素在材料中均匀分布。图5为所得Ag@CoMoO4材料的EDX spectrum图,可以看出材料中Co元素的含量最高为39.9 Wt%。图6为所获得催化剂Ag@CoMoO4的X射线光电子能谱(XPS)图谱,如图6 a全谱图所示,Ag@CoMoO4中存在Ag、Co、Mo和O元素。如图6 b所示,Ag@CoMoO4 的Ag 3d的XPS谱图中,两个主峰368.0和374.0 eV的***宽度为6.0 eV,证实零价银的存在。如图6 c所示,Ag@CoMoO4的Co 2p能谱分成了两个自旋轨道耦合Co2+ (796.9和781.5 eV)和 Co3+(795.9和780.1 eV)。此外,786.1和802.3 eV的两个峰值可以归因于两个振动卫星峰。如图6 d所示,在Ag@CoMoO4的Mo 3d的XPS谱图中,两个主峰232.3和235.4 eV的***宽度为3.1 eV,证实Mo6+存在。如图6 e所示,Ag@CoMoO4的O 1s谱图由三种氧组成,对应的峰值分别为530.5、531.0及532.3 eV,表明Ag@CoMoO4催化剂中O与Co、Mo存在比较强的结合键。In the present invention, the catalyst prepared by the above method is subjected to necessary structural characterization and electrochemical performance testing. Figure 1 shows the X-ray diffraction (XRD) pattern of the catalyst Ag@CoMoO 4. Compared with the standard cards (04-0783 and 26-0477), the diffraction peaks at 2θ values are about 38.1°, 44.3°, 64.4° and 77.5 ° correspond to the (111), (200), (220) and (311) crystal planes of Ag (JCPDF no.04-0783) respectively, and the diffraction peaks at 2θ values are approximately 23.5°, 26.6°, 32.3° and 53.9° Corresponding to the (021), (012), (022) and (133) crystal planes of CoMoO 4 (JCPDF no.26-0477), respectively, this indicates that Ag@CoMoO 4 was successfully synthesized. Figure 2 shows the SEM photos of the prepared silver nanowires and CoMoO 4. It can be seen that the diameter of the silver nanowires is about tens of nanometers, and the CoMoO 4 has a flake structure. Figure 3 is an SEM photo of the catalyst Ag@CoMoO 4. It can be seen that the silver nanowires string the flakes of CoMoO 4 together very well, greatly enhancing the specific surface area of the catalyst, thereby improving the OER catalytic activity of Ag@CoMoO 4 . Figure 4 is the EDX mapping diagram of the obtained Ag@CoMoO 4. It can be seen that the material contains four elements: Ag, Co, Mo, and O, and the four elements are evenly distributed in the material. Figure 5 shows the EDX spectrum of the obtained Ag@CoMoO 4 material. It can be seen that the content of Co element in the material is the highest 39.9 Wt%. Figure 6 is the X-ray photoelectron spectroscopy (XPS) spectrum of the obtained catalyst Ag@CoMoO 4. As shown in the full spectrum of Figure 6 a, there are Ag, Co, Mo and O elements in Ag@CoMoO 4 . As shown in Figure 6 b, in the XPS spectrum of Ag 3d of Ag@CoMoO 4 , the splitting width of the two main peaks 368.0 and 374.0 eV is 6.0 eV, confirming the existence of zero-valent silver. As shown in Figure 6 c, the Co 2p energy spectrum of Ag@CoMoO 4 is divided into two spin-orbit coupled Co 2+ (796.9 and 781.5 eV) and Co 3+ (795.9 and 780.1 eV). Furthermore, the two peaks at 786.1 and 802.3 eV can be attributed to two vibrational satellite peaks. As shown in Figure 6 d, in the XPS spectrum of Mo 3d of Ag@CoMoO 4 , the splitting width of the two main peaks 232.3 and 235.4 eV is 3.1 eV, confirming the existence of Mo 6+ . As shown in Figure 6 e, the O 1s spectrum of Ag@CoMoO 4 is composed of three types of oxygen, and the corresponding peaks are 530.5, 531.0 and 532.3 eV respectively, indicating that there is a relatively strong interaction between O, Co and Mo in the Ag@CoMoO 4 catalyst. Bonding keys.
对上述方法制备的催化剂材料在标准三电极电解池中进行电催化水裂解产氧(OER)性能测试;其中,循环扫描范围为0-1.0V,扫描速率为2 mV/s。需要说明的是,电催化测试中所有以Hg/HgO电极为参比电极得到的电势,在性质图中均转换为可逆氢电极电势。The catalyst materials prepared by the above method were tested for electrocatalytic water splitting and oxygen production (OER) performance in a standard three-electrode electrolytic cell; the cyclic scanning range was 0-1.0V and the scanning rate was 2 mV/s. It should be noted that all potentials obtained using the Hg/HgO electrode as the reference electrode in the electrocatalytic test are converted into reversible hydrogen electrode potentials in the property diagrams.
图7为Ag@CoMoO4、CoMoO4及IrO2材料的线性扫描伏安图。以CoMoO4和IrO2作为对比,可以看出Ag@CoMoO4的电化学性能最好。当电流密度为10 mA cm-2时,Ag@CoMoO4的过电势仅为236 mV。Figure 7 shows the linear scan voltammograms of Ag@CoMoO 4 , CoMoO4 and IrO 2 materials. Comparing CoMoO4 and IrO2 , it can be seen that Ag@ CoMoO4 has the best electrochemical performance. When the current density is 10 mA cm -2 , the overpotential of Ag@CoMoO 4 is only 236 mV.
图8为Ag@CoMoO4、Ag5@CoMoO4及Ag20@CoMoO4材料的线性扫描伏安图。如图所示,Ag@CoMoO4的电化学性能优于Ag5@CoMoO4和Ag20@CoMoO4。Figure 8 shows the linear scan voltammograms of Ag@CoMoO 4 , Ag 5 @CoMoO 4 and Ag 20 @CoMoO 4 materials. As shown in the figure, the electrochemical performance of Ag@CoMoO 4 is better than that of Ag 5 @CoMoO 4 and Ag 20 @CoMoO 4 .
图9为催化剂的阻抗图,与贵金属IrO2催化剂相比, Ag@CoMoO4的阻抗最小,表明其拥有最快速的电子转移能力。Figure 9 shows the impedance diagram of the catalyst. Compared with the precious metal IrO 2 catalyst, Ag@CoMoO 4 has the smallest resistance, indicating that it has the fastest electron transfer capability.
图10为该催化剂在电流密度为10 mA cm-2下的稳定性测试,维持16小时以上处于稳定状态并且性能没有下降,表现出该催化剂优异的稳定性。Figure 10 shows the stability test of the catalyst at a current density of 10 mA cm -2 . It remains in a stable state for more than 16 hours without a decrease in performance, showing the excellent stability of the catalyst.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111460990.3A CN114147221B (en) | 2021-12-03 | 2021-12-03 | A preparation method of Ag@CoMoO4 oxygen evolution electrocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111460990.3A CN114147221B (en) | 2021-12-03 | 2021-12-03 | A preparation method of Ag@CoMoO4 oxygen evolution electrocatalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114147221A CN114147221A (en) | 2022-03-08 |
CN114147221B true CN114147221B (en) | 2023-10-27 |
Family
ID=80455956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111460990.3A Active CN114147221B (en) | 2021-12-03 | 2021-12-03 | A preparation method of Ag@CoMoO4 oxygen evolution electrocatalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114147221B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115011994B (en) * | 2022-04-17 | 2023-05-23 | 中北大学 | A kind of preparation method and application of Ag2MoO4/CoMo-LDH electrolytic water oxygen evolution catalyst |
CN114883548B (en) * | 2022-05-31 | 2024-03-19 | 华南师范大学 | Coralloid cobalt molybdate composite material with oxygen vacancies, and preparation method and application thereof |
CN118454695B (en) * | 2024-07-10 | 2024-09-03 | 中国市政工程西北设计研究院有限公司 | Heterojunction composite material for catalyzing hydrogen evolution and preparation method and application thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4637990A (en) * | 1978-08-28 | 1987-01-20 | Torobin Leonard B | Hollow porous microspheres as substrates and containers for catalysts and method of making same |
CN1975941A (en) * | 2005-11-14 | 2007-06-06 | 同和电子科技有限公司 | Magnetic iron based powder having high coercive force, and their use for a magnetic recording medium |
CN107715920A (en) * | 2017-10-17 | 2018-02-23 | 江苏大学 | A kind of cobalt molybdate base composite electric catalyst and preparation method thereof |
KR20180020566A (en) * | 2016-08-18 | 2018-02-28 | 제주대학교 산학협력단 | Electrode of super capacitor and preparation method using carbon-deposited catalyst |
CN109718824A (en) * | 2019-01-14 | 2019-05-07 | 济南大学 | A kind of N doping CoMoO4The preparation method and electro-catalysis application of nanosphere |
CN110354870A (en) * | 2019-06-06 | 2019-10-22 | 江苏大学 | A kind of preparation method and applications of the cobalt sulfide oxygen-separating catalyst of high performance Ag doping |
CN111203250A (en) * | 2020-02-26 | 2020-05-29 | 常州工学院 | A kind of one-dimensional bimetallic carbide and preparation method thereof |
WO2020172801A1 (en) * | 2019-02-26 | 2020-09-03 | 中国科学院化学研究所 | Surface enhancement raman scattering substrate material, preparation method therefor, and application thereof |
KR20210083756A (en) * | 2019-12-27 | 2021-07-07 | 재단법인대구경북과학기술원 | Electrode for Oxygen Evolution Reaction and the Fabrication Method Thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9809889B2 (en) * | 2014-08-28 | 2017-11-07 | Toyota Motor Engineering & Manufacturing North America, Inc. | Water oxidation catalyst including cobalt molybdenum |
-
2021
- 2021-12-03 CN CN202111460990.3A patent/CN114147221B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4637990A (en) * | 1978-08-28 | 1987-01-20 | Torobin Leonard B | Hollow porous microspheres as substrates and containers for catalysts and method of making same |
CN1975941A (en) * | 2005-11-14 | 2007-06-06 | 同和电子科技有限公司 | Magnetic iron based powder having high coercive force, and their use for a magnetic recording medium |
KR20180020566A (en) * | 2016-08-18 | 2018-02-28 | 제주대학교 산학협력단 | Electrode of super capacitor and preparation method using carbon-deposited catalyst |
CN107715920A (en) * | 2017-10-17 | 2018-02-23 | 江苏大学 | A kind of cobalt molybdate base composite electric catalyst and preparation method thereof |
CN109718824A (en) * | 2019-01-14 | 2019-05-07 | 济南大学 | A kind of N doping CoMoO4The preparation method and electro-catalysis application of nanosphere |
WO2020172801A1 (en) * | 2019-02-26 | 2020-09-03 | 中国科学院化学研究所 | Surface enhancement raman scattering substrate material, preparation method therefor, and application thereof |
CN110354870A (en) * | 2019-06-06 | 2019-10-22 | 江苏大学 | A kind of preparation method and applications of the cobalt sulfide oxygen-separating catalyst of high performance Ag doping |
KR20210083756A (en) * | 2019-12-27 | 2021-07-07 | 재단법인대구경북과학기술원 | Electrode for Oxygen Evolution Reaction and the Fabrication Method Thereof |
CN111203250A (en) * | 2020-02-26 | 2020-05-29 | 常州工学院 | A kind of one-dimensional bimetallic carbide and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114147221A (en) | 2022-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114147221B (en) | A preparation method of Ag@CoMoO4 oxygen evolution electrocatalyst | |
Zhao et al. | Rapid synthesis of efficient Mo-based electrocatalyst for the hydrogen evolution reaction in alkaline seawater with 11.28% solar-to-hydrogen efficiency | |
CN114082419B (en) | Preparation of Amorphous Oxyhydroxide Catalyst by Mechanical Stirring and Its Efficient Electrolysis of Water for Hydrogen Production | |
CN114293200B (en) | Porous carbon supported amorphous/crystalline ruthenium-based high-efficiency hydrogen evolution catalyst and preparation and application thereof | |
CN111744554A (en) | A kind of preparation method and application of palladium-doped organometallic framework catalytic material | |
CN111468120B (en) | CoFeNiO X Layered hollow nanocage electrocatalyst and preparation method and application thereof | |
CN114892203B (en) | Method for synthesizing carbon monoxide by electrochemical catalytic conversion of carbon dioxide | |
CN110711583A (en) | A kind of high-efficiency electrocatalyst material with three-dimensional structure, preparation method and application thereof | |
CN113943949B (en) | Platinum edge-modified nickel-based nano material and preparation method and application thereof | |
CN107675207A (en) | Oxygen evolution catalyst with high activity and stability and preparation method thereof | |
CN112808274A (en) | High-performance iron-doped nickel or cobalt-based amorphous oxyhydroxide catalyst prepared by room temperature method and research on efficient water electrolysis hydrogen production thereof | |
CN114289021A (en) | A kind of nickel-iron-based catalyst and its preparation and application | |
CN113136591B (en) | Ruthenium and nitrogen co-doped porous carbon catalyst, preparation method thereof and application thereof in hydrogen electrolysis | |
CN113104862A (en) | Method for rapidly preparing Prussian blue or analogues thereof in batches and application of method | |
CN114592210B (en) | Preparation method and application of Co3O4-RuO2 composite material | |
CN115805317A (en) | A kind of ruthenium iridium alloy material and its preparation method and application | |
CN109289852B (en) | A kind of cobalt iron oxide hollow nano cage material, its preparation method and use | |
CN108033492A (en) | The CoWO of amorphous4The preparation method of cage-shaped nano material and its application in electro-catalysis | |
CN107699919B (en) | Fe2-1.5xMoxS2- RGO hybrid catalyst and its preparation method and application | |
CN107570154B (en) | Iron-based hydrogen production electrocatalyst and preparation method thereof | |
CN113981468A (en) | Multidimensional nickel-cobalt-based sulfide heterojunction electrocatalytic composite material and preparation method thereof | |
CN110354870B (en) | Preparation method and application of high-performance silver-doped cobalt sulfide oxygen evolution catalyst | |
CN108273524A (en) | A kind of carbon composite and the preparation method and application thereof of chalcogen compound and transition metal modification | |
CN108842165B (en) | Solvothermal preparation of sulfur doped NiFe (CN)5NO electrolysis water oxygen evolution catalyst and application thereof | |
CN113774425B (en) | Preparation method and application of a Ru-modified FeCo@NF electrocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |