CN114068869B - Core-shell structure silicon @ silicon oxide/carbon anode material and preparation method and application thereof - Google Patents
Core-shell structure silicon @ silicon oxide/carbon anode material and preparation method and application thereof Download PDFInfo
- Publication number
- CN114068869B CN114068869B CN202111392573.XA CN202111392573A CN114068869B CN 114068869 B CN114068869 B CN 114068869B CN 202111392573 A CN202111392573 A CN 202111392573A CN 114068869 B CN114068869 B CN 114068869B
- Authority
- CN
- China
- Prior art keywords
- silicon
- preparation
- core
- shell structure
- silicon oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052814 silicon oxide Inorganic materials 0.000 title claims abstract description 42
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 30
- 239000011258 core-shell material Substances 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 239000010405 anode material Substances 0.000 title claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000010703 silicon Substances 0.000 claims abstract description 31
- 239000007773 negative electrode material Substances 0.000 claims abstract description 15
- 239000005543 nano-size silicon particle Substances 0.000 claims abstract description 14
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000002243 precursor Substances 0.000 claims abstract description 13
- 229920000642 polymer Polymers 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 10
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000000197 pyrolysis Methods 0.000 claims abstract description 5
- UJPKMTDFFUTLGM-UHFFFAOYSA-N 1-aminoethanol Chemical compound CC(N)O UJPKMTDFFUTLGM-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000002904 solvent Substances 0.000 claims abstract description 4
- 238000006482 condensation reaction Methods 0.000 claims abstract description 3
- 239000011261 inert gas Substances 0.000 claims abstract description 3
- 239000002994 raw material Substances 0.000 claims abstract description 3
- 238000003756 stirring Methods 0.000 claims description 24
- 239000000243 solution Substances 0.000 claims description 13
- 239000006185 dispersion Substances 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 claims description 7
- KUCOHFSKRZZVRO-UHFFFAOYSA-N terephthalaldehyde Chemical compound O=CC1=CC=C(C=O)C=C1 KUCOHFSKRZZVRO-UHFFFAOYSA-N 0.000 claims description 7
- 239000012300 argon atmosphere Substances 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000004108 freeze drying Methods 0.000 claims description 4
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 claims description 4
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical compound O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 claims description 4
- 229940054441 o-phthalaldehyde Drugs 0.000 claims description 3
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 229940015043 glyoxal Drugs 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 10
- 239000002210 silicon-based material Substances 0.000 abstract description 3
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- ALXPZLQBSUZCHN-UHFFFAOYSA-N 4-phenylcyclohexa-2,4-diene-1,1-dicarbaldehyde Chemical compound C1=CC(C=O)(C=O)CC=C1C1=CC=CC=C1 ALXPZLQBSUZCHN-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- FXPHJTKVWZVEGA-UHFFFAOYSA-N ethenyl hydrogen carbonate Chemical class OC(=O)OC=C FXPHJTKVWZVEGA-UHFFFAOYSA-N 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- -1 lithium hexafluorophosphate Chemical compound 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Silicon Compounds (AREA)
Abstract
本发明公开了一种核‑壳结构硅@氧化亚硅/碳负极材料及其制备方法与应用,是以γ‑氨丙基三乙氧基硅烷、二醛分子及纳米硅粉为原料、以纯水为溶剂,先通过醛氨缩合反应制得聚合物前驱体,再在惰性气体条件下高温热解得到目标产物。本发明的制备方法工艺简单、对环境影响小、成本低且适用于大规模生产,所得材料本身的结构能有效缓解硅基材料的体积膨胀率大和导电性差的问题,有助于增强锂离子电池循环稳定性。
The invention discloses a core-shell structure silicon@silicon oxide/carbon negative electrode material and its preparation method and application. It uses γ-aminopropyltriethoxysilane, dialdehyde molecules and nano silicon powder as raw materials, Pure water is used as the solvent, and the polymer precursor is first prepared through aldehyde-ammonia condensation reaction, and then the target product is obtained by high-temperature pyrolysis under inert gas conditions. The preparation method of the present invention has simple process, little impact on the environment, low cost and is suitable for large-scale production. The structure of the obtained material itself can effectively alleviate the problems of large volume expansion rate and poor conductivity of silicon-based materials, and help to strengthen lithium-ion batteries. cycle stability.
Description
技术领域technical field
本发明属于新能源技术领域,具体涉及一种核-壳结构硅@氧化亚硅/碳负极材料及其制备方法与应用。The invention belongs to the technical field of new energy, and specifically relates to a core-shell structure silicon@silicon oxide/carbon negative electrode material and its preparation method and application.
背景技术Background technique
随着便携式电子产品和电动汽车的新兴市场对锂离子电池产生的需求越来越大,开发具有更高能量密度的锂离子电池变得愈发迫切。硅被广泛认为是最有前途的负极材料之一。每个硅原子可以与四个锂离子结合,使其的容量是石墨阳极的约十倍。此外,硅是地壳中第二丰富的元素,对环境友好且去锂化电位低(0.4V vs.Li/Li+),因此是一种极具潜力的负极材料。但硅在嵌锂和脱锂过程中体积变化超过300%,从而引起严重的颗粒粉碎和极不稳定的固体电解质界面(SEI)形成,这会导致容量快速衰落和循环寿命有限等问题。With the growing demand for Li-ion batteries in the emerging markets of portable electronics and electric vehicles, the development of Li-ion batteries with higher energy density has become more urgent. Silicon is widely regarded as one of the most promising anode materials. Each silicon atom can bind four lithium ions, giving it about ten times the capacity of a graphite anode. In addition, silicon is the second most abundant element in the earth's crust, is environmentally friendly and has a low delithiation potential (0.4 V vs. Li/Li+), so it is a promising anode material. However, silicon undergoes a volume change of more than 300% during lithium intercalation and delithiation, which causes severe particle pulverization and the formation of an extremely unstable solid electrolyte interface (SEI), which leads to rapid capacity fading and limited cycle life.
与纯硅材料相比,氧化亚硅虽然在理论比容量上有所损失,但其脱/嵌锂的体积变化也有所下降,因此被认定为最具潜力的硅基负极材料。纯硅和氧化亚硅的电子导电性都不理想,通常需要包覆碳层来提高其导电性和减缓体积膨胀所引起的SEI膜的破碎,而碳包覆层的理论比容量很低,这会降低材料本身的比容量。通过引入比容量高且体积膨胀较低的氧化亚硅进入碳层,用掺碳的氧化亚硅作为纯硅材料的包覆层成了一种理想的选择。Compared with pure silicon materials, although silicon oxide has a loss in theoretical specific capacity, its volume change of lithium desorption/intercalation has also decreased, so it is considered to be the most potential silicon-based negative electrode material. The electronic conductivity of pure silicon and silicon oxide is not ideal, and it is usually necessary to coat the carbon layer to improve its conductivity and slow down the breakage of the SEI film caused by volume expansion, and the theoretical specific capacity of the carbon coating layer is very low, which means It will reduce the specific capacity of the material itself. By introducing silicon oxide with high specific capacity and low volume expansion into the carbon layer, it becomes an ideal choice to use carbon-doped silicon oxide as the coating layer of pure silicon material.
发明内容Contents of the invention
本发明提供一种核-壳结构硅@氧化亚硅/碳负极材料的制备方法,旨在提升硅基负极材料在锂离子电池循环过程中的稳定性,延长电池使用寿命。The invention provides a method for preparing a core-shell structure silicon@silicon oxide/carbon negative electrode material, which aims to improve the stability of the silicon-based negative electrode material in the lithium-ion battery cycle process and prolong the service life of the battery.
本发明为解决技术问题,采用如下技术方案:The present invention adopts following technical scheme for solving technical problems:
本发明首先公开了一种核-壳结构硅@氧化亚硅/碳负极材料的制备方法,是以γ-氨丙基三乙氧基硅烷、二醛分子及纳米硅粉为原料、以纯水为溶剂,先通过醛氨缩合反应制得聚合物前驱体,再在惰性气体条件下高温热解得到核-壳结构硅@氧化亚硅/碳负极材料,记为Si@SiOx/C。具体包括如下步骤:The invention firstly discloses a method for preparing a core-shell structure silicon@silicon oxide/carbon negative electrode material, which uses γ-aminopropyltriethoxysilane, dialdehyde molecules and nano silicon powder as raw materials, and pure water As a solvent, the polymer precursor is first prepared by aldehyde-ammonia condensation reaction, and then pyrolyzed at high temperature under inert gas conditions to obtain a core-shell structure silicon@silicon oxide/carbon anode material, denoted as Si@SiOx/C. Specifically include the following steps:
步骤1、将二醛分子加入纯水中,搅拌均匀,获得溶液A;Step 1. Add dialdehyde molecules into pure water and stir evenly to obtain solution A;
步骤2、将纳米硅粉加入十二烷基磺酸钠的水溶液中,搅拌均匀,获得分散液B;Step 2, adding nano-silica powder into the aqueous solution of sodium dodecylsulfonate, stirring evenly to obtain dispersion B;
步骤3、将分散液B加入溶液A中,搅拌均匀后,向其中缓慢滴加γ-氨丙基三乙氧基硅烷,并在搅拌条件下反应,获得聚合物前驱体;Step 3, adding dispersion B into solution A, stirring evenly, slowly adding γ-aminopropyltriethoxysilane dropwise therein, and reacting under stirring conditions to obtain a polymer precursor;
步骤4、将所述聚合物前驱体冷冻干燥,随后在氩气氛围下高温热解,即获得Si@SiOx/C。Step 4, freeze-drying the polymer precursor, and then pyrolyzing it at a high temperature under an argon atmosphere to obtain Si@SiOx/C.
进一步地,所述二醛分子包括乙二醛、戊二醛、对苯二甲醛、邻苯二甲醛和4,4-联苯基二甲醛中的至少一种。Further, the dialdehyde molecule includes at least one of glyoxal, glutaraldehyde, terephthalaldehyde, phthalaldehyde and 4,4-biphenyldicarbaldehyde.
进一步地,γ-氨丙基三乙氧基硅烷、二醛分子及纳米硅粉的摩尔比为2:1:0.1~0.2。Further, the molar ratio of γ-aminopropyltriethoxysilane, dialdehyde molecules and nano silicon powder is 2:1:0.1-0.2.
进一步地,步骤2中,纳米硅粉和十二烷基磺酸钠的质量比为1:0.5~1。Further, in step 2, the mass ratio of nano silicon powder and sodium dodecylsulfonate is 1:0.5-1.
进一步地,步骤1中,所述搅拌是在80℃条件下以400r/min的速率搅拌30分钟。Further, in step 1, the stirring is carried out at 80° C. at a rate of 400 r/min for 30 minutes.
进一步地,步骤3中,所述反应的搅拌速度为300~500r/min,反应温度为80℃、反应时间为30~60分钟。Further, in step 3, the stirring speed of the reaction is 300-500 r/min, the reaction temperature is 80° C., and the reaction time is 30-60 minutes.
进一步地,步骤4中,所述冷冻干燥的温度为-50℃、时间为24小时,所述高温热解的温度为600~1000℃、升温速率为5~20℃/min、热解时间为2~4h。Further, in step 4, the freeze-drying temperature is -50°C and the time is 24 hours, the high-temperature pyrolysis temperature is 600-1000°C, the heating rate is 5-20°C/min, and the pyrolysis time is 2~4h.
本发明按照上述制备方法所获得的Si@SiOx/C具有核-壳结构,是将纳米硅颗粒包裹在碳掺杂的氧化亚硅球壳内部,该材料可用在锂离子电池负极中。The Si@SiOx/C obtained according to the above preparation method of the present invention has a core-shell structure, and nano-silicon particles are wrapped inside carbon-doped silicon oxide spherical shells. This material can be used in the negative electrode of lithium-ion batteries.
与已有技术相比,本发明的有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are reflected in:
1.本发明提供的核-壳结构硅@氧化亚硅/碳负极材料以二醛分子作为交联剂,通过γ-氨丙基三乙氧基硅烷的水解缩合反应将纳米硅颗粒包裹在含有机硅、碳的聚合物球壳内部,经过氩气气氛下的高温热分解,含有机硅、碳的聚合物球壳转变为掺碳的氧化亚硅球壳。核-壳结构纳米硅@氧化亚硅/碳为体积膨胀提供了足够的缓冲,外壳中掺杂的碳能有效改善材料的电子导电性,有助于改善锂离子电池的循环稳定性、延长电池使用寿命,其质量比容量也优于商业石墨。1. The core-shell structure silicon@silicon oxide/carbon negative electrode material provided by the present invention uses dialdehyde molecules as cross-linking agents, and wraps nano-silicon particles in containing Inside the polymer spherical shell of organosilicon and carbon, after high-temperature thermal decomposition under argon atmosphere, the polymer spherical shell containing organosilicon and carbon is transformed into a carbon-doped silicon oxide spherical shell. The core-shell structure nano-silicon@silicon oxide/carbon provides sufficient buffer for volume expansion, and the carbon doped in the shell can effectively improve the electronic conductivity of the material, which helps to improve the cycle stability of lithium-ion batteries and prolong battery life. The service life, its mass specific capacity is also better than commercial graphite.
2、本发明提供的硅@氧化亚硅/碳负极材料的制备方法工艺简单、对环境友好、成本低且适用于大规模生产。2. The preparation method of the silicon@silicon oxide/carbon anode material provided by the present invention is simple in process, friendly to the environment, low in cost and suitable for large-scale production.
附图说明Description of drawings
图1为γ-氨丙基三乙氧基硅烷(APTES)与对苯二甲醛(TA)、邻苯二甲醛(OPA)和4,4-联苯二甲醛(BD)的反应示意图,每个二醛分子与两个γ-氨丙基三乙氧基硅烷通过醛氨缩合连接。Figure 1 is a schematic diagram of the reaction of γ-aminopropyltriethoxysilane (APTES) with terephthalaldehyde (TA), o-phthalaldehyde (OPA) and 4,4-biphenyldicarbaldehyde (BD), each The dialdehyde molecule is linked to two γ-aminopropyltriethoxysilanes through aldehyde ammonia condensation.
图2为本发明实施例1中核-壳结构硅@氧化亚硅/碳负极材料的高分辨透射电镜图;2 is a high-resolution transmission electron microscope image of the core-shell structure silicon@silicon oxide/carbon negative electrode material in Example 1 of the present invention;
图3为本发明实施例1中核-壳结构硅@氧化亚硅/碳负极材料在0.1Ag-1电流密度下的循环性能图;Fig. 3 is a cycle performance diagram of the core-shell structure silicon@silicon oxide/carbon negative electrode material at a current density of 0.1Ag -1 in Example 1 of the present invention;
图4为本发明实施例1中核-壳结构硅@氧化亚硅/碳负极材料的倍率性能图;Figure 4 is a rate performance diagram of the core-shell structure silicon@silicon oxide/carbon negative electrode material in Example 1 of the present invention;
图5为本发明实施例2中核-壳结构硅@氧化亚硅/碳负极材料在0.1Ag-1电流密度下的循环性能图;Fig. 5 is a cycle performance diagram of the core-shell structure silicon@silicon oxide/carbon negative electrode material at a current density of 0.1Ag -1 in Example 2 of the present invention;
图6为本发明实施例3中核-壳结构硅@氧化亚硅/碳负极材料在0.1Ag-1电流密度下的循环性能图;Figure 6 is a cycle performance diagram of the core-shell structure silicon@silicon oxide/carbon negative electrode material at a current density of 0.1Ag -1 in Example 3 of the present invention;
图7为本发明实施例1、2、3中核-壳结构硅@氧化亚硅/碳负极材料在0.1Ag-1电流密度下的循环性能对比图。Fig. 7 is a comparison chart of the cycle performance of the core-shell structure silicon@silicon oxide/carbon anode material in Examples 1, 2, and 3 of the present invention at a current density of 0.1Ag -1 .
具体实施方式Detailed ways
下面通过具体的实施例对本发明的技术方案作详细说明,下述实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The technical solution of the present invention will be described in detail below by specific examples. The following examples are implemented on the premise of the technical solution of the present invention, and detailed implementation methods and specific operating procedures are provided, but protection scope of the present invention It is not limited to the following examples.
实施例1Example 1
本实施例按如下步骤制备Si@SiOx/C:In this example, Si@SiOx/C is prepared according to the following steps:
步骤1、将0.67g(5mmol)对苯二甲醛加入200mL纯水中,在80℃条件下以400r/min的速率搅拌30分钟,获得溶液A。Step 1. Add 0.67 g (5 mmol) of terephthalaldehyde into 200 mL of pure water and stir at 400 r/min for 30 minutes at 80° C. to obtain solution A.
步骤2、将0.028g(1mmol)粒径在30nm的纳米硅粉和0.028g十二烷基磺酸钠溶于100mL纯水中,搅拌30min,再超声30min,得分散液B。Step 2. Dissolve 0.028g (1 mmol) of nano silicon powder with a particle size of 30nm and 0.028g of sodium dodecylsulfonate in 100mL of pure water, stir for 30min, and then sonicate for 30min to obtain dispersion B.
步骤3、将分散液B加入溶液A中,搅拌均匀后,向其中缓慢滴加2.34mL(10mmol)γ-氨丙基三乙氧基硅烷,400r/min搅拌条件下80℃反应60min,获得聚合物前驱体。Step 3. Add dispersion B to solution A, stir evenly, slowly add 2.34mL (10mmol) γ-aminopropyltriethoxysilane dropwise to it, and react at 80°C for 60min under 400r/min stirring condition to obtain polymerization precursors.
步骤4、将聚合物前驱体在-50℃条件下冷冻干燥24h,随后在氩气氛围下900℃高温热解2h(升温速率为10℃/min),即获得核-壳结构硅@氧化亚硅/碳负极材料Si@SiOx/C。Step 4. Freeze-dry the polymer precursor at -50°C for 24 hours, and then pyrolyze it at 900°C for 2 hours in an argon atmosphere (heating rate is 10°C/min), to obtain the core-shell structure silicon@oxide Silicon/carbon anode material Si@SiOx/C.
图2为本实施例所得Si@SiOx/C材料的透射电镜图,证明了核壳结构的生成。Figure 2 is a transmission electron microscope image of the Si@SiOx/C material obtained in this example, which proves the generation of the core-shell structure.
将本实施例所得Si@SiOx/C材料与超导碳科琴黑、羧甲基纤维素钠和丁苯胶乳按70:20:6:4的质量比均匀混合,加入适量纯水调成浆料并涂覆于铜箔上,涂覆层厚度为150μm,在80℃条件下真空干燥6h,得到电极片。Mix the Si@SiOx/C material obtained in this example with superconducting carbon ketjen black, sodium carboxymethyl cellulose and styrene-butadiene latex at a mass ratio of 70:20:6:4, and add an appropriate amount of pure water to make a slurry material and coated on copper foil, the thickness of the coating layer is 150 μm, and dried in vacuum at 80° C. for 6 hours to obtain an electrode sheet.
将制作的电极片切成直径12mm的圆片,以金属锂片作为对电极、直径16mm的Celgard2400圆片作为隔膜、1mol/L的六氟磷酸锂溶液为电解液(其中溶剂是将碳酸甲乙酯和碳酸乙烯酯按体积比1:1混合后再加入10wt%氟代碳酸乙烯酯得到的混合溶液),在手套箱内装配成扣式电池。用NEWARE-CT-4008T电池测试***和CHI660E电化学工作站测试在0.01~3V充放电电压中扣式电池的各项性能。The prepared electrode sheet is cut into discs with a diameter of 12 mm, with a lithium metal sheet as a counter electrode, a Celgard2400 disc with a diameter of 16 mm as a diaphragm, and a 1mol/L lithium hexafluorophosphate solution as an electrolyte (wherein the solvent is a mixture of ethyl methyl carbonate and carbonic acid Vinyl esters were mixed at a volume ratio of 1:1 and then added to a mixed solution obtained by adding 10 wt% fluoroethylene carbonate), and assembled into a button battery in a glove box. Use the NEWARE-CT-4008T battery test system and CHI660E electrochemical workstation to test the various properties of the button battery in the charge and discharge voltage of 0.01 ~ 3V.
图3为本实施例中扣式电池在0.1Ag-1电流密度下的循环性能图,在循环100圈后容量仍能达到512mAhg-1,容量保持率为64.9%,初始库伦效率为53.2%,平均库伦效率为98.20%。其循环性能远优于纯硅负极。Fig. 3 is the cycle performance diagram of the button battery in this embodiment at a current density of 0.1Ag -1 . After 100 cycles, the capacity can still reach 512mAhg-1, the capacity retention rate is 64.9%, and the initial Coulombic efficiency is 53.2%. The average Coulombic efficiency is 98.20%. Its cycle performance is much better than pure silicon anode.
图4为本实施例中扣式电池的倍率性能图,在0.1Ag-1、0.3Ag-1、0.5Ag-1、1Ag-1、3Ag-1、5Ag-1不同电流密度下进行倍率性能测试后,其容量在0.1A g-1电流密度下任能恢复到约450mAhg-1,表明该材料循环稳定性和倍率性能优异。Figure 4 is a graph of the rate performance of the coin cell in this example. The rate performance test was performed at different current densities of 0.1Ag -1 , 0.3Ag -1 , 0.5Ag -1 , 1Ag -1 , 3Ag -1 , and 5Ag -1 Afterwards, its capacity can be restored to about 450mAhg -1 at a current density of 0.1A g -1 , indicating that the material has excellent cycle stability and rate performance.
实施例2Example 2
本实施例按如下步骤制备Si@SiOx/C:In this example, Si@SiOx/C is prepared according to the following steps:
步骤1、将0.67g(5mmol)对苯二甲醛加入200mL纯水中,在80℃条件下以400r/min的速率搅拌30分钟,获得溶液A。Step 1. Add 0.67 g (5 mmol) of terephthalaldehyde into 200 mL of pure water and stir at 400 r/min for 30 minutes at 80° C. to obtain solution A.
步骤2、将0.014g(0.5mmol)粒径在30nm的纳米硅粉和0.014g十二烷基磺酸钠溶于100mL纯水中,搅拌30min,再超声30min,得分散液B。Step 2. Dissolve 0.014g (0.5mmol) of nano silicon powder with a particle size of 30nm and 0.014g of sodium dodecylsulfonate in 100mL of pure water, stir for 30min, and then sonicate for 30min to obtain dispersion B.
步骤3、将分散液B加入溶液A中,搅拌均匀后,向其中缓慢滴加2.34mL(10mmol)γ-氨丙基三乙氧基硅烷,400r/min搅拌条件下80℃反应60min,获得聚合物前驱体。Step 3. Add dispersion B to solution A, stir evenly, slowly add 2.34mL (10mmol) γ-aminopropyltriethoxysilane dropwise to it, and react at 80°C for 60min under 400r/min stirring condition to obtain polymerization precursors.
步骤4、将聚合物前驱体在-50℃条件下冷冻干燥24h,随后在氩气氛围下900℃高温热解2h(升温速率为10℃/min),即获得核-壳结构硅@氧化亚硅/碳负极材料Si@SiOx/C。Step 4. Freeze-dry the polymer precursor at -50°C for 24 hours, and then pyrolyze it at 900°C for 2 hours in an argon atmosphere (heating rate is 10°C/min), to obtain the core-shell structure silicon@oxide Silicon/carbon anode material Si@SiOx/C.
将本实施例所得Si@SiOx/C材料按实施例1相同的方法装配成扣式电池,并用NEWARE-CT-4008T电池测试***和CHI660E电化学工作站测试在0.01~3V充放电电压中扣式电池的各项性能。The Si@SiOx/C material obtained in this example was assembled into a button battery according to the same method as in Example 1, and the button battery was tested at a charging and discharging voltage of 0.01 to 3V by using the NEWARE-CT-4008T battery test system and CHI660E electrochemical workstation. various performances.
图5为本实施例中扣式电池在0.1Ag-1电流密度下的循环性能图,在循环100圈后容量仍能达到478mAhg-1,容量保持率为76.6%,初始库伦效率为51.5%,平均库伦效率为98.65%。Fig. 5 is the cycle performance diagram of the button battery in this embodiment at a current density of 0.1Ag -1 , the capacity can still reach 478mAhg-1 after 100 cycles, the capacity retention rate is 76.6%, and the initial coulombic efficiency is 51.5%. The average Coulombic efficiency is 98.65%.
实施例3Example 3
本实施例按如下步骤制备Si@SiOx/C:In this example, Si@SiOx/C is prepared according to the following steps:
步骤1、将0.67g(5mmol)对苯二甲醛加入200mL纯水中,在80℃条件下以400r/min的速率搅拌30分钟,获得溶液A。Step 1. Add 0.67 g (5 mmol) of terephthalaldehyde into 200 mL of pure water and stir at 400 r/min for 30 minutes at 80° C. to obtain solution A.
步骤2、将0.028g(1mmol)粒径在30nm的纳米硅粉和0.014g十二烷基磺酸钠溶于100mL纯水中,搅拌30min,再超声30min,得分散液B。Step 2. Dissolve 0.028g (1 mmol) of nano silicon powder with a particle size of 30nm and 0.014g of sodium dodecylsulfonate in 100mL of pure water, stir for 30min, and then sonicate for 30min to obtain dispersion B.
步骤3、将分散液B加入溶液A中,搅拌均匀后,向其中缓慢滴加2.34mL(10mmol)γ-氨丙基三乙氧基硅烷,400r/min搅拌条件下80℃反应60min,获得聚合物前驱体。Step 3. Add dispersion B to solution A, stir evenly, slowly add 2.34mL (10mmol) γ-aminopropyltriethoxysilane dropwise to it, and react at 80°C for 60min under 400r/min stirring condition to obtain polymerization precursors.
步骤4、将聚合物前驱体在-50℃条件下冷冻干燥24h,随后在氩气氛围下900℃高温热解2h(升温速率为10℃/min),即获得核-壳结构硅@氧化亚硅/碳负极材料Si@SiOx/C。Step 4. Freeze-dry the polymer precursor at -50°C for 24 hours, and then pyrolyze it at 900°C for 2 hours in an argon atmosphere (heating rate is 10°C/min), to obtain the core-shell structure silicon@oxide Silicon/carbon anode material Si@SiOx/C.
将本实施例所得Si@SiOx/C材料按实施例1相同的方法装配成扣式电池,并用NEWARE-CT-4008T电池测试***和CHI660E电化学工作站测试在0.01~3V充放电电压中扣式电池的各项性能。The Si@SiOx/C material obtained in this example was assembled into a button battery according to the same method as in Example 1, and the button battery was tested at a charging and discharging voltage of 0.01 to 3V by using the NEWARE-CT-4008T battery test system and CHI660E electrochemical workstation. various performances.
图6为本实施例中扣式电池在0.1Ag-1电流密度下的循环性能图,在循环100圈后容量仍能达到474mAhg-1,容量保持率为65.2%,初始库伦效率为52.7%,平均库伦效率为98.28%。Fig. 6 is the cycle performance diagram of the button battery in this embodiment at a current density of 0.1Ag -1 , the capacity can still reach 474mAhg-1 after 100 cycles, the capacity retention rate is 65.2%, and the initial Coulombic efficiency is 52.7%. The average Coulombic efficiency is 98.28%.
图7为实施例1、2、3中扣式电池在0.1Ag-1电流密度下的循环性能对比图,三种实施例中实施例1的容量最高,而实施例2在循环100圈后的容量保留率最高。Figure 7 is a comparison chart of the cycle performance of button batteries in Examples 1, 2, and 3 at a current density of 0.1Ag -1 . Among the three examples, Example 1 has the highest capacity, while Example 2 has the highest capacity after 100 cycles. Highest capacity retention.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111392573.XA CN114068869B (en) | 2021-11-23 | 2021-11-23 | Core-shell structure silicon @ silicon oxide/carbon anode material and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111392573.XA CN114068869B (en) | 2021-11-23 | 2021-11-23 | Core-shell structure silicon @ silicon oxide/carbon anode material and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114068869A CN114068869A (en) | 2022-02-18 |
CN114068869B true CN114068869B (en) | 2023-08-29 |
Family
ID=80279302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111392573.XA Active CN114068869B (en) | 2021-11-23 | 2021-11-23 | Core-shell structure silicon @ silicon oxide/carbon anode material and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114068869B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114597393A (en) * | 2022-03-15 | 2022-06-07 | 安徽大学 | A kind of ellipsoid porous silicon oxide/carbon negative electrode material and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2331602A1 (en) * | 1992-11-30 | 1994-05-31 | Canon Kabushiki Kaisha | Method of manufacturing a positive electrode active material of a secondary battery |
WO2013106782A2 (en) * | 2012-01-11 | 2013-07-18 | Energ2 Technologies, Inc. | Hard carbon materials |
CN107611406A (en) * | 2017-09-21 | 2018-01-19 | 中南大学 | A kind of preparation method of silicon/graphene/carbon composite negative pole material |
CN107623116A (en) * | 2017-09-22 | 2018-01-23 | 苏州海旭新材料科技有限公司 | A kind of composite cathode material of lithium ion battery and preparation method thereof |
CN108183199A (en) * | 2017-11-23 | 2018-06-19 | 合肥国轩高科动力能源有限公司 | Modified silicon-based negative electrode material of lithium ion battery and preparation method thereof |
CN108807872A (en) * | 2018-04-25 | 2018-11-13 | 福建翔丰华新能源材料有限公司 | A kind of preparation method of the silicon-carbon cathode material of the small spherical structure of caged |
CN111312996A (en) * | 2018-12-12 | 2020-06-19 | 上海杉杉科技有限公司 | Silicon-carbon composite material, lithium ion battery, preparation method and application |
CN112310386A (en) * | 2020-11-02 | 2021-02-02 | 哈尔滨工业大学 | Silicon oxide/carbon lithium ion battery cathode material with hollow structure and preparation method and application thereof |
CN112366301A (en) * | 2020-11-11 | 2021-02-12 | 宁夏博尔特科技有限公司 | Silicon/silicon oxide/carbon composite negative electrode material for lithium ion battery and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110023408B (en) * | 2016-11-28 | 2022-04-08 | 阿莫绿色技术有限公司 | Heat-dissipating elastomer composition and heat-dissipating elastomer formed therefrom |
-
2021
- 2021-11-23 CN CN202111392573.XA patent/CN114068869B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2331602A1 (en) * | 1992-11-30 | 1994-05-31 | Canon Kabushiki Kaisha | Method of manufacturing a positive electrode active material of a secondary battery |
WO2013106782A2 (en) * | 2012-01-11 | 2013-07-18 | Energ2 Technologies, Inc. | Hard carbon materials |
CN107611406A (en) * | 2017-09-21 | 2018-01-19 | 中南大学 | A kind of preparation method of silicon/graphene/carbon composite negative pole material |
CN107623116A (en) * | 2017-09-22 | 2018-01-23 | 苏州海旭新材料科技有限公司 | A kind of composite cathode material of lithium ion battery and preparation method thereof |
CN108183199A (en) * | 2017-11-23 | 2018-06-19 | 合肥国轩高科动力能源有限公司 | Modified silicon-based negative electrode material of lithium ion battery and preparation method thereof |
CN108807872A (en) * | 2018-04-25 | 2018-11-13 | 福建翔丰华新能源材料有限公司 | A kind of preparation method of the silicon-carbon cathode material of the small spherical structure of caged |
CN111312996A (en) * | 2018-12-12 | 2020-06-19 | 上海杉杉科技有限公司 | Silicon-carbon composite material, lithium ion battery, preparation method and application |
CN112310386A (en) * | 2020-11-02 | 2021-02-02 | 哈尔滨工业大学 | Silicon oxide/carbon lithium ion battery cathode material with hollow structure and preparation method and application thereof |
CN112366301A (en) * | 2020-11-11 | 2021-02-12 | 宁夏博尔特科技有限公司 | Silicon/silicon oxide/carbon composite negative electrode material for lithium ion battery and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
Core-shell structured SiOx@C with controllable mesopores as anode for lithium-ion batteries;Ting Wang,et al.;《Material letters》;第161卷;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114068869A (en) | 2022-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106025221B (en) | A kind of preparation method of silicon/carbon graphite composite negative pole material | |
CN110660984B (en) | Nano silicon-carbon composite material and preparation method and application thereof | |
CN103346304B (en) | Tin-carbon composite material for lithium secondary battery negative electrode and preparation method thereof | |
CN105609730B (en) | A kind of preparation method of silicon/carbon graphite composite negative pole material | |
CN112002883A (en) | Silicon-based composite material for negative electrode active material, negative electrode plate and lithium ion battery | |
WO2021120155A1 (en) | Nano-tin-silicon composite negative electrode material, and preparation method therefor and use thereof | |
CN115101741B (en) | Nitrogen-doped graphene-coated silicon-carbon composite material and preparation method and application thereof | |
CN104009210A (en) | Porous silicon/carbon composite material, and preparation method and application thereof | |
CN113363473B (en) | Preparation method of high-first-efficiency SiO graphite composite negative electrode material | |
CN115566170B (en) | Preparation method of high-energy-density quick-charging lithium ion battery anode material | |
CN108448090A (en) | A preparation method of silicon-carbon composite negative electrode material for lithium battery | |
CN112110448A (en) | A kind of nitrogen-doped carbon and nano-silicon composite negative electrode material and preparation method thereof | |
CN103094551B (en) | Graphite/manganous oxide composite electrode material and preparation method thereof | |
CN111525115A (en) | Etched nano-silicon double-layer carbon-coated lithium ion battery negative electrode material, negative electrode plate and preparation method of negative electrode plate | |
CN116332154A (en) | Preparation method of porous silicon-carbon anode material | |
CN114068869B (en) | Core-shell structure silicon @ silicon oxide/carbon anode material and preparation method and application thereof | |
CN114891136A (en) | A kind of multi-branched structural adhesive and its preparation method and application | |
CN118867128A (en) | Composite negative electrode sheet and lithium ion battery | |
CN108183201A (en) | Lithium ion battery cathode material and preparation method thereof | |
CN115959671B (en) | Porous carbon network modified silicon oxide composite anode material, preparation and application | |
CN112125304A (en) | Metal oxide modified micro-nano silicon-graphite composite negative electrode material and preparation method thereof | |
CN108493406B (en) | Application of high-nickel ternary cathode material as catalyst in preparation of carbon nanotube, cathode material and preparation method thereof, and lithium battery | |
CN112421002B (en) | High-capacity silicon-carbon material and preparation method thereof | |
CN117936779A (en) | A porous hollow silicon@carbon-nickel composite material for lithium ion battery negative electrode and preparation method thereof | |
CN107572486A (en) | A kind of nano-sulfur particles, preparation and its preparation of lithium-sulphur cell positive electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |