CN1134596C - 微加工流体装置及制造方法 - Google Patents

微加工流体装置及制造方法 Download PDF

Info

Publication number
CN1134596C
CN1134596C CNB971993750A CN97199375A CN1134596C CN 1134596 C CN1134596 C CN 1134596C CN B971993750 A CNB971993750 A CN B971993750A CN 97199375 A CN97199375 A CN 97199375A CN 1134596 C CN1134596 C CN 1134596C
Authority
CN
China
Prior art keywords
matrix
thin layer
film
micro
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB971993750A
Other languages
English (en)
Other versions
CN1235658A (zh
Inventor
张宝全
迪迪耶·马耶费
菲利普·勒诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Debiotech SA
Original Assignee
Westonbridge International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westonbridge International Ltd filed Critical Westonbridge International Ltd
Publication of CN1235658A publication Critical patent/CN1235658A/zh
Application granted granted Critical
Publication of CN1134596C publication Critical patent/CN1134596C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1037Flap valves
    • F04B53/1047Flap valves the valve being formed by one or more flexible elements
    • F04B53/106Flap valves the valve being formed by one or more flexible elements the valve being a membrane
    • F04B53/1067Flap valves the valve being formed by one or more flexible elements the valve being a membrane fixed at its whole periphery and with an opening at its centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C5/00Manufacture of fluid circuit elements; Manufacture of assemblages of such elements integrated circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0005Lift valves
    • F16K99/0009Lift valves the valve element held by multiple arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0015Diaphragm or membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0055Operating means specially adapted for microvalves actuated by fluids
    • F16K99/0057Operating means specially adapted for microvalves actuated by fluids the fluid being the circulating fluid itself, e.g. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0403Refractory metals, e.g. V, W
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0418Noble metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0448Steel
    • F05C2201/046Stainless steel or inox, e.g. 18-8
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • F16K15/144Check valves with flexible valve members the closure elements being fixed along all or a part of their periphery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/0074Fabrication methods specifically adapted for microvalves using photolithography, e.g. etching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/008Multi-layer fabrications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0082Microvalves adapted for a particular use
    • F16K2099/0086Medical applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0082Microvalves adapted for a particular use
    • F16K2099/0094Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0402Cleaning, repairing, or assembling
    • Y10T137/0491Valve or valve element assembling, disassembling, or replacing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Micromachines (AREA)
  • Reciprocating Pumps (AREA)
  • Check Valves (AREA)

Abstract

本发明涉及一种微加工流体装置(10),包括一个带有流动管(14)的基体(12)和一个可延展薄层(18),如泵送膜或形成止回阀的膜。薄层(18)是一个轧制金属片,最好由钛制成,并在流动管的覆盖区(20)通过阳极焊接与基体(12)连接。本发明用于制造止回阀。

Description

微加工流体装置及制造方法
技术领域
本发明涉及一种微型加工的流体装置和它的制造方法,所述装置包括一个具有一个流动管的基体和一个形成可变形薄膜的薄层。
一种这样的装置例如是控制液体进入/流出的器件,可用来作为止回阀,或用于微型泵中。
背景技术
例如,人们在定期输送一定量的药品的医用微型泵(但不是唯一的)中遇到这类阀。这些微型泵的制造以硅的微型加工方法为基础,并使用压电传动装置。国际专利申请PCT/IB95/00028介绍了一种自吸式微型泵。使用这种泵、及在其它情况下,需要有一种输入阀,有时还需要一个输出阀,要求其泄漏率最小,甚至为零。阀的这种泄漏率相当于薄膜处于静止位置,即薄膜关闭时穿过阀的液体流量。另外,由于阀是靠薄膜的弹性工作的,当足够的流体压力注入到阀的入口时,这种弹性使薄膜产生变形,因而在制造阀门时不破坏薄膜的表面和整体状态,以得到内应力最小的薄膜是很重要的。
发明内容
本发明的目的是提供一种输入/输出液体的装置,这种装置在阀门处于关闭位置时泄漏率最低,并且这种装置的加工方法使薄膜具有良好的物理特性并几乎没有内应力。
当用一个薄金属层覆盖一个基体出现问题时,可以使用多种方法。可以通过蒸发或阴极喷涂技术把金属薄层覆盖在基体上。但是,这些方法有一定局限性。在多数情况下,形成的金属层的物理特性比整块的同一金属有所下降。因此,金属层一般是用较大的内应力得到的,特别是形成的金属层的晶体结构对沉积条件特别敏感。另外,形成的薄层厚度接近1微米,对于这一数值,形成沉积层需要的时间太长,因而使该方法变得太昂贵。
另外一种方法是形成金属层的电解沉积,这种方法没有前面所述的各种缺点。但是,它不能使所有的金属形成沉积,并且通过这种方法形成金属层的物理和机械特性常常不能满足要求。
根据本发明,这些目的的达到是由于用例如阳极焊接技术在覆盖区域形成的可变形薄膜的金属层是与基体连接的金属片。根据本发明,微加工流体装置的制造方法的特征在于,它包括以下步骤:
-提供一个具有流动管的基体,
-用物理化学手段把一个牺牲层沉积在基体上,
-通过照相石印和化学侵蚀保留牺牲层上形成与基体分离的膜的区域,
-用轧制法形成可变形薄层金属片,
-把薄层放在基体上,
-通过阳极焊接使上述薄层与基体上没有被牺牲层覆盖的区域连接,
-在上述薄层固定在基体上后,用照相石印和化学侵蚀加工所述薄层,
-再次对牺牲层进行侵蚀,从而使薄膜与基体分离。
因此,根据本发明,利用可与基体连接的金属片,然后再进行加工,以实现微型结构。本发明的优点是:金属在轧制后物理和化学特性出色,并得到很好的控制。因此,材料内的应力降低,主要从该方法得到的薄膜的最终应力状态完成了薄膜和基体之间的连接。
本发明的另一个优点是可以把金属片固定在基体的空穴上,这样可以不需要任何刻蚀,直接形成薄膜或节点。
本发明的另一个重要方面是使用阳极焊接把金属片固定在基体上。老的方法从来没有对金属片使用过这种技术。
阳极焊接技术是把所有要装在一起的零件,即基体和薄膜放在300℃左右的温度下,并把所有这些零件放在与基体和薄膜接触的两个电极之间,并给与基体接触的电极施加-1000伏的负电压。这样就在较低的温度下实现了薄膜和基体之间的密封焊接。
由于使用了轧制的金属片,可以非常准确地固定金属片,并且以后用于阀门或微型泵的金属片厚度范围相当大。
在本文中,轧制金属片是指通过冶金方法、在轧滚之间连续通过得到的金属片。
通过对下述实施例的描述,可以更好地理解本发明及其特征和优点。
附图说明
显然,下列描述和附图是非限定性的。附图如下:
图1为根据本发明的阀或微加工阀的第一实施例的示意剖视图;
图2为沿图1中II-II方向、即阀门的俯视图;
图3为根据本发明的阀的第二实施例(如可以装在微型泵)的示意剖视图;
图4为根据本发明制造的微型泵。
具体实施方式
根据本发明的第一实施例,微加工阀10是一个止回阀。该阀10包括一个基体12,由例如派热克斯(Pyrex)耐热玻璃制成,流动管14贯穿基体12。流动管14的出口通向基体12的上表面16。薄膜18(如厚度为2到10微米的轧制钛片)覆盖管14的流出喷嘴,并且通过一个圆形区域20固定在基体的上表面16上。薄膜18形成一个厚度很薄的圆盘,圆盘至少包括一个流动喷嘴22,流动喷嘴22位于薄膜上流动管14流出喷嘴周围的区域,薄膜18处于静止位置时,流动管14和流动喷嘴22不能互相连通。
正如可以在图2中看到的,薄膜18的流动喷嘴22可以例如是椭圆形,并且等距离分布在薄膜的中心区域19,在与管14的流出喷嘴同心的圆周上。薄膜18的中心区域包括喷嘴22,因而没有固定在基体上。
当足够的流体压力通过流动管14的流入喷嘴到达时,液体的这个压力到达薄膜中心区域19,使薄膜弯曲,通过弹性产生变形,薄膜18的***20保持固定在基体12上。薄膜18的变形使薄膜和基体之间产生间隙,液体可以通过这个间隙渗透到薄膜18的流动喷嘴22中(图1箭头),这就是阀10的打开位置。
因此,这种阀的工作要求薄膜18的***区域20永久固定在基体12上,薄膜18的中心区域19能够与基体12分离,并且在基体的流动管14和薄膜的流动喷嘴22之间有一个相对位置,使得阀处于静止或关闭位置时,由于流动喷嘴22和流动管14处于偏移位置而不能互相连通,当阀处于开放位置时可以连通,使液体从管14穿过流动喷嘴22流动。
现在来描述这种带膜的阀的制造方法。在基体12(如耐热玻璃块)上钻流动管14,例如用直径约为0.1毫米的超声波钻孔。将一个铝质薄牺牲层放在基体12的上表面16上,并且围绕在管14的流出喷嘴周围,该牺牲层是通过蒸发来实现的,厚度约0.1微米。铝层的外形通过照相石印和铝的标准腐蚀溶液进行修整。用阳极焊接法将轧制钛片18固定在玻璃基体12的上表面16上,焊接在钛片的***20和玻璃基体12的上表面16之间进行,钛片的中心区域19处于铝质牺牲层的上方。用照相石印和稀氢氟酸溶液刻蚀对钛片的外形进行修整。在制造这种阀的最后阶段,用标准的刻铝溶液完全除掉或溶解掉铝质牺牲层。
这样就得到了一个阀,阀中的活跃元件、也就是薄膜,实际上完全没有内应力,这就使其具有更好的机械性能,如抗变形和疲劳能力,和更好的耐化学腐蚀能力。
在将牺牲层溶解后,薄膜18的中心区域19不再与基体12有任何形式的连接。
现在结合图3描述第二实施例,图中所示为可以在微型泵中(例如以前的国际专利申请中描述的)遇到的阀30。
在该实施例中,阀30包括一个基体32(如玻璃制成),一个软膜38和一个小板44(如硅制成)。正如可以在图3看到的,流动管34穿过基体32,处于图3管34的上部的流动管34的流入喷嘴35被膜38所堵塞。膜38(如轧制金属片,最好是钛)固定在玻璃基体32的表面36上,靠近基体的流动管34的流入喷嘴35。膜38有一个中心区39,与流动管34和固定在玻璃32表面36上的***区40相对。
喷嘴42穿过膜38,最好位于膜38的中心区,使喷嘴42位于基体32的流动管34的延长线上,最好是在管34的轴延长线上。
硅片44也固定在玻璃基体32的表面36上,固定点在流动管34的入口喷嘴35的旁边。硅片44与膜38相对的的表面不完全是平的,而是具有与基体32的表面36连接的接触面45,并与膜38分离。
硅片44与膜38相对的区域形成了一个液体可以流通的空间46。根据本发明,基体32和和硅片44之间的空间46延伸到图3所示构成阀30的微型泵以外,指向液体到达装置的方向。
硅片44与膜38的喷嘴42相对的区域有一个环形突起48,从图3可以看到,它的横断面像一个双梯形。突起48形成的内空间也是截锥形,并构成了空间50,空间50一方面位于膜38的喷嘴42的延长线上,并与之相对,另一方面也处在玻璃基体32的流动管34的延长线上,并且也与之相对。
在阀30的静止位置,环形突起48自由端与膜38的中心区39接触,包围喷嘴42。因此,在阀30的静止位置,环形突起48阻碍液体在靠近硅片44的空间46和玻璃基体的流动管34之间流动。当阀30工作时,空间46中液体压力增加,使弹性膜38的中心区39向图3所示装置的下方发生变形,这就造成膜38与突起48的自由端分离,使液体能够从空间46向空间50流动,然后通过已经变形的软膜38的喷嘴42流入流动管34。
当来自空间46上游液体到达装置的所有液体通过空间50和喷嘴42流入微型泵另一个腔方向的流动管34时,空间46中的液体压力降低,由于弹性作用,膜38回到初始位置,即与环形突起48的自由端接触,使空间46和流动管34不再有液体互相连通。
由于有了上述结构,阀30实现了止回阀的功能,如果基体32的流动管34中的液体压力增加,由于突起48仍然与膜38接触,妨碍了膜38的变形,因而膜38的变形不能使这些流体通过喷嘴42和空间50流向空间46。
在第二实施例中,硅片的环形突起48作为膜38上的阀座,膜38贴靠在突起48上。膜38的***40通过阳极焊接固定在基体32的表面36上,硅片44的表面45和玻璃基体表面36之间的连接也是如此。
阀30形成与前面描述的阀10反方向工作的阀门。阀30的制造与阀10的不同之处在于把膜固定在基体上以前不需要覆盖牺牲层。
从图3可以看到,流动管34的横向尺寸比膜38的喷嘴42大,使流动管34构成一个凹穴。
图4表明用本发明制成一个微型泵。该泵包括壁60,例如用硅制成,壁60限定一个内穴62。微型泵体的底64分别钻了2个喷嘴66和68,使流体流入流出内穴62。内穴62的上部被一个可变形膜70封闭,根据前面的描述,膜70可由钛制成。用前面描述的方法固定膜的***。微型泵的泵体60起基体的作用。喷嘴66内和68外分别装有可变形膜74和72,它们起着前面确定的阀的作用。
在本发明的范围内,还可有其它不同的实施例。例如,基体可以不仅仅用玻璃和“Pyrex”型或其它类型的硼代硅酸盐制成,还可用硅或陶瓷、以及其它与金属的热膨胀系数相适应的材料制成。也可以使用其它技术把金属片固定在基体上,如粘接、焊接、与硅化合(TiSi、PtSi…)或实现低共熔混合物(如AuSi)。
由于轧制金属片保持其物理和机械特性接近整块金属,因此能够在带有磁特性膜的电磁传感器或制动器中使用这种轧制片,其性能比沉积形成的膜好得多;使用记忆合金的金属片还可形成另一种实施例。
其它适于做金属片的材料有:铂、铱、铝或铬、钽、铌、钼、以及一些合金不锈钢,如铁-镍Fe-Ni。但是钛似乎更宜于阳极焊接。另外,这种金属的化学特性更宜于随心所欲地应用。还有,这种金属更耐腐蚀,并且易于进行化学刻蚀。

Claims (14)

1.微加工的流体装置(10,30),它包括一个具有流动管(14,34)的基体(12,32)及一个可变形薄层(18,38),其特征在于,所述薄层(18,38)是一个轧制金属片,在流动管覆盖区(20,40)通过阳极焊接与基体(12,32)连接。
2.根据权利要求1所述的微加工流体装置(10,30),其特征在于,所述薄层(18,38)的厚度为2到10微米。
3.根据权利要求1或2所述的微加工流体装置(10,30),其特征在于,所述薄层(18,38)由从下述金属中选择的材料制成:铂、铱、铝、铬、钽、铌、钼以及合金不锈钢,包括铁-镍合金。
4.根据权利要求1或2所述的微加工流体装置(10,30),其特征在于,所述薄层(18,38)由钛制成。
5.根据权利要求4所述的微加工流体装置,其特征在于,所述基体由玻璃制成。
6.根据权利要求1至3之一所述的微加工流体装置(10,30),其特征在于,基体(12,32)由硅制成。
7.微型泵,其特征在于,它包括一个权利要求1至6之一所述的装置,其中,所述薄层构成一个用于微型泵的可变形膜(70)。
8.阀门,由一个权利要求1至6之一所述的装置形成,其中,所述薄层形成阀门的一个膜。
9.流体装置(10,30)的微加工制造方法,其特征在于,它包括以下步骤:
-提供一个具有流动管(14,34)的基体(12,32),
-用物理化学手段把牺牲层沉积在基体上,
-通过照相石印和化学侵蚀保留牺牲层上形成与基体分离的膜的区域,
-用轧制法制成组成可变形薄层的金属片(18,38),
-把薄层(18,38)放在基体(12,32)上,
-通过阳极焊接使所述薄层与基体未被牺牲层覆盖的区域连接,
-所述薄层固定在基体上以后,用照相石印和化学侵蚀加工所述薄层,以对薄层的外形进行修整,从而形成一个膜,
-再次侵蚀牺牲层,从而使所述膜与基体分离。
10.根据权利要求9所述的方法,其特征在于,薄层(18,38)的厚度为2到10微米。
11.根据权利要求9或10所述的方法,其特征在于,所述薄层(18,38)由从下述金属中选择的材料制成:铂、铱、铝、铬、钽、铌、钼以及合金不锈钢,如Fe-Ni。
12.根据权利要求9所述的方法,其特征在于,所述薄层(18,38)由钛制成。
13.根据权利要求12所述的方法,其特征在于,基体由玻璃制成。
14.根据权利要求9至12之一所述的方法,其特征在于,基体(12,32)由硅制成。
CNB971993750A 1996-10-03 1997-10-01 微加工流体装置及制造方法 Expired - Fee Related CN1134596C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR96/12054 1996-10-03
FR9612054 1996-10-03

Publications (2)

Publication Number Publication Date
CN1235658A CN1235658A (zh) 1999-11-17
CN1134596C true CN1134596C (zh) 2004-01-14

Family

ID=9496321

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB971993750A Expired - Fee Related CN1134596C (zh) 1996-10-03 1997-10-01 微加工流体装置及制造方法

Country Status (8)

Country Link
US (1) US6237619B1 (zh)
EP (1) EP0929746B1 (zh)
JP (1) JP2001518169A (zh)
CN (1) CN1134596C (zh)
AU (1) AU717626B2 (zh)
CA (1) CA2267086A1 (zh)
DE (1) DE69722798T2 (zh)
WO (1) WO1998014707A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101520035B (zh) * 2008-02-26 2013-03-20 研能科技股份有限公司 流体输送装置

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210128B1 (en) * 1999-04-16 2001-04-03 The United States Of America As Represented By The Secretary Of The Navy Fluidic drive for miniature acoustic fluidic pumps and mixers
US7283223B2 (en) * 2002-08-21 2007-10-16 Honeywell International Inc. Cytometer having telecentric optics
US6970245B2 (en) * 2000-08-02 2005-11-29 Honeywell International Inc. Optical alignment detection system
US20060263888A1 (en) * 2000-06-02 2006-11-23 Honeywell International Inc. Differential white blood count on a disposable card
US7016022B2 (en) * 2000-08-02 2006-03-21 Honeywell International Inc. Dual use detectors for flow cytometry
US7242474B2 (en) * 2004-07-27 2007-07-10 Cox James A Cytometer having fluid core stream position control
US7420659B1 (en) * 2000-06-02 2008-09-02 Honeywell Interantional Inc. Flow control system of a cartridge
US7215425B2 (en) * 2000-08-02 2007-05-08 Honeywell International Inc. Optical alignment for flow cytometry
US7630063B2 (en) * 2000-08-02 2009-12-08 Honeywell International Inc. Miniaturized cytometer for detecting multiple species in a sample
US7471394B2 (en) * 2000-08-02 2008-12-30 Honeywell International Inc. Optical detection system with polarizing beamsplitter
US7978329B2 (en) * 2000-08-02 2011-07-12 Honeywell International Inc. Portable scattering and fluorescence cytometer
US7130046B2 (en) * 2004-09-27 2006-10-31 Honeywell International Inc. Data frame selection for cytometer analysis
US7262838B2 (en) * 2001-06-29 2007-08-28 Honeywell International Inc. Optical detection system for flow cytometry
US8329118B2 (en) * 2004-09-02 2012-12-11 Honeywell International Inc. Method and apparatus for determining one or more operating parameters for a microfluidic circuit
US8071051B2 (en) * 2004-05-14 2011-12-06 Honeywell International Inc. Portable sample analyzer cartridge
US7641856B2 (en) * 2004-05-14 2010-01-05 Honeywell International Inc. Portable sample analyzer with removable cartridge
US6533951B1 (en) * 2000-07-27 2003-03-18 Eastman Kodak Company Method of manufacturing fluid pump
US7061595B2 (en) * 2000-08-02 2006-06-13 Honeywell International Inc. Miniaturized flow controller with closed loop regulation
US7277166B2 (en) * 2000-08-02 2007-10-02 Honeywell International Inc. Cytometer analysis cartridge optical configuration
US6382228B1 (en) * 2000-08-02 2002-05-07 Honeywell International Inc. Fluid driving system for flow cytometry
WO2002068823A1 (en) * 2000-11-06 2002-09-06 Nanostream Inc. Uni-directional flow microfluidic components
GB0123054D0 (en) * 2001-09-25 2001-11-14 Randox Lab Ltd Passive microvalve
US20050238506A1 (en) * 2002-06-21 2005-10-27 The Charles Stark Draper Laboratory, Inc. Electromagnetically-actuated microfluidic flow regulators and related applications
US20040120836A1 (en) * 2002-12-18 2004-06-24 Xunhu Dai Passive membrane microvalves
US20040188648A1 (en) * 2003-01-15 2004-09-30 California Institute Of Technology Integrated surface-machined micro flow controller method and apparatus
US8323564B2 (en) 2004-05-14 2012-12-04 Honeywell International Inc. Portable sample analyzer system
US7612871B2 (en) * 2004-09-01 2009-11-03 Honeywell International Inc Frequency-multiplexed detection of multiple wavelength light for flow cytometry
US7630075B2 (en) 2004-09-27 2009-12-08 Honeywell International Inc. Circular polarization illumination based analyzer system
WO2006119106A1 (en) * 2005-04-29 2006-11-09 Honeywell International Inc. Cytometer cell counting and size measurement method
JP4995197B2 (ja) 2005-07-01 2012-08-08 ハネウェル・インターナショナル・インコーポレーテッド 3d流体力学的集束を有する成形カートリッジ
CN101252994B (zh) 2005-07-01 2011-04-13 霍尼韦尔国际公司 用于红血细胞分析的微流体卡
WO2007005974A2 (en) 2005-07-01 2007-01-11 Honeywell International, Inc. A flow metered analyzer
US7843563B2 (en) * 2005-08-16 2010-11-30 Honeywell International Inc. Light scattering and imaging optical system
EP3121601A1 (en) * 2005-12-22 2017-01-25 Honeywell International Inc. Portable sample analyzer system
JP2009521684A (ja) 2005-12-22 2009-06-04 ハネウェル・インターナショナル・インコーポレーテッド 携帯用サンプル分析装置のカートリッジ
JP5431732B2 (ja) 2005-12-29 2014-03-05 ハネウェル・インターナショナル・インコーポレーテッド マイクロ流体フォーマットにおけるアッセイ実装
US7505110B2 (en) * 2006-03-14 2009-03-17 International Business Machines Corporation Micro-electro-mechanical valves and pumps
EP2049283B1 (en) * 2006-08-10 2015-02-18 California Institute of Technology Microfluidic valve having free-floating member and method of fabrication
US8202267B2 (en) * 2006-10-10 2012-06-19 Medsolve Technologies, Inc. Method and apparatus for infusing liquid to a body
US20080161754A1 (en) * 2006-12-29 2008-07-03 Medsolve Technologies, Inc. Method and apparatus for infusing liquid to a body
CN101324226B (zh) * 2007-06-15 2010-09-01 微邦科技股份有限公司 阀门结构及应用阀门结构的微型帮浦
CN101713471B (zh) * 2007-06-15 2011-12-28 微邦科技股份有限公司 阀门结构及应用阀门结构的微型帮浦
US20090010767A1 (en) * 2007-07-06 2009-01-08 Chung Yuan Christian University Electric comb driven micropump system
JP2009083382A (ja) * 2007-10-01 2009-04-23 Brother Ind Ltd 画像形成装置および画像処理プログラム
DE102007050407A1 (de) * 2007-10-22 2009-04-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pumpe, Pumpenanordnung und Pumpenmodul
NO20080082L (no) * 2008-01-04 2009-07-06 Statoilhydro Asa Forbedret fremgangsmate for stromningsregulering samt autonom ventil eller stromningsreguleringsanordning
US8708961B2 (en) * 2008-01-28 2014-04-29 Medsolve Technologies, Inc. Apparatus for infusing liquid to a body
US20100034704A1 (en) * 2008-08-06 2010-02-11 Honeywell International Inc. Microfluidic cartridge channel with reduced bubble formation
EP2153855A1 (en) * 2008-08-16 2010-02-17 Debiotech S.A. Passive fluid flow regulator for constant flow rate drug delivery and corresponding drug infusion device
US8037354B2 (en) 2008-09-18 2011-10-11 Honeywell International Inc. Apparatus and method for operating a computing platform without a battery pack
CN101686021B (zh) * 2008-09-23 2011-12-28 微邦科技股份有限公司 应用于微型压电式帮浦内部的导线构造
CN102104158B (zh) * 2009-12-16 2013-06-19 中国科学院大连化学物理研究所 一种微流量阀及直接液体燃料电池燃料供给***
US8646479B2 (en) * 2010-02-03 2014-02-11 Kci Licensing, Inc. Singulation of valves
EP2359886A1 (en) 2010-02-12 2011-08-24 Debiotech S.A. Micromechanic passive flow regulator
WO2012037348A2 (en) 2010-09-15 2012-03-22 Minipumps, Llc Molded and packaged elastomeric check valve
US8741234B2 (en) 2011-12-27 2014-06-03 Honeywell International Inc. Disposable cartridge for fluid analysis
US8663583B2 (en) 2011-12-27 2014-03-04 Honeywell International Inc. Disposable cartridge for fluid analysis
US8741235B2 (en) 2011-12-27 2014-06-03 Honeywell International Inc. Two step sample loading of a fluid analysis cartridge
US8741233B2 (en) 2011-12-27 2014-06-03 Honeywell International Inc. Disposable cartridge for fluid analysis
US10065186B2 (en) * 2012-12-21 2018-09-04 Micronics, Inc. Fluidic circuits and related manufacturing methods
EP2754935A1 (en) 2013-01-10 2014-07-16 Debiotech S.A. Adjustable passive flow regulator
AU2014205179B2 (en) 2013-01-11 2018-08-09 Minipumps, Llc Diaphragm check valves and methods of manufacture thereof
CN104819315B (zh) * 2015-05-11 2017-07-04 歌尔股份有限公司 一种气阀及扬声器
CN105201793B (zh) * 2015-10-19 2018-02-27 江苏大学 一种开槽式有阀压电泵
WO2018046078A1 (en) * 2016-09-07 2018-03-15 Robert Bosch Gmbh Micropumps
EP3652471B1 (de) 2017-07-11 2021-06-09 Microfab Service GmbH Mikrorückschlagventil sowie system mit mehreren mikrorückschlagventilen und verfahren zu dessen herstellung
FR3090792B1 (fr) * 2018-12-21 2021-01-22 Commissariat Energie Atomique Dispositif de vanne fluidique anti-retour
USD919833S1 (en) 2019-03-06 2021-05-18 Princeton Biochemicals, Inc Micro valve for controlling path of fluids in miniaturized capillary connections
US20220372965A1 (en) * 2019-11-08 2022-11-24 Sony Group Corporation Valve module, fluid control apparatus, and electronic apparatus
CN112452365B (zh) * 2020-11-23 2021-12-07 无锡市夸克微智造科技有限责任公司 微加工流体装置
US20240068583A1 (en) * 2021-01-08 2024-02-29 Novoheart International Limited Low pressure valve assemblies
EP4173962A1 (fr) * 2021-10-27 2023-05-03 Airbus Operations (S.A.S.) Enceinte contenant un gaz d'inertage et comprenant un système d évacuation de liquide, aéronef comportant une telle enceinte
CN116293000B (zh) * 2023-05-19 2023-07-21 常州威图流体科技有限公司 流体输送装置及液冷散热模组

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE378029B (zh) 1973-04-25 1975-08-11 Original Odhner Ab
DE69011631T2 (de) * 1989-06-14 1995-03-23 Westonbridge Int Ltd Mikropumpe.
DE3926066A1 (de) * 1989-08-07 1991-02-14 Ibm Deutschland Mikromechanische kompressorkaskade und verfahren zur druckerhoehung bei extrem niedrigem arbeitsdruck
EP0465229B1 (en) * 1990-07-02 1994-12-28 Seiko Epson Corporation Micropump and process for manufacturing a micropump
US5050838A (en) * 1990-07-31 1991-09-24 Hewlett-Packard Company Control valve utilizing mechanical beam buckling
DE4135655A1 (de) * 1991-09-11 1993-03-18 Fraunhofer Ges Forschung Mikrominiaturisierte, elektrostatisch betriebene membranpumpe
DE4139668A1 (de) * 1991-12-02 1993-06-03 Kernforschungsz Karlsruhe Mikroventil und verfahren zu dessen herstellung
JPH05272457A (ja) * 1992-01-30 1993-10-19 Terumo Corp マイクロポンプおよびその製造方法
KR970011621B1 (ko) * 1992-12-07 1997-07-12 가부시끼가이샤 히다찌세이사꾸쇼 냉각 디바이스
US5417235A (en) * 1993-07-28 1995-05-23 Regents Of The University Of Michigan Integrated microvalve structures with monolithic microflow controller
CH689836A5 (fr) 1994-01-14 1999-12-15 Westonbridge Int Ltd Micropompe.
US5725117A (en) * 1994-10-26 1998-03-10 Devine Holdings, Llc Apparatus for forming a container to hold a drinking cup at the bottom end of the container and to hold food in the upper portion of the container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101520035B (zh) * 2008-02-26 2013-03-20 研能科技股份有限公司 流体输送装置

Also Published As

Publication number Publication date
CN1235658A (zh) 1999-11-17
DE69722798T2 (de) 2004-04-15
WO1998014707A1 (fr) 1998-04-09
EP0929746B1 (fr) 2003-06-11
DE69722798D1 (de) 2003-07-17
AU4945897A (en) 1998-04-24
JP2001518169A (ja) 2001-10-09
US6237619B1 (en) 2001-05-29
EP0929746A1 (fr) 1999-07-21
AU717626B2 (en) 2000-03-30
CA2267086A1 (en) 1998-04-09

Similar Documents

Publication Publication Date Title
CN1134596C (zh) 微加工流体装置及制造方法
JP5480983B2 (ja) 屈曲トランスデューサ、マイクロ・ポンプおよびマイクロ・バルブの製造方法、マイクロ・ポンプおよびマイクロ・バルブ
CN1153010C (zh) 组合式电动微型阀
KR100908949B1 (ko) 미세-가공되고 일체화된 유체 전달 시스템
DE4402119C2 (de) Verfahren zur Herstellung von Mikromembranpumpen
US20220331794A1 (en) Electroosmotic Micropump Apparatus and Electroosmotic Micropump Apparatus Group
JPH09500945A (ja) マイクロダイヤフラムポンプ
US20110280755A1 (en) Pump, pump arrangement and pump module
US6470904B1 (en) Normally closed in-channel micro check valve
TW200416193A (en) Micromachined integrated fluid delivery system with dynamic metal seat valve and other components
EP0949418A3 (en) Micro-pump and micro-pump manufacturing method
EP1296067B1 (en) Passive microvalve
JP3202643B2 (ja) マイクロポンプおよびマイクロポンプの製造方法
JP2001507425A (ja) 組込み中間部品をもつマイクロポンプ
KR100884893B1 (ko) 마이크로 펌프
CN101512200A (zh) 用于加工用于控制流体流的部件的方法以及按该方法加工的部件
CN102649363B (zh) 流道结构、制造该流道结构的方法、以及液体喷射头
CN101255859A (zh) 采用钛镍铜合金膜驱动的弦锥结构微驱动器及制备方法
JP2007046721A (ja) 一方向弁
Tay et al. Low-cost metal micropump for drug delivery
CN113858540B (zh) 微流控芯片及其制造方法
JPH0466784A (ja) マイクロポンプおよびその製造方法
US20040069140A1 (en) Non-metallic pressure caps and diaphragm pump housings incorporating same
CN116624365A (zh) 一种基于超磁致伸缩材料的微流泵及其制作方法
JP2005331017A (ja) シール構造および真空外囲器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: DEBIOTECH SA

Free format text: FORMER OWNER: WESTONBRIDGE INTERNATIONAL LTD.

Effective date: 20051118

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20051118

Address after: Lausanne

Patentee after: Debiotech S. A.

Address before: Dublin, Ireland

Patentee before: Westonbridge International Ltd.

C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee