CN113264771B - 一种快速制备高强度碳泡沫的方法 - Google Patents

一种快速制备高强度碳泡沫的方法 Download PDF

Info

Publication number
CN113264771B
CN113264771B CN202110669352.6A CN202110669352A CN113264771B CN 113264771 B CN113264771 B CN 113264771B CN 202110669352 A CN202110669352 A CN 202110669352A CN 113264771 B CN113264771 B CN 113264771B
Authority
CN
China
Prior art keywords
carbon foam
foam
blank
strength carbon
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110669352.6A
Other languages
English (en)
Other versions
CN113264771A (zh
Inventor
贾建刚
巨佳康
高康博
潘子康
钮超
季根顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University of Technology
Original Assignee
Lanzhou University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University of Technology filed Critical Lanzhou University of Technology
Priority to CN202110669352.6A priority Critical patent/CN113264771B/zh
Publication of CN113264771A publication Critical patent/CN113264771A/zh
Application granted granted Critical
Publication of CN113264771B publication Critical patent/CN113264771B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种快速制备轻质高强度碳泡沫的方法,其步骤为:步骤(1)将商用酚醛树脂与2000目粒径的石英粉机械搅拌30 min以上均匀混合;步骤(2)加入少量苯磺酸,作为固化剂,继续搅拌10 min左右混合均匀获得混合浆料;步骤(3)将混合浆料倒入圆柱形模具中,并在100℃的箱式电阻炉中固化2 h;步骤(4)固化后的泡沫胚体置于真空管式电阻加热炉中,真空度为‑0.1MPa,并以5~15℃/min的升温速率升至1000℃,保温3 h之后随炉冷却至室温,以完成泡沫胚体的炭化;步骤(5)炭化后的泡沫胚体置于HF酸中超声刻蚀48 h以上,以滤出石英模板,获得最终的碳泡沫产品。

Description

一种快速制备高强度碳泡沫的方法
技术领域
本发明涉及无机多孔材料技术,具体是具低密度高强度特性的碳泡沫的制备技术。
背景技术
碳泡沫因其特殊的组织结构、低的密度、高的孔隙率、低的热膨胀系数、较大的比表面积、抗氧化性能优良、低成本、优异的吸声性能和电磁屏蔽性能等,被广泛应用于航空航天、核工业、超级电容器和催化剂载体等工业领域。
碳泡沫主要存在两种微观结构,一种是开放的网状玻璃态结构,另外一种是球形多孔结构。不同的结构赋予了其不同的特性,如网状玻璃态的碳泡沫一般呈现为开孔结构,开放的孔有利于发挥碳泡沫的吸附作用,此外还有如吸波等特性;而具有球形孔结构的碳泡沫更有利于导热、导电等特性的应用。
目前碳泡沫的发展主要利用它们的功能及结构性质,不论哪种类型的碳泡沫,经过无数次的改进与发展,但它们最显著的缺点是强度普遍较低,不同泡沫碳的结构和密度导致了力学性能的差异性。普通碳泡沫的压缩强度普遍较低,在作为结构或重载材料方面存在着严重的力学性能缺陷。换言之,就是由于多孔结构的特殊性质限制了高强度碳泡沫的发展,它们的广泛应用因此受到限制。此外,现有技术制备碳泡沫往往需要几十甚至上百小时,增加了制备成本。
发明内容
本发明的目的提供一种快速制备轻质高强度碳泡沫的方法。
本发明是一种快速制备轻质高强度碳泡沫的方法,其步骤为:
步骤(1)按照3:1、2:1、1:1和1:2四种比例,分别将商用酚醛树脂与2000目粒径的石英粉机械搅拌30 min以上均匀混合;
步骤(2)加入少量苯磺酸,作为固化剂,继续搅拌10 min左右混合均匀获得混合浆料;
步骤(3)将混合浆料倒入圆柱形模具中,并在100℃的箱式电阻炉中固化2 h;
步骤(4)固化后的泡沫胚体置于真空管式电阻加热炉中,真空度为-0.1MPa,并以5~15 ℃/min的升温速率升至1000℃,保温3 h之后随炉冷却至室温,以完成泡沫胚体的炭化;
步骤(5)炭化后的泡沫胚体置于HF酸中超声刻蚀48 h以上,以滤出石英模板,获得最终的碳泡沫产品。
本发明与现有技术相比有益效果为:
(1)本发明在制备过程中工艺路线简单,仅需要四步,极大的缩短了现有技术的制备周期;且对设备的严苛要求程度较小,仅需要箱式电阻炉和真空加热炉既可制备;制备碳泡沫的原材料成本较低且易于获得,无论在原材料还是工艺路线的设计,还是在设备条件上都极大的减少了制备成本。
(2)不同比例(酚醛树脂/石英模板)的泡沫胚体通过该工艺制备的碳泡沫密度分别为0.947 g/cm3、0.781 g/cm3、0.471 g/cm3和0.306 g/cm3,压缩强度分别为106.4 MPa、76.5 MPa、40.4 MPa和21.6 MPa,显著高于目前国内外现有研究相同密度水平的碳泡沫。
(3)本发明所制备的碳泡沫体积收缩率可控,且在等温炭化环境下样品的几何效应较小,因此可以达到定制产品的要求。
(4)本发明通过在不同树脂胚体中添加不同比重的石英模板,在树脂与固化剂比例一定的条件下,可以改变最终泡沫碳的孔径大小、孔径分布及孔隙率等,达到可控孔的目的。
附图说明
图1为碳泡沫的发明工艺流程图,图2为3:1固化后的泡沫生胚宏观形貌,图3为图2黄色方框的放大图,图4为2:1固化后的泡沫生胚宏观形貌,图5为图4黄色方框的放大图,图6为1:1固化后的泡沫生胚宏观形貌,图7为图6黄色方框的放大图,图8为1:2固化后的泡沫生胚宏观形貌,图9为图8黄色方框的放大图,图10为3:1炭后的泡沫胚体宏观形貌,图11为图10的放大图,图12为2:1炭后的泡沫胚体宏观形貌,图13为图12的放大图,图14为1:1炭后的泡沫胚体宏观形貌,图15为图14的放大图,图16为1:2炭后的泡沫胚体宏观形貌,图17为图16的放大图,图18为3:1碳泡沫的微观形貌,图19为图18中黄色方框中的放大图,图20为2:1碳泡沫的微观形貌,图21为图20中黄色方框中的放大图,图22为1:1碳泡沫的微观形貌,图23为图22中黄色方框中的放大图,图24为1:2碳泡沫的微观形貌,图25为图24中黄色方框中的放大图,图26为不同碳泡沫的压缩强度。
具体实施方式
如图1所示,本发明是一种快速制备轻质高强度碳泡沫的方法,其步骤为:
步骤(1)按照3:1、2:1、1:1和1:2四种比例,分别将商用酚醛树脂与2000目粒径的石英粉机械搅拌30 min以上均匀混合;
步骤(2)加入少量苯磺酸,作为固化剂,继续搅拌10 min左右混合均匀获得混合浆料;
步骤(3)将混合浆料倒入圆柱形模具中,并在100℃的箱式电阻炉中固化2 h;
步骤(4)固化后的泡沫胚体置于真空管式电阻加热炉中,真空度为-0.1MPa,并以5~15 ℃/min的升温速率升至1000℃,保温3 h之后随炉冷却至室温,以完成泡沫胚体的炭化;
步骤(5)炭化后的泡沫胚体置于HF酸中超声刻蚀48 h以上,以滤出石英模板,获得最终的碳泡沫产品。
依据GB/T 34559-2017有关规定,测试不同碳泡沫的压缩强度,待测试样几何尺寸为10 mm × 10 mm × 10 mm。
以上所述步骤(1)的机械混合不包括研磨,否则会破坏石英模板的晶型。步骤(1)机械混合为室温环境下搅拌不少于30 min。
以上所述步骤(2)加入固化剂后机械混合时间不宜超过20 min,持续搅拌有利于固化,但搅拌时间过长会导致固化成型不够均匀。
以上所述步骤(3)所述模压之后的混合浆料需在室温下自然静置24 h,使胚体定型。
以上所述步骤(4)炭化过程中的真空压力变化误差为±0.01 MPa。
以上所述步骤(5)超声刻蚀的过程中需要每10个小时更换一次滤出液,高饱和度的滤出液难以滤出残余模板,因此需要及时更换。
从图2~图9的不同比例碳泡沫生胚图可以看出,固化过程中所形成的球形孔随着石英浓度的增大而减小,并且孔径逐渐变的均匀。
图8宏观形貌呈现为红白相间的颜色分布主要是由于石英的浓度增大,导致树脂粘度减小,机械混合难度增大,固化前的生胚浆料不够均匀导致的。
从图13~图19中不同比例炭化后的碳泡沫胚体图可以看出,碳化过程的进行会导致样品均匀收缩,而石英浓度越大,体积收缩率越小,同时球形孔体积也相应减小。
从图18~图25不同比例碳泡沫微观结构可以看出,胚体中石英浓度增大,球形孔孔径减小,孔径分布逐渐均匀,孔壁变薄,柱状韧带变细,镶嵌在韧带内部的球形闭孔减少。
从图26不同比例碳泡沫的压缩性能柱状图可以看出,胚体中石英浓度增大,密度、压缩强度和比压缩强度均呈线性降低,但就任一密度条件下的碳爬模,均有着其独特的性能优势。
本发明工艺流程如图1所示,以下结合具体实例来详细说明本发明的制备工艺。
实施例1:
(1)制备树脂与石英比重为3:1的碳泡沫,首先准备热固性的酚醛树脂15 g(粘度:16000~19000 MP/25℃;残炭率:40~45%;纯度:99%),粒径为2000目的石英粉5 g(主要成分:SiO2,纯度:99%),石英粉在100℃的箱式电阻炉中干燥1 h后备用;
(2)将酚醛树脂倒入研钵中,缓慢加入石英粉,并持续搅拌,搅拌约30 min以上停止搅拌,加入微量的固化剂(苯磺酸),继续搅拌8~10 min至混合浆料为粘稠状,将调配好的混合浆料倒入预制的圆柱形模具中;
(3)将预制的胚体浆料置于室温环境下的空气中,静置24 h至胚体浆料固化定型;
(4)将固化后的泡沫胚体置于箱式电阻加热炉中,并升温至100℃,保持2 h之后随炉自然冷却至室温,完成泡沫生胚的最终固化过程;
(5)固化后的泡沫胚体通过砂轮机和砂纸等将毛边和表面打磨平整,之后将胚体置于管式电阻加热炉中,以10 ℃/min的升温速率从室温快速加热至1000℃,保持3 h,之后结束升温程序随炉冷却至室温,完成胚体的炭化过程;
(6)将炭化后的泡沫胚体表面打磨平整,完全浸入滤出液HF酸中,浸泡约48 h以上,其中每隔6 h更换一次HF酸,并在超声波清洗仪中超声振荡15 min;
(7)完成滤出工艺的碳泡沫首先通过无水乙醇超声清洗15 min,并反复操作3次,最终制备出3:1(酚醛树脂:石英粉)的碳泡沫。
经测试,采用该工艺制备的碳泡沫密度为0.947 g/cm3,压缩强度为106.4 MPa,比压缩强度为112.35 MPa·cm3/g。
实施例2:
(1)制备树脂与石英比重为1:1的碳泡沫,首先准备热固性的酚醛树脂10 g(粘度:16000~19000 MP/25℃;残炭率:40~45%;纯度:99%),粒径为2000目的石英粉10 g(主要成分:SiO2,纯度:99%),石英粉在100℃的箱式电阻炉中干燥1 h后备用;
(2)将酚醛树脂倒入研钵中,缓慢加入石英粉,并持续搅拌,搅拌约30 min以上停止搅拌,加入微量的固化剂(苯磺酸),继续搅拌8~10 min至混合浆料为粘稠状,将调配好的混合浆料倒入预制的圆柱形模具中;
(3)将预制的胚体浆料置于室温环境下的空气中,静置24 h至胚体浆料固化定型;
(4)将固化后的泡沫胚体置于箱式电阻加热炉中,并升温至100℃,保持2 h之后随炉自然冷却至室温,完成泡沫生胚的最终固化过程;
(5)固化后的泡沫胚体通过砂轮机和砂纸等将毛边和表面打磨平整,之后将胚体置于管式电阻加热炉中,以10 ℃/min的升温速率从室温快速加热至1000℃,保持3 h,之后结束升温程序随炉冷却至室温,完成胚体的炭化过程;
(6)将炭化后的泡沫胚体表面打磨平整,完全浸入滤出液HF酸中,浸泡约48 h以上,其中每隔6 h更换一次HF酸,并在超声波清洗仪中超声振荡15 min;
(7)完成滤出工艺的碳泡沫首先通过无水乙醇超声清洗15 min,并反复操作3次,最终制备出1:1(酚醛树脂:石英粉)的碳泡沫。
经测试,采用该工艺制备的碳泡沫密度为0.471 g/cm3,压缩强度为40.4 MPa,比压缩强度为85.77 MPa·cm3/g。
本发明未详细说明部分属于本领域技术人员公知常识。

Claims (6)

1.一种快速制备高强度碳泡沫的方法,其特征在于,其步骤为:
步骤(1)分别按照3:1、2:1、1:1、1:2四种比例,将商用酚醛树脂与2000目粒径的石英粉机械搅拌30 min以上均匀混合;
步骤(2)加入少量苯磺酸,作为固化剂,继续搅拌10 min混合均匀获得混合浆料;
步骤(3)将混合浆料倒入圆柱形模具中,并在100℃的箱式电阻炉中固化2 h;
步骤(4)固化后的泡沫生胚置于真空管式电阻加热炉中,真空度为-0.1MPa,并以5~15℃/min的升温速率升至1000℃,保温3 h之后随炉冷却至室温,以完成泡沫胚体的炭化;
步骤(5)炭化后的泡沫胚体置于HF酸中超声刻蚀48 h以上,以溶解沥出石英模板,获得最终的碳泡沫产品。
2.根据权利要求1所述的快速制备高强度碳泡沫的方法,其特征在于,所述步骤(1)的机械混合不包括研磨。
3.根据权利要求1所述的快速制备高强度碳泡沫的方法,其特征在于,所述步骤(1)机械混合为室温环境下搅拌不少于30 min。
4.根据权利要求1所述的快速制备高强度碳泡沫的方法,其特征在于,所述步骤(2)加入固化剂后机械混合时间不超过20 min,持续搅拌有利于固化。
5.根据权利要求1所述的快速制备高强度碳泡沫的方法,其特征在于,步骤(3)将混合浆料倒入圆柱形模具后,将其置于室温环境下的空气中,静置24h至胚体浆料固化成型。
6.根据权利要求1所述的快速制备高强度碳泡沫的方法,其特征在于,步骤(5)所述超声刻蚀的过程中需要每10个小时更换一次溶解液。
CN202110669352.6A 2021-06-17 2021-06-17 一种快速制备高强度碳泡沫的方法 Active CN113264771B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110669352.6A CN113264771B (zh) 2021-06-17 2021-06-17 一种快速制备高强度碳泡沫的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110669352.6A CN113264771B (zh) 2021-06-17 2021-06-17 一种快速制备高强度碳泡沫的方法

Publications (2)

Publication Number Publication Date
CN113264771A CN113264771A (zh) 2021-08-17
CN113264771B true CN113264771B (zh) 2022-07-08

Family

ID=77235373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110669352.6A Active CN113264771B (zh) 2021-06-17 2021-06-17 一种快速制备高强度碳泡沫的方法

Country Status (1)

Country Link
CN (1) CN113264771B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040091415A1 (en) * 2002-11-13 2004-05-13 Yu Jong Sung Method for preparing nanoporous carbons with enhanced mechanical strength and the nanoporous carbons prepared by the method
US20070116624A1 (en) * 2005-11-22 2007-05-24 Samsung Sdi Co., Ltd. Mesoporous carbon, method of preparing the same, and fuel cell using the carbon
CN103059503A (zh) * 2013-01-11 2013-04-24 陕西煤业化工技术研究院有限责任公司 一种酚醛泡沫塑料及其制备方法以及泡沫炭的制备方法
CN105531241A (zh) * 2013-09-20 2016-04-27 赫罗伊斯石英玻璃股份有限两合公司 制造多孔碳产品的方法
CN107200600A (zh) * 2017-07-24 2017-09-26 苏州宏久航空防热材料科技有限公司 一种具有低导热系数的泡沫碳基复合材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270938A (ja) * 1992-03-25 1993-10-19 Sumitomo Metal Ind Ltd 多孔質炭素材の製造方法
US20050023727A1 (en) * 2003-04-29 2005-02-03 Sampson James K. Autoclave molding system for carbon composite materials
TWI243507B (en) * 2004-12-30 2005-11-11 Ind Tech Res Inst Hollow mesocarbon electrode-catalyst for direct methanol fuel cell and preparation thereof
CN101531359A (zh) * 2009-04-28 2009-09-16 湖南理工学院 一种储能用多孔炭材料的制备方法
DE102010049249A1 (de) * 2010-10-25 2012-04-26 Heraeus Quarzglas Gmbh & Co. Kg Poröses Kohlenstofferzeugnis, Verfahren für seine Herstellung und Verwendung desselben
CN102060287B (zh) * 2010-11-23 2012-08-29 烟台鲁航炭材料科技有限公司 一种惰性气氛炉用低密度泡沫炭保温材料的生产方法
EP3476815B1 (en) * 2017-10-27 2023-11-29 Heraeus Quarzglas GmbH & Co. KG Production of a porous product including post-adapting a pore structure
CN109081704A (zh) * 2018-08-17 2018-12-25 苏州宏久航空防热材料科技有限公司 一种孔径梯度变化的碳泡沫的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040091415A1 (en) * 2002-11-13 2004-05-13 Yu Jong Sung Method for preparing nanoporous carbons with enhanced mechanical strength and the nanoporous carbons prepared by the method
US20070116624A1 (en) * 2005-11-22 2007-05-24 Samsung Sdi Co., Ltd. Mesoporous carbon, method of preparing the same, and fuel cell using the carbon
CN103059503A (zh) * 2013-01-11 2013-04-24 陕西煤业化工技术研究院有限责任公司 一种酚醛泡沫塑料及其制备方法以及泡沫炭的制备方法
CN105531241A (zh) * 2013-09-20 2016-04-27 赫罗伊斯石英玻璃股份有限两合公司 制造多孔碳产品的方法
CN107200600A (zh) * 2017-07-24 2017-09-26 苏州宏久航空防热材料科技有限公司 一种具有低导热系数的泡沫碳基复合材料

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EMI shielding performance of phenolic-based carbon foam modified with GO/SiO2 hybrid nanomaterials;Zeng Y et al.;《Chemical Physics Letters》;20191231;第715卷;第149-158页 *
Synthesis of SiO2/3D porous carbon composite as anode material with enhanced lithium storage performance;Yuan Z et al.;《Chemical Physics Letters》;20161231;第651卷;第166-172页 *
介孔碳的研究进展及应用;李鹏刚;《化工进展》;20181231;第37卷(第1期);第19-23页 *
泡沫炭的制备及应用;赵鑫等;《林产化学与工业》;20120628(第03期);第117-125页 *

Also Published As

Publication number Publication date
CN113264771A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
CN107200597B (zh) 一种高孔隙率复杂多孔陶瓷的直接凝固注模成型制备方法
CN111499405B (zh) 一种多孔陶粒的制备方法和产品及其在混凝土地铁轨道吸音板中的应用
CN113603503A (zh) 微孔陶瓷雾化芯及其制备方法
CN105294111A (zh) 一种氮化硅多孔陶瓷的凝胶注模成型方法
CN103787689A (zh) 一种碳化硅泡沫陶瓷的制备方法
CN110078493B (zh) 模板法制备陶瓷微球的方法
CN113264771B (zh) 一种快速制备高强度碳泡沫的方法
CN102976758B (zh) 一种大孔互联SiC陶瓷的制备方法
KR101494501B1 (ko) 다이렉트 발포방식을 이용한 기능성 다공체 세라믹 재료의 제조방법 및 기능성 다공체 세라믹 재료
CN109020414B (zh) 一种复合水泥基吸附材料及其制备方法
CN108892531A (zh) 一种多孔泡沫碳化硅陶瓷的制备方法
CN105414469A (zh) 一种泵阀铸件用易脱模复合改性水玻璃砂及其制备方法
RU2542077C1 (ru) Способ получения открытопористого материала на основе стеклоуглерода
KR100879127B1 (ko) 동결성형을 이용한 다공체의 기공 제어방법 및 그에 의해제조된 다공체
CN110655389A (zh) 一种以介孔纳米氧化铝为基体的蜂窝陶瓷及其制备方法
CN103736323B (zh) 一种过滤板及其生产方法
Li et al. Fabrication of ultra-high-porosity cordierite foams by the thermo-foaming of powder dispersions in molten D-glucose anhydrous
CN107382274A (zh) 一种泡沫陶瓷材料的制备方法
CN108689638B (zh) 一种多功能泡沫吸附板及其制备方法
CN115418021B (zh) 一种纤维素气凝胶、其制备方法及应用
CN111849016A (zh) 一种隔热材料及其制备方法
NL2033277B1 (en) Method for preparing porous ceramic
Vijayan et al. Fabrication of large alumina foams by pyrolysis of thermo-foamed alumina–sucrose
CN107540810B (zh) 一种竹粉泡沫塑料的制备方法
CN115259892B (zh) 一种基于镍渣的气凝胶多级孔发泡陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant