CN113181914B - 一种过渡金属原位掺杂TiO2催化剂、制备方法及应用 - Google Patents

一种过渡金属原位掺杂TiO2催化剂、制备方法及应用 Download PDF

Info

Publication number
CN113181914B
CN113181914B CN202110410323.8A CN202110410323A CN113181914B CN 113181914 B CN113181914 B CN 113181914B CN 202110410323 A CN202110410323 A CN 202110410323A CN 113181914 B CN113181914 B CN 113181914B
Authority
CN
China
Prior art keywords
transition metal
tio
catalyst
temperature
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110410323.8A
Other languages
English (en)
Other versions
CN113181914A (zh
Inventor
张鹏
杨晓燕
李静茹
王佳任
尹良科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Shangqiu Normal University
Original Assignee
Tianjin Polytechnic University
Shangqiu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University, Shangqiu Normal University filed Critical Tianjin Polytechnic University
Priority to CN202110410323.8A priority Critical patent/CN113181914B/zh
Publication of CN113181914A publication Critical patent/CN113181914A/zh
Application granted granted Critical
Publication of CN113181914B publication Critical patent/CN113181914B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/22Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms
    • C07D295/24Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种过渡金属原位掺杂TiO2催化剂、制备方法及应用。以H2Ti3O7为原料,在过渡金属阳离子水溶液中进行离子交换得到MxH2‑ xTi3O7前驱体,经过高温煅烧使H2‑xTi3O7转变为TiO2基体,而交换的Mn+则以过渡金属单原子或多原子的形式原位掺杂入TiO2的晶格中,制得原子层面的过渡金属原子原位掺杂的M‑TiO2材料。该制备方法工艺路线简单、操作简便,掺杂离子分散度高,均匀性好,所需设备简单、易于放大生产,制得的过渡金属原位掺杂的M‑TiO2催化剂材料在水处理、催化氧化、储能、传感等领域展现出较好的应用前景。

Description

一种过渡金属原位掺杂TiO2催化剂、制备方法及应用
技术领域
本发明属于催化剂制备技术领域,具体涉及一种过渡金属原位掺杂TiO2催化剂、制备方法及应用。
背景技术
TiO2材料是一种常见的工业原料,不仅价格低廉,无毒无污染,耐高温,耐酸碱,化学性质稳定,并且与金属作用力强,是一种理想的催化剂载体材料。
此外,TiO2材料还被发现具有良好的光电化学特性,可以作为光催化剂在多个化学反应中表现出良好的催化活性。但是纯的TiO2光催化剂还存在两大缺点,使其至今未能真正应用于工业光催化生产中:(1)TiO2的本征禁带宽度太大(3.2eV),使其只能被紫外光激发,不能响应可见光。而在太阳光中的紫外线成分仅占3-5%,所以对太阳光的吸收效率太低成为制约TiO2光催化应用的一大难点;(2)单纯的TiO2材料的荧光效率较低,表面被光照所激发的光生电子(e-)会在极短的时间内与光生空穴(h+)重新结合,将能量释放出去,导致单纯的TiO2材料的光催化活性大大受限。研究显示在TiO2晶体结构中引入金属原子,会在TiO2半导体的带隙中创造新的过渡能级。过渡能级的引入一方面使得TiO2的禁带宽度变窄,可以被可见光激发。另一方面过渡能级可以有效转移光生电子或空穴,加快光生载流子的分离,提高TiO2的量子效率和光催化活性。所以制备金属掺杂的TiO2光催化剂,是实现TiO2材料在工业光催化应用的理想解决方案。
目前有许多种TiO2负载的金属或金属氧化物催化剂得以开发,并成功应用于多个催化反应中,催化剂的催化活性与其所负载的金属或金属氧化物的尺寸、分散度和载量等性质有很大影响。研究发现将金属或金属氧化物的颗粒尺寸减小到纳米尺度甚至是原子水平,可以极大提升催化剂的利用效率、催化效率和经济性,所以如何制备具有原子水平的金属掺杂/负载的TiO2催化剂,是实现这类催化剂工业生产的关键。
目前有许多的实验方案被提出,以制备金属掺杂的M-TiO2催化剂,但是现有的方法却不同程度地存在以下缺点:(1)实验方案中涉及危险性较大的强酸(如浓硫酸、浓硝酸、氢氟酸等)或昂贵的试剂。(2)使用了激烈的制备方法(如等离子体轰击,激光法等),不适合大规模生产,并且所掺入的金属原子分布不均匀,对M-TiO2催化剂的整体性能影响较大。(3)许多制得的M-TiO2催化剂中金属元素的种类、掺杂量、存在形式等多个关键参数调控空间小,大大限制了其催化性能的调变和应用范围。
发明内容
针对现有技术的不足,本发明提供一种操作简单、成本低廉的以H2Ti3O7为原料,构筑原位过渡金属掺杂的M-TiO2催化剂的方法,本发明方法获得催化剂的结构稳定,性质可控,催化效率高,在催化氧化、光催化反应均表现出较好的应用性。
本发明所述具体步骤为:
一种过渡金属原位掺杂TiO2催化剂的制备方法,包括以下步骤:
(1)前驱体制备:将3.88×10-3mol原料H2Ti3O7超声均匀分散到50~300mL浓度为0.01~0.5mol/L的过渡金属盐溶液中,室温下不断磁力搅拌,搅拌时间不少于18h,过滤,在不超过100℃的条件下干燥,得到MxH2-xTi3O7前驱体;
(2)高温煅烧:将步骤(1)的MxH2-xTi3O7前驱体放入管式炉中,在一定的气氛下高温煅烧,煅烧温度为600~900℃,升温速率在1~10℃/min,煅烧时间为1~4h,得到过渡金属原位掺杂的M-TiO2催化剂;
所述M为过渡金属元素,x为原子比,0<x<1。
优选地,所述过渡金属盐为醋酸锌、硝酸铋、硝酸锰、硝酸镉、硝酸铈、硝酸镧、硝酸钇、硝酸铁、硝酸钴、硝酸镍、硝酸铜、硝酸银、硝酸钯、硝酸铂、氯化金或氯化钌。
优选地,所述搅拌时间为24h。
优选地,所述煅烧处理的气氛是空气、氧气、氮气、氩气、氢气或氨气。
一种过渡金属原位掺杂TiO2催化剂的制备方法得到的M-TiO2催化剂。
优选地,所述过渡金属原子嵌入到催化剂晶格中。
一种过渡金属原位掺杂TiO2催化剂的制备方法得到的M-TiO2催化剂在催化氧化中的应用。
一种过渡金属原位掺杂TiO2催化剂的制备方法得到的M-TiO2催化剂在光催化中的应用。
本发明的有益效果是:
(1)方法适用范围广,可以适用不同的过渡金属盐溶液制备不同的过渡金属原子掺杂的M-TiO2催化剂;
(2)原料廉价易得,制备方法简单、安全,实验条件易于控制,生产成本低,适合大规模的工业生产;
(3)过渡金属原子可以均匀地分散在TiO2晶格中,过渡金属原子与基体TiO2的相互作用较强;
(4)M-TiO2材料整体的结构均匀性较好,结构稳定,所以此法所制备的M-TiO2材料非常适合用于催化氧化、光催化等各种催化反应中,并且可以通过调控过渡金属种类、载量、形态等条件达到控制M-TiO2催化剂催化活性的目的。
附图说明
图1是本发明所述的Cu原子掺杂的Cu-TiO2纳米棒的扫描电镜照片;
图2是本发明所述的Cu原子掺杂的Cu-TiO2纳米棒的XRD图;
图3是本发明所述的Cu原子掺杂的Cu-TiO2纳米棒的透射电镜照片;
图4是本发明所述的Ag原子掺杂的Ag-TiO2纳米棒的XRD谱图;
图5是本发明所述的Fe、Co、Ni原子掺杂的TiO2催化剂在催化氧化氮甲基吗啉(NMM)反应中的转化率图。
具体实施方式
实施例1
称取0.1g的H2Ti3O7原料,在超声辅助下将其加入到40mL浓度为0.1mol/L的氯化亚铜的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的Cu+离子交换达到平衡,过滤得交换完全的CuxH2- xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于80℃的烘箱中干燥过夜。将烘干的CuxH2-xTi3O7样品放入管式炉内煅烧,通入空气,然后从室温开始以5℃/min的速率升温到700℃,并在该温度下恒温2h,之后自然冷却至室温,收集得到棕色的Cu原子原位掺杂的Cu-TiO2催化剂,所得材料的XRD图谱如图1所示,可以看出,铜原子的掺杂并未改变TiO2的晶型结构,在电镜下观察可以看出,催化剂晶粒呈棒状,晶粒尺寸均一。
实施例2
称取0.1g的H2Ti3O7原料,在超声辅助下将其加入到50mL浓度为0.1mol/L的醋酸锌的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的Zn2+离子交换达到平衡,过滤得交换完全的ZnxH2- xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于80℃的烘箱中干燥过夜。将烘干的ZnxH2-xTi3O7样品放入管式炉内煅烧,通入空气,然后从室温开始以10℃/min的速率升温到800℃,并在该温度下恒温2h,之后自然冷却至室温,收集得到灰黑色的Zn原子原位掺杂的Zn-TiO2催化剂。
实施例3
称取0.5g的H2Ti3O7原料,在超声辅助下将其加入到100mL浓度为0.05mol/L的硝酸银的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌22h,使H2Ti3O7中的H+离子与溶液中的Ag+离子交换达到平衡,过滤得交换完全的AgxH2- xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于75℃的烘箱中干燥过夜。将烘干的AgxH2-xTi3O7样品放入管式炉内煅烧,通入空气,然后从室温开始以5℃/min的速率升温到750℃,并在该温度下恒温2h,之后自然冷却至室温,收集得到灰蓝色的Ag原子原位掺杂的Ag-TiO2催化剂。
实施例4
称取0.1g的H2Ti3O7原料,在超声辅助下将其加入到50mL浓度为0.05mol/L的氯化铁的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的Fe3+离子交换达到平衡,过滤得交换完全的FexH2- xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于60℃的烘箱中干燥过夜。将烘干的FexH2-xTi3O7样品放入管式炉内煅烧,通入空气,然后从室温开始以3℃/min的速率升温到750℃,并在该温度下恒温2h,之后自然冷却至室温,收集得到淡黄色的Fe原子原位掺杂的Fe-TiO2催化剂。
实施例5
称取0.1g的H2Ti3O7原料,在超声辅助下将其加入到100mL浓度为0.2mol/L的醋酸钴的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的Co2+离子交换达到平衡,过滤得交换完全的CoxH2- xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于80℃的烘箱中干燥过夜。将烘干的CoxH2-xTi3O7样品放入管式炉内煅烧,通入空气,然后从室温开始以8℃/min的速率升温到900℃,并在该温度下恒温4h,之后自然冷却至室温,收集得到淡绿色的Co原子原位掺杂的Co-TiO2催化剂。
实施例6
称取0.02g的H2Ti3O7原料,在超声辅助下将其加入到40mL浓度为0.15mol/L的硝酸铈的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的Ce3+离子交换达到平衡,过滤得交换完全的CexH2- xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于70℃的烘箱中干燥过夜。将烘干的CexH2-xTi3O7样品放入管式炉内煅烧,通入氩气,然后从室温开始以1℃/min的速率升温到650℃,并在该温度下恒温3h,之后自然冷却至室温,收集得到Ce原子原位掺杂的Ce-TiO2催化剂。
实施例7
称取0.1g的H2Ti3O7原料,在超声辅助下将其加入到40mL浓度为0.1mol/L的醋酸镍的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的Ni2+离子交换达到平衡,过滤得交换完全的NixH2- xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于75℃的烘箱中干燥过夜。将烘干的NixH2-xTi3O7样品放入管式炉内煅烧,通入空气,然后从室温开始以6℃/min的速率升温到700℃,并在该温度下恒温2h,之后自然冷却至室温,收集得到淡黄色Ni原子原位掺杂的Ni-TiO2催化剂。
实施例8
称取0.2g的H2Ti3O7原料,在超声辅助下将其加入到400mL浓度为0.01mol/L的氯化钯的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的Pd2+离子交换达到平衡,过滤得交换完全的PdxH2- xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于80℃的烘箱中干燥过夜。将烘干的PdxH2-xTi3O7样品放入管式炉内煅烧,通入空气,然后从室温开始以5℃/min的速率升温到600℃,并在该温度下恒温2h,之后自然冷却至室温。待高温反应完全结束,收集得到Pd原子原位掺杂的Pd-TiO2催化剂。
实施例9
称取0.1g的H2Ti3O7原料,在超声辅助下将其加入到60mL浓度为0.1mol/L的硝酸镧的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的La3+离子交换达到平衡,过滤得交换完全的LaxH2- xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于80℃的烘箱中干燥过夜。将烘干的LaxH2-xTi3O7样品放入管式炉内煅烧,通入氢气,然后从室温开始以10℃/min的速率升温到800℃,并在该温度下恒温3h,之后自然冷却至室温,收集得到La原子原位掺杂的La-TiO2催化剂。
实施例10
称取0.5g的H2Ti3O7原料,在超声辅助下将其加入到100mL浓度为0.1mol/L的硝酸锰的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的Mn2+离子交换达到平衡,过滤得交换完全的MnxH2- xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于80℃的烘箱中干燥过夜。将烘干的MnxH2-xTi3O7样品放入管式炉内煅烧,通入空气,然后从室温开始以3℃/min的速率升温到900℃,并在该温度下恒温3h,之后自然冷却至室温,收集得到黄绿色的Mn原子原位掺杂的Mn-TiO2催化剂。
实施例11
称取0.1g的H2Ti3O7原料,在超声辅助下将其加入到50mL浓度为0.01mol/L的氯金酸的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的Au3+离子交换达到平衡,过滤得交换完全的AuxH2- xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于80℃的烘箱中干燥过夜。将烘干的AuxH2-xTi3O7样品放入管式炉内煅烧,通入空气,然后从室温开始以5℃/min的速率升温到600℃,并在该温度下恒温1h,之后自然冷却至室温,收集得到Au原子原位掺杂的Au-TiO2催化剂。
实施例12
称取0.1g的H2Ti3O7原料,在超声辅助下将其加入到300mL浓度为0.01mol/L的氯铂酸的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的Pt4+离子交换达到平衡,过滤得交换完全的PtxH2- xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于80℃的烘箱中干燥过夜。将烘干的PtxH2-xTi3O7样品放入管式炉内煅烧,通入空气,然后从室温开始以4℃/min的速率升温到750℃,并在该温度下恒温4h,之后自然冷却至室温,收集得到Pt原子原位掺杂的Pt-TiO2催化剂。
实施例13
称取0.1g的H2Ti3O7原料,在超声辅助下将其加入到100mL浓度为0.2mol/L的硝酸钇的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的Y3+离子交换达到平衡,过滤得交换完全的YxH2Ti3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于80℃的烘箱中干燥过夜。将烘干的YxH2Ti3O7样品放入管式炉内煅烧,通入氧气,然后从室温开始以5℃/min的速率升温到900℃,并在该温度下恒温2h,之后自然冷却至室温,收集得到Y原子原位掺杂的Y-TiO2催化剂。
实施例14
称取0.1g的H2Ti3O7原料,在超声辅助下将其加入到80mL浓度为0.05mol/L的硝酸铟的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的In3+离子交换达到平衡,过滤得交换完全的InxH2- xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于80℃的烘箱中干燥过夜。将烘干的InxH2-xTi3O7样品放入管式炉内煅烧,通入氮气,然后从室温开始以10℃/min的速率升温到800℃,并在该温度下恒温3h,之后自然冷却至室温,收集得In原子原位掺杂的In-TiO2材料。
实施例15
称取0.1g的H2Ti3O7原料,在超声辅助下将其加入到50mL浓度为0.01mol/L的氯化钌的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的Ru3+离子交换达到平衡,过滤得到交换完全的RuxH2-xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于80℃的烘箱中干燥过夜。将烘干的RuxH2-xTi3O7样品放入管式炉内煅烧,通入空气,然后从室温开始以3℃/min的速率升温到600℃,并在该温度下恒温3h,之后自然冷却至室温。待高温反应完全结束,收集得到Ru原子原位掺杂的Ru-TiO2催化剂。
实施例16
称取0.2g的H2Ti3O7原料,在超声辅助下将其加入到100mL浓度为0.1mol/L的硝酸镉的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的Cd3+离子交换达到平衡,过滤得交换完全的CdxH2- xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于80℃的烘箱中干燥过夜。将烘干的CdxH2-xTi3O7样品放入管式炉内煅烧,通入空气,然后从室温开始以5℃/min的速率升温到700℃,并在该温度下恒温2h,之后自然冷却至室温,收集得到Cd原子原位掺杂的Cd-TiO2催化剂。
实施例17
称取0.1g的H2Ti3O7原料,在超声辅助下将其加入到50mL浓度为0.1mol/L的硝酸铋水溶液中(加入适量的硝酸,使硝酸铋溶解),并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,使H2Ti3O7中的H+离子与溶液中的Bi3+离子交换达到平衡,过滤得交换完全的BixH2-xTi3O7样品(x为原子比,0<x<1),用去离子水和乙醇交替洗涤,放于80℃的烘箱中干燥过夜。将烘干的BixH2-xTi3O7样品放入管式炉内煅烧,通入氨气,然后从室温开始以10℃/min的速率升温到900℃,并在该温度下恒温3h,之后自然冷却至室温,收集得到Bi原子原位掺杂的Bi-TiO2催化剂。
通过研究发现,H2Ti3O7原料与过渡金属阳离子经过长时间的离子交换,在温和条件下干燥,再经过高温煅烧,H2Ti3O7转变为TiO2,而其表面交换的过渡金属原子则被留在TiO2晶格中,形成单原子或多原子掺杂的M-TiO2材料。增加过渡金属盐的浓度,可以使交换到MxH2-xTi3O7前驱体上的过渡金属离子载量得以提高,经过高温煅烧之后,掺杂到TiO2中的过渡金属原子含量也随之增加。如果交换的过渡金属原子继续增加,TiO2结构中不仅有掺杂的过渡金属原子,而且表面还有过渡金属或过渡金属氧化物颗粒生成,制备得到既有颗粒负载又有原子掺杂的M-TiO2材料。由于此法是通过均匀交换的MxH2-xTi3O7前驱体原位高温制备的,所以在所得到的M-TiO2材料中掺杂过渡金属的分散性较高。过渡金属是原子级别嵌入TiO2晶格中,所以过渡金属原子与基体TiO2的相互作用较强。M-TiO2材料整体的结构均匀性较好,结构稳定,所以此法所制备的M-TiO2材料非常适合用于催化氧化、光催化等各种催化反应中,并且可以通过调控过渡金属种类、载量、形态等条件达到控制M-TiO2催化剂催化活性的目的。
实施例18
称取0.1g的TiO2,在超声辅助下将其加入到40mL浓度为0.1mol/L的氯化亚铜的水溶液中,并继续超声5-10min得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,过滤得固体样品,用去离子水和乙醇交替洗涤,放于80℃的烘箱中干燥过夜。将烘干的样品放入管式炉内煅烧,通入空气,然后从室温开始以5℃/min的速率升温到700℃,并在该温度下恒温2h,之后自然冷却至室温,收集得到的CuO负载的CuO/TiO2催化剂。
实施例19
称取0.1g的TiO2,在超声辅助下将其加入到40mL的水溶液中,并继续超声5-10min,得到分散均匀的悬浊液。室温下将此悬浊液持续磁力搅拌24h,然后将固体样品取出,放于80℃的烘箱中干燥过夜。将烘干的样品放入管式炉内煅烧,通入空气,然后从室温开始以5℃/min的速率升温到700℃,并在该温度下恒温2h,之后自然冷却至室温,收集得到白色的TiO2催化剂。
实施例20
光催化反应
按实施例1、实施例18和实施例19的方法制备催化剂,分别编号为I、II、III,用于可见光照射下降解水体中的有毒污染物(四环素)的反应中,催化剂用量为0.1g,超声分散在400mL浓度为20mg/L的四环素水溶液中。黑暗下搅拌0.5小时之后,将300W的Xe灯打开以提供可见光开始光催化反应。反应过程中使用风扇给灯源和反应器降温使整个反应体系始终保持室温,反应时间为2h。最终得到不同样品的催化结果如下表。
Figure BDA0003023932380000131
实施例21
催化氧化反应
将0.02g通过实施例4、5、7制得的催化剂加入到10g氮甲基吗啉(NMM)中,温度保持28℃,搅拌完全后逐滴滴加15g H2O2,从第一滴加入后计时开始,当H2O2全部加入之后将温度升至35℃,直至反应结束。期间每20min取一次样品,稀释后用液相色谱仪检测溶液中反应物氮甲基吗啉和产物氧化氮甲基吗啉(NMMO)的含量,得到Fe、Co、Ni原子掺杂的TiO2催化剂催化氧化氮甲基吗啉(NMM)反应的转化率图,可以看出,反应60min后,氮甲基吗啉的转化率均达到80%以上。
本发明方法具有较强普遍性,可以适用于不同的过渡金属盐溶液制备不同的过渡金属原子掺杂的M-TiO2催化剂。本发明所得过渡金属掺杂的M-TiO2材料的制备方法简便、安全、生产成本较低,易于操作和调控,适宜工业生产应用。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (4)

1.一种过渡金属原位掺杂 TiO2催化剂在催化氧化氮甲基吗啉中的应用,其特征在于,所述催化剂的制备方法包括以下步骤:
(1)前驱体制备:将 3.88×10-3mol 原料 H2Ti3O7超声均匀分散到
50~300 mL 浓度为 0.01~0.5 mol/L 过渡金属盐溶液中,室温下不断磁力搅拌,搅拌时间不少于18 h,过滤,在不超过100℃的条件下干燥,得到 MXH2-XTi3O7前驱体;
(2)高温煅烧:将步骤(1)的 MXH2-XTi3O7前驱体放入管式炉中,
在一定的气氛下高温煅烧,煅烧温度为 600~900℃,升温速率在 1~10℃/min,煅烧时间为 1~4 h,得到过渡金属原位掺杂的M-TiO2催化剂;
所述M为过渡金属元素,x为原子比,0<x<1;
所述过渡金属盐为硝酸铁、硝酸钴或硝酸镍。
2.根据权利要求 1 所述的应用,其特征在于,所述搅拌时间为 24 h。
3.根据权利要求 1 所述的应用,其特征在于,所述煅烧处理的气氛是空气、氧气、氮气、氩气、氢气或氨气。
4.根据权利要求 1 所述的应用,其特征在于,所述过渡金属原子嵌入到催化剂的晶格中。
CN202110410323.8A 2021-04-16 2021-04-16 一种过渡金属原位掺杂TiO2催化剂、制备方法及应用 Active CN113181914B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110410323.8A CN113181914B (zh) 2021-04-16 2021-04-16 一种过渡金属原位掺杂TiO2催化剂、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110410323.8A CN113181914B (zh) 2021-04-16 2021-04-16 一种过渡金属原位掺杂TiO2催化剂、制备方法及应用

Publications (2)

Publication Number Publication Date
CN113181914A CN113181914A (zh) 2021-07-30
CN113181914B true CN113181914B (zh) 2023-04-18

Family

ID=76977160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110410323.8A Active CN113181914B (zh) 2021-04-16 2021-04-16 一种过渡金属原位掺杂TiO2催化剂、制备方法及应用

Country Status (1)

Country Link
CN (1) CN113181914B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114653370B (zh) * 2022-02-24 2023-06-06 北京化工大学 金属氧化物基金属单原子催化剂及其制备方法和应用
CN116159570A (zh) * 2022-11-04 2023-05-26 佛山东佛表面科技有限公司 一种Co掺杂TiO2纳米片阵列整体式光催化剂的制备方法和应用
CN116251587A (zh) * 2023-03-06 2023-06-13 中国科学院东北地理与农业生态研究所 一种纳米Pt-TiO2复合光催化剂制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030366A (zh) * 2010-11-10 2011-04-27 河南师范大学 一种稀土元素离子掺杂钛酸纳米管的制备方法
CN102921456B (zh) * 2012-11-07 2014-09-10 中国科学院上海硅酸盐研究所 一种非均相催化剂及其制备方法和应用
CN103394343B (zh) * 2013-08-16 2015-06-03 河海大学 一种金属掺杂二氧化钛材料的制备方法及其应用
CN108298633B (zh) * 2018-01-28 2021-08-13 吴江市永前纺织印染有限公司 一种纳米TiO2光催化剂降解染料废水的工艺
CN109046421B (zh) * 2018-07-24 2019-06-28 山东科技大学 一种利用季铵碱制备c,n共掺杂纳米管/棒催化材料的方法
CN109292815B (zh) * 2018-09-04 2021-03-05 陕西理工大学 一种TiO2纳米片团簇膜的原位制备方法

Also Published As

Publication number Publication date
CN113181914A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
CN113181914B (zh) 一种过渡金属原位掺杂TiO2催化剂、制备方法及应用
Zhao et al. From solid-state metal alkoxides to nanostructured oxides: a precursor-directed synthetic route to functional inorganic nanomaterials
Yuan et al. CeOx-coupled MIL-125-derived C-TiO2 catalysts for the enhanced photocatalytic abatement of tetracycline under visible light irradiation
CN103263920B (zh) 一种TiO2负载的高分散金属催化剂及其制备方法
CN103894177B (zh) 一种具有光催化活性的稀土掺杂钛酸钾粉末的合成方法
CN107469804A (zh) 一种纳米颗粒铋负载的二氧化钛基复合光催化材料及其制备方法和应用
CN110064394A (zh) 一种具有高催化降解活性的Ag@Ag2O/BiOCl复合材料及其制备方法
CN108355647A (zh) 一种锰基氧化物催化剂
CN103372424B (zh) 一种高活性n-f共掺杂钒酸铋可见光光催化材料的合成方法
CN102794186B (zh) 卤氧化物光催化材料及其制备方法
An et al. The multiple roles of rare earth elements in the field of photocatalysis
CN104289240A (zh) 一种Ag3PO4/BiVO4异质结复合光催化剂的制备方法
CN101601994A (zh) 稀土改性碳纳米管-TiO2光催化剂的制备方法
CN113797935B (zh) 一种用于低温高效处理VOCs的催化剂及其制备方法
CN107159223B (zh) 一种钴酸镧/凹凸棒土/还原氧化石墨烯纳米结构复合材料及其制备方法和应用
CN106745166A (zh) 一种量子点氧化铈/改性氧化铈纳米材料的合成方法
CN102389836B (zh) 聚苯胺/二氧化钛/粘土纳米复合光催化剂及其制备方法
CN104056619A (zh) 一种利用WO3和稀土金属元素La对光催化剂TiO2进行改性的方法
Chen et al. Review on the preparation and performance improvement methods of bismuth photocatalyst materials
CN106492885A (zh) 一种GNs/CoPcS/TiO2光催化剂的制备方法
CN102101051B (zh) 一种能降解氮氧化物的碳纳米管负载型纳米光催化材料的制备方法
CN102513090A (zh) 具有可见光催化活性的碳掺杂半导体氧化物及其制备方法
CN107442117B (zh) 一种尾气净化用催化剂
CN106975509A (zh) 一种氮、铁共掺杂钒酸铋可见光催化剂的制备方法及应用
CN110354845A (zh) 一种碳纳米点修饰的钨酸铋光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant