CN112928271B - In-situ delamination method of hydrotalcite nanosheet array for electrocatalytic small molecule oxidation coupling hydrogen production - Google Patents
In-situ delamination method of hydrotalcite nanosheet array for electrocatalytic small molecule oxidation coupling hydrogen production Download PDFInfo
- Publication number
- CN112928271B CN112928271B CN202110099787.1A CN202110099787A CN112928271B CN 112928271 B CN112928271 B CN 112928271B CN 202110099787 A CN202110099787 A CN 202110099787A CN 112928271 B CN112928271 B CN 112928271B
- Authority
- CN
- China
- Prior art keywords
- nanosheet array
- electrocatalytic
- hydrotalcite
- small molecule
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002135 nanosheet Substances 0.000 title claims abstract description 80
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 title claims abstract description 57
- 229960001545 hydrotalcite Drugs 0.000 title claims abstract description 57
- 229910001701 hydrotalcite Inorganic materials 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 28
- 230000003647 oxidation Effects 0.000 title claims abstract description 26
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 239000001257 hydrogen Substances 0.000 title claims abstract description 22
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 22
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 21
- 150000003384 small molecules Chemical class 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 230000008878 coupling Effects 0.000 title claims abstract 3
- 238000010168 coupling process Methods 0.000 title claims abstract 3
- 238000005859 coupling reaction Methods 0.000 title claims abstract 3
- 230000032798 delamination Effects 0.000 title abstract description 13
- 238000003491 array Methods 0.000 claims abstract description 17
- 238000004299 exfoliation Methods 0.000 claims abstract description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 239000011259 mixed solution Substances 0.000 claims description 15
- 150000003839 salts Chemical class 0.000 claims description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000008367 deionised water Substances 0.000 claims description 14
- 229910021641 deionized water Inorganic materials 0.000 claims description 14
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 239000004917 carbon fiber Substances 0.000 claims description 12
- 229910052744 lithium Inorganic materials 0.000 claims description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 12
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 11
- 239000004202 carbamide Substances 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 9
- 239000004744 fabric Substances 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 8
- 239000003792 electrolyte Substances 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 6
- 230000003068 static effect Effects 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 4
- 239000006260 foam Substances 0.000 claims description 4
- 229910021591 Copper(I) chloride Inorganic materials 0.000 claims description 3
- 229910013553 LiNO Inorganic materials 0.000 claims description 3
- 241000080590 Niso Species 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims description 3
- 238000005137 deposition process Methods 0.000 claims description 3
- 229910001510 metal chloride Inorganic materials 0.000 claims description 3
- 229910001960 metal nitrate Inorganic materials 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 125000001033 ether group Chemical group 0.000 claims description 2
- 239000007774 positive electrode material Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- 238000004146 energy storage Methods 0.000 abstract 1
- 238000007429 general method Methods 0.000 abstract 1
- 239000000454 talc Substances 0.000 abstract 1
- 229910052623 talc Inorganic materials 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 14
- BLJNPOIVYYWHMA-UHFFFAOYSA-N alumane;cobalt Chemical compound [AlH3].[Co] BLJNPOIVYYWHMA-UHFFFAOYSA-N 0.000 description 10
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 10
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 9
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- NOEGNKMFWQHSLB-UHFFFAOYSA-N 5-hydroxymethylfurfural Chemical compound OCC1=CC=C(C=O)O1 NOEGNKMFWQHSLB-UHFFFAOYSA-N 0.000 description 4
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 4
- 239000010411 electrocatalyst Substances 0.000 description 4
- RJGBSYZFOCAGQY-UHFFFAOYSA-N hydroxymethylfurfural Natural products COC1=CC=C(C=O)O1 RJGBSYZFOCAGQY-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 238000004832 voltammetry Methods 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000005691 oxidative coupling reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种用于电催化小分子氧化耦合制氢的水滑石纳米片阵列的原位剥层方法,所述方法包括:(Ⅰ)水滑石纳米片阵列的水热生长;(Ⅱ)滑石纳米片阵列的电化学原位剥层等步骤。本发明提供了一种采用简单快速的水滑石纳米片阵列电化学原位剥层的较为普适的方法,采用本发明方法制备的超薄水滑石纳米片阵列可用于电催化小分子氧化耦合制氢等多种清洁能源储存与转化领域;合成步骤快速温和,剥层方法条件温和,操作简便,剥层后的超薄LDHs纳米片活性高,稳定性好。
The invention discloses an in-situ stripping method of a hydrotalcite nanosheet array used for electrocatalytic small molecule oxidation coupled with hydrogen production. The method comprises: (I) hydrothermal growth of the hydrotalcite nanosheet array; (II) Electrochemical in-situ delamination of talc nanosheet arrays and other steps. The invention provides a relatively general method for electrochemical in-situ stripping of a simple and fast hydrotalcite nanosheet array, and the ultrathin hydrotalcite nanosheet array prepared by the method of the invention can be used for electrocatalytic small molecule oxidation coupling preparation Hydrogen and other clean energy storage and conversion fields; the synthesis steps are fast and mild, the exfoliation method is mild, the operation is simple, and the ultrathin LDHs nanosheets after exfoliation have high activity and good stability.
Description
技术领域technical field
本发明属于无机纳米材料合成领域,具体涉及一种用于电催化小分子氧化耦合制氢的水滑石纳米片阵列的原位剥层方法。The invention belongs to the field of inorganic nano-material synthesis, in particular to an in-situ stripping method of a hydrotalcite nano-sheet array used for electrocatalytic small molecule oxidation coupled hydrogen production.
背景技术Background technique
化石燃料的消耗及其带来的污染问题是全人类都需要面对的严峻问题,寻找可再生的绿色清洁能源是当前科学研究的重要方向之一。氢气作为一种清洁能源具有热值高,燃烧无温室气体排放等优势,而通过电催化分解水是一种极具潜力的制氢方法。如何设计成本低活性高的电催化剂是其中的关键。此外,氧气析出反应(电催化分解水的半反应之一)所需过电势较大,产生的氧气价值不高,同时与产生的氢气混合时有***的危险。因此,发展热力学上更加有力的小分子氧化反应来代替氧气析出反应进行耦合制氢受到了越来越多的关注。小分子氧化反应在加快制氢效率的同时,还能制备高附加值的化学品。然而小分子氧化的产物较多,同时氧气析出反应的竞争导致其效率降低。因此,发展成本低,选择性好,效率高的小分子电催化剂是当前科学研究的热点。The consumption of fossil fuels and the pollution caused by them are serious problems that all human beings need to face. Finding renewable green and clean energy is one of the important directions of current scientific research. As a clean energy, hydrogen has the advantages of high calorific value and no greenhouse gas emissions, and electrocatalytic water splitting is a promising method for hydrogen production. How to design low-cost and high-activity electrocatalysts is the key. In addition, the oxygen evolution reaction (one of the half-reactions of electrocatalytic water splitting) requires a large overpotential, the oxygen produced is of low value, and there is a danger of explosion when mixed with the produced hydrogen. Therefore, the development of thermodynamically more powerful small-molecule oxidation reactions to replace the oxygen evolution reaction for coupled hydrogen production has received increasing attention. Small-molecule oxidation reactions can also produce high value-added chemicals while accelerating the hydrogen production efficiency. However, there are more products of small molecule oxidation, and the competition of the oxygen evolution reaction leads to a decrease in its efficiency. Therefore, the development of small-molecule electrocatalysts with low cost, good selectivity, and high efficiency is the focus of current scientific research.
层状双金属氢氧化物(LDHs,又称水滑石)是一类典型的主客体层状材料,由于其结构和性能可调的特点,在电催化剂领域被广泛研究。然而,其较大的厚度和尺寸成为了限制其活性的因素之一。因此,如何制备超薄结构的LDHs是提高其催化性能的关键。传统制备超薄LDHs的方法主要是剥层法,即对合成好的大块LDHs进行剥层,从而获得超薄结构。其中液相剥层的方法需要添加有机溶剂,同时剥层后的LDHs很容易再堆积;气相剥层方法对设备的要求很高,同时剥层效率较低。因此如何实现LDHs的高效剥层,同时获得活性高稳定性好的超薄LDHs电催化剂仍然是一个问题。Layered double metal hydroxides (LDHs, also known as hydrotalcites), a typical class of host-guest layered materials, have been extensively studied in the field of electrocatalysts due to their tunable structures and properties. However, its large thickness and size become one of the factors limiting its activity. Therefore, how to prepare ultrathin LDHs is the key to improve their catalytic performance. The traditional method for preparing ultrathin LDHs is mainly the delamination method, that is, the delamination of the synthesized bulk LDHs is performed to obtain an ultrathin structure. Among them, the liquid-phase delamination method needs to add organic solvent, and the LDHs after delamination are easy to re-stack; the vapor-phase delamination method has high requirements on equipment, and the delamination efficiency is low. Therefore, how to achieve efficient delamination of LDHs and obtain ultrathin LDHs electrocatalysts with high activity and high stability is still a problem.
发明内容SUMMARY OF THE INVENTION
本发明是为了克服现有技术中存在的缺点而提出的,其目的是提供一种用于电催化小分子氧化耦合制氢的水滑石纳米片阵列的原位剥层方法。The present invention is proposed in order to overcome the shortcomings in the prior art, and its purpose is to provide an in-situ delamination method for hydrotalcite nanosheet arrays used for electrocatalytic small molecule oxidation coupled hydrogen production.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
一种用于电催化小分子氧化耦合制氢的水滑石纳米片阵列的原位剥层方法,包括以下步骤:A method for in-situ exfoliation of a hydrotalcite nanosheet array for electrocatalytic small molecule oxidation coupled with hydrogen production, comprising the following steps:
(Ⅰ)水滑石纳米片阵列的水热生长(I) Hydrothermal growth of hydrotalcite nanosheet arrays
(ⅰ)配置一定浓度的金属盐和尿素的混合溶液并超声分散;(i) configure a mixed solution of metal salt and urea with a certain concentration and disperse ultrasonically;
(ⅱ)将清洁后的导电基底放入盛有步骤(ⅰ)混合溶液的水热釜中进行水热生长,生长结束后,将所得纳米片阵列洗涤干燥;(ii) putting the cleaned conductive substrate into a hydrothermal kettle containing the mixed solution of step (i) for hydrothermal growth, and after the growth is completed, washing and drying the obtained nanosheet array;
(Ⅱ)水滑石纳米片阵列的电化学原位剥层(II) Electrochemical in-situ exfoliation of hydrotalcite nanosheet arrays
(ⅰ)将步骤(Ⅰ)所得纳米片阵列作为电池正极,金属锂片作为电池负极组装电池;(i) using the nanosheet array obtained in step (I) as the positive electrode of the battery and the metal lithium sheet as the negative electrode of the battery to assemble the battery;
(ⅱ)将组装完成的电池在电池测试***中进行金属锂的沉积;(ii) depositing metallic lithium in the battery test system with the assembled battery;
(ⅲ)沉积过程结束后,将电池进行拆卸,并将沉积后的正极纳米片阵列取出后放入溶剂中进行静置剥层,剥层后将纳米片阵列清洗干燥,即得剥层后的超薄水滑石纳米片阵列。(iii) After the deposition process, the battery is disassembled, and the deposited cathode nanosheet array is taken out and placed in a solvent for static stripping. After stripping, the nanosheet array is cleaned and dried to obtain a stripped Ultrathin hydrotalcite nanosheet arrays.
在上述技术方案中,所述金属盐为金属硝酸盐或金属氯化盐;所述金属盐和尿素的混合溶液采用去离子水作为溶剂。In the above technical solution, the metal salt is a metal nitrate or a metal chloride; the mixed solution of the metal salt and urea uses deionized water as a solvent.
在上述技术方案中,所述金属盐为Fe(NO3)3、FeCl2、FeCl3、FeSO4、Fe2(SO4)3、Co(NO3)2、CoCl2、CoSO4、Ni(NO3)2、NiCl2、NiSO4、Cu(NO3)2、CuCl2、CuSO4、Zn(NO3)2、V(NO3)4、TiCl4、VCl4、MoCl5、H8MoN2O4中的任意一种或多种。In the above technical solution, the metal salts are Fe(NO 3 ) 3 , FeCl 2 , FeCl 3 , FeSO 4 , Fe 2 (SO 4 ) 3 , Co(NO 3 ) 2 , CoCl 2 , CoSO 4 , Ni( NO 3 ) 2 , NiCl 2 , NiSO 4 , Cu(NO 3 ) 2 , CuCl 2 , CuSO 4 , Zn(NO 3 ) 2 , V(NO 3 ) 4 , TiCl 4 , VCl 4 , MoCl 5 , H 8 MoN Any one or more of 2O4 .
在上述技术方案中,所述金属盐的浓度为0.1mM~5mM;所述尿素的浓度为0.5mM~25mM。In the above technical solution, the concentration of the metal salt is 0.1 mM to 5 mM; the concentration of the urea is 0.5 mM to 25 mM.
在上述技术方案中,所述导电基底为碳纤维布、碳纤维纸、泡沫铜、铜网、泡沫镍、镍片、钛片或FTO中的任意一种。In the above technical solution, the conductive substrate is any one of carbon fiber cloth, carbon fiber paper, foamed copper, copper mesh, foamed nickel, nickel sheet, titanium sheet or FTO.
在上述技术方案中,所述导电基底的清洁方法具体为:将导电基底依次用稀盐酸、丙酮、无水乙醇、去离子水各超声15min。In the above technical solution, the cleaning method of the conductive substrate is specifically as follows: the conductive substrate is sonicated for 15 minutes each with dilute hydrochloric acid, acetone, absolute ethanol, and deionized water in sequence.
在上述技术方案中,所述水热生长的温度为90℃~120℃,生长时间根据金属盐种类确定;所述干燥的温度为60℃。In the above technical solution, the temperature of the hydrothermal growth is 90°C to 120°C, and the growth time is determined according to the type of metal salt; the drying temperature is 60°C.
在上述技术方案中,所述电池的电解液为含LiNO3添加的醚类电解液;所述作为电池正极的纳米片阵列的直径为10mm~16mm。In the above technical solution, the electrolyte of the battery is an ether electrolyte containing LiNO 3 added; the diameter of the nanosheet array as the positive electrode of the battery is 10 mm to 16 mm.
在上述技术方案中,所述金属锂的沉积时放电电流为0.1mA~1mA,放电时间为2h~24h,沉积时间根据正极材料确定。In the above technical solution, during the deposition of the metallic lithium, the discharge current is 0.1 mA to 1 mA, the discharge time is 2 h to 24 h, and the deposition time is determined according to the positive electrode material.
在上述技术方案中,所述静置剥层的静置时间为2h~12h;所述静置剥层的溶剂为水、甲醇或乙醇中的任意一种或多种。In the above technical solution, the standing time for the static peeling layer is 2h to 12h; the solvent for the static peeling layer is any one or more of water, methanol or ethanol.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明利用简便快速的电化学方法对LDHs纳米片实现了原位剥层,剥层过程中无需添加有机剥层溶剂,剥层效率高,剥层后的超薄结构在基底上能够保持稳定;本发明不但开创了一个全新的LDHs剥层方法,而且本方法所制备得到的纳米片具有优异的性能与应用前景,有望在电催化析氧反应(OER),电催化析氢反应(HER),电催化生物质氧化、锂电池正极材料、燃料电池等多领域实现应用。The invention realizes in-situ stripping of LDHs nanosheets by a simple and fast electrochemical method, without adding an organic stripping solvent during the stripping process, the stripping efficiency is high, and the ultrathin structure after stripping can be kept stable on the substrate; The invention not only creates a brand-new LDHs peeling method, but also the nanosheets prepared by the method have excellent performance and application prospects, and are expected to be used in electrocatalytic oxygen evolution reaction (OER), electrocatalytic hydrogen evolution reaction (HER), electrocatalytic hydrogen evolution reaction (HER), electrocatalytic Catalytic biomass oxidation, lithium battery cathode materials, fuel cells and other fields to achieve applications.
附图说明Description of drawings
图1是本发明实施例1制备的钴铝超薄水滑石纳米片阵列的扫描电镜照片;Fig. 1 is the scanning electron microscope photograph of the cobalt-aluminum ultra-thin hydrotalcite nanosheet array prepared in Example 1 of the present invention;
图2是本发明实施例2制备的镍铝超薄水滑石纳米片阵列的扫描电镜照片;Fig. 2 is the scanning electron microscope photograph of the nickel-aluminum ultra-thin hydrotalcite nanosheet array prepared by the embodiment of the present invention 2;
图3是本发明实施例3制备的镍铁超薄水滑石纳米片阵列的扫描电镜照片;Fig. 3 is the scanning electron microscope photograph of the nickel-iron ultra-thin hydrotalcite nanosheet array prepared by the embodiment of the present invention 3;
图4是本发明实施例1制备的钴铝超薄水滑石纳米片阵列的5-羟甲基糠醛氧化性能表征;Fig. 4 is the 5-hydroxymethyl furfural oxidation performance characterization of the cobalt-aluminum ultra-thin hydrotalcite nanosheet array prepared in Example 1 of the present invention;
图5是本发明实施例2制备的镍铝超薄水滑石纳米片阵列的苯甲醇氧化性能表征;5 is the characterization of the benzyl alcohol oxidation performance of the nickel-aluminum ultra-thin hydrotalcite nanosheet array prepared in Example 2 of the present invention;
图6是本发明实施例3制备的镍铁超薄水滑石纳米片阵列的苯胺氧化性能表征。6 is the aniline oxidation performance characterization of the nickel-iron ultra-thin hydrotalcite nanosheet array prepared in Example 3 of the present invention.
具体实施方式Detailed ways
为了使本技术领域的人员更好地理解本发明技术方案,下面结合说明书附图并通过具体实施方式来进一步说明本发明用于电催化小分子氧化耦合制氢的水滑石纳米片阵列的原位剥层方法的技术方案。In order to enable those skilled in the art to better understand the technical solution of the present invention, the in-situ hydrotalcite nanosheet array for electrocatalytic small molecule oxidation coupled hydrogen production of the present invention is further described below with reference to the accompanying drawings and specific embodiments. The technical scheme of the stripping method.
一种用于电催化小分子氧化耦合制氢的水滑石纳米片阵列的原位剥层方法,包括以下步骤:A method for in-situ exfoliation of a hydrotalcite nanosheet array for electrocatalytic small molecule oxidation coupled with hydrogen production, comprising the following steps:
(Ⅰ)水滑石纳米片阵列的水热生长(I) Hydrothermal growth of hydrotalcite nanosheet arrays
(ⅰ)将金属盐和尿素用去离子水溶解并超声分散,得到两者混合溶液;(i) dissolving metal salt and urea with deionized water and ultrasonically dispersing to obtain a mixed solution of the two;
金属盐为金属硝酸盐或金属氯化盐,为Fe(NO3)3、FeCl2、FeCl3、FeSO4、Fe2(SO4)3、Co(NO3)2、CoCl2、CoSO4、Ni(NO3)2、NiCl2、NiSO4、Cu(NO3)2、CuCl2、CuSO4、Zn(NO3)2、V(NO3)4、TiCl4、VCl4、MoCl5或H8MoN2O4中的任意一种或多种;Metal salts are metal nitrates or metal chlorides, such as Fe(NO 3 ) 3 , FeCl 2 , FeCl 3 , FeSO 4 , Fe 2 (SO 4 ) 3 , Co(NO 3 ) 2 , CoCl 2 , CoSO 4 , Ni(NO 3 ) 2 , NiCl 2 , NiSO 4 , Cu(NO 3 ) 2 , CuCl 2 , CuSO 4 , Zn(NO 3 ) 2 , V(NO 3 ) 4 , TiCl 4 , VCl 4 , MoCl 5 or H 8 Any one or more of MoN 2 O 4 ;
金属盐的浓度为0.1mM~5mM;尿素的浓度为0.5mM~25mM;去离子水的体积为25mL~100mL;The concentration of metal salts is 0.1mM to 5mM; the concentration of urea is 0.5mM to 25mM; the volume of deionized water is 25mL to 100mL;
(ⅱ)将清洁后的导电基底放入盛有步骤(ⅰ)混合溶液的水热釜中进行水热生长,生长结束后,将所得纳米片阵列洗涤干燥;(ii) putting the cleaned conductive substrate into a hydrothermal kettle containing the mixed solution of step (i) for hydrothermal growth, and after the growth is completed, washing and drying the obtained nanosheet array;
将导电基底清洁后放入聚四氟乙烯水热釜中,并加入步骤(ⅰ)中的分散好的混合液,在90℃~120℃的温度范围内进行反应生长,生长时间、温度随所选的盐种类进行适当调整;生长结束后,将所得纳米片阵列洗涤并置于60℃烘箱中进行干燥;After cleaning the conductive substrate, put it into a polytetrafluoroethylene hydrothermal kettle, add the dispersed mixed solution in step (i), and carry out reaction growth in the temperature range of 90 ° C ~ 120 ° C, and the growth time and temperature are selected according to the selection. After the growth, the obtained nanosheet arrays were washed and dried in an oven at 60 °C;
所述导电基底为碳纤维布、碳纤维纸、泡沫铜、铜网、泡沫镍、镍片、钛片或FTO中的任意一种;The conductive substrate is any one of carbon fiber cloth, carbon fiber paper, copper foam, copper mesh, nickel foam, nickel sheet, titanium sheet or FTO;
所述导电基底的清洁方法具体为:将导电基底依次用稀盐酸、丙酮、无水乙醇、去离子水各超声15min左右,以去除表面的杂质;The cleaning method of the conductive substrate is specifically as follows: the conductive substrate is sonicated for about 15 minutes in sequence with dilute hydrochloric acid, acetone, absolute ethanol and deionized water to remove impurities on the surface;
(Ⅱ)水滑石纳米片阵列的电化学原位剥层(II) Electrochemical in-situ exfoliation of hydrotalcite nanosheet arrays
(ⅰ)将步骤(Ⅰ)所得水滑石纳米片阵列裁剪成合适尺寸(直径10-16mm)并作为电池正极,以金属锂片作为负极进行电池组装,所用电解液为含LiNO3添加的醚类电解液。(i) The hydrotalcite nanosheet array obtained in step (I) is cut into a suitable size (10-16mm in diameter) and used as the positive electrode of the battery, and the lithium metal sheet is used as the negative electrode to assemble the battery, and the electrolyte used is an ether containing LiNO 3 added. Electrolyte.
(ⅱ)将组装完成的电池在电池测试***中进行金属锂的沉积:放电电流为:0.1-1mA,放电时间为2h~24h,具体沉积时间根据不同正极材料进行适当调整;(ii) Deposition of metallic lithium on the assembled battery in the battery test system: the discharge current is 0.1-1mA, the discharge time is 2h-24h, and the specific deposition time is appropriately adjusted according to different cathode materials;
(ⅲ)沉积过程结束后,将电池进行拆卸,并将沉积后的正极纳米片阵列取出后放入溶剂中进行静置剥层,静置时间为2h~12h。剥层后将纳米片阵列清洗并放入烘箱干燥,即得剥层后的超薄LDHs纳米片阵列。(iii) After the deposition process is completed, the battery is disassembled, and the deposited cathode nanosheet array is taken out and placed in a solvent for standing and peeling, and the standing time is 2h-12h. After stripping, the nanosheet array is cleaned and dried in an oven to obtain an ultrathin LDHs nanosheet array after stripping.
所述剥层溶剂为去离子水、甲醇或乙醇中的任意一种。The stripping solvent is any one of deionized water, methanol or ethanol.
实施例1Example 1
以本发明方法合成钴铝超薄水滑石纳米片阵列的具体步骤如下:The specific steps of synthesizing cobalt-aluminum ultra-thin hydrotalcite nanosheet arrays by the method of the present invention are as follows:
(ⅰ)利用水热法在泡沫镍基底表面生长钴铝水滑石纳米片阵列;(i) Cobalt-aluminum hydrotalcite nanosheet arrays were grown on the surface of foamed nickel substrates by hydrothermal method;
将Co(NO3)2、Al(NO3)3和尿素用去离子水溶解并超声分散,得到两者混合溶液;Dissolving Co(NO 3 ) 2 , Al(NO 3 ) 3 and urea with deionized water and ultrasonically dispersing them to obtain a mixed solution of the two;
将泡沫镍基底依次用稀盐酸、丙酮、无水乙醇、去离子水各超声15min左右,以去除表面的杂质;The foamed nickel substrate was sonicated with dilute hydrochloric acid, acetone, absolute ethanol, and deionized water for about 15 minutes each to remove impurities on the surface;
将泡沫镍基底清洁后放入聚四氟乙烯水热釜中,并加入分散好的混合液,在90℃下进行反应生长6小时;生长结束后,将所得纳米片阵列洗涤并置于60℃烘箱中进行干燥;After cleaning, the foamed nickel substrate was placed in a polytetrafluoroethylene hydrothermal kettle, and the dispersed mixed solution was added, and the reaction growth was carried out at 90 °C for 6 hours; after the growth, the obtained nanosheet array was washed and placed at 60 °C drying in an oven;
(ⅱ)将上一步所得的钴铝水滑石纳米片阵列作为正极进行锂电池组装并放电12小时;(ii) using the cobalt-aluminum hydrotalcite nanosheet array obtained in the previous step as a positive electrode to assemble a lithium battery and discharge it for 12 hours;
(ⅲ)放电完成后将电池进行拆卸并将正极去除放入无水乙醇溶液中静置6小时,干燥后可得钴铝超薄水滑石纳米片阵列。(iii) After the discharge is completed, the battery is disassembled and the positive electrode is removed and placed in an anhydrous ethanol solution for 6 hours. After drying, a cobalt-aluminum ultra-thin hydrotalcite nanosheet array can be obtained.
图1为制备所得的钴铝超薄水滑石纳米片阵列的扫描电子显微镜照片。FIG. 1 is a scanning electron microscope photograph of the prepared cobalt-aluminum ultrathin hydrotalcite nanosheet array.
图4位所制备的钴铝超薄水滑石纳米片在碱溶液(1摩尔每升的氢氧化钾溶液)中电催化5-羟甲基糠醛氧化的线性伏安扫描曲线,在含有10毫摩尔每升5-羟甲基糠醛的电解液中,钴铝超薄水滑石纳米片展现出更大的电流,说明所制备的钴铝超薄水滑石纳米片具有良好的5-羟甲基糠醛电催化氧化性能。Figure 4. Linear voltammetry curve of electrocatalytic oxidation of 5-hydroxymethylfurfural in alkaline solution (1 mol per liter of potassium hydroxide solution) prepared by cobalt-aluminum ultrathin hydrotalcite nanosheets, containing 10 mmol In the electrolyte of 5-hydroxymethyl furfural per liter, the cobalt-aluminum ultra-thin hydrotalcite nanosheets showed a larger current, indicating that the prepared cobalt-aluminum ultra-thin hydrotalcite nanosheets had good 5-hydroxymethyl furfural electricity. Catalytic oxidation performance.
实施例2Example 2
以本发明方法合成镍铝超薄水滑石纳米片阵列的具体步骤如下:The specific steps of synthesizing nickel-aluminum ultra-thin hydrotalcite nanosheet arrays by the method of the present invention are as follows:
(ⅰ)利用水热法在碳纤维布基底表面生长镍铝水滑石纳米片阵列;(i) Ni-aluminum hydrotalcite nanosheet arrays were grown on the surface of carbon fiber cloth substrate by hydrothermal method;
将Ni(NO3)2、Al(NO3)3和尿素用去离子水溶解并超声分散,得到两者混合溶液;Dissolving Ni(NO 3 ) 2 , Al(NO 3 ) 3 and urea with deionized water and ultrasonically dispersing them to obtain a mixed solution of the two;
将碳纤维布基底依次用稀盐酸、丙酮、无水乙醇、去离子水各超声15min左右,以去除表面的杂质;The carbon fiber cloth substrate was sonicated with dilute hydrochloric acid, acetone, anhydrous ethanol, and deionized water for about 15 minutes each to remove impurities on the surface;
将碳纤维布基底清洁后放入聚四氟乙烯水热釜中,并加入分散好的混合液,在110℃下进行反应生长8小时;生长结束后,将所得纳米片阵列洗涤并置于60℃烘箱中进行干燥;The carbon fiber cloth substrate was cleaned and put into a polytetrafluoroethylene hydrothermal kettle, and the dispersed mixed solution was added, and the reaction growth was carried out at 110 °C for 8 hours; after the growth, the obtained nanosheet array was washed and placed at 60 °C drying in an oven;
(ⅱ)将上一步所得的镍铝水滑石纳米片阵列作为正极进行锂电池组装并放电18小时;(ii) using the nickel-aluminum hydrotalcite nanosheet array obtained in the previous step as a positive electrode to assemble a lithium battery and discharge for 18 hours;
(ⅲ)放电完成后将电池进行拆卸并将正极去除放入无水乙醇溶液中静置10小时,干燥后可得镍铝超薄水滑石纳米片阵列。(iii) After the discharge is completed, the battery is disassembled and the positive electrode is removed and placed in an anhydrous ethanol solution for 10 hours. After drying, a nickel-aluminum ultra-thin hydrotalcite nanosheet array can be obtained.
图2为制备所得的镍铝超薄水滑石纳米片阵列的扫描电子显微镜照片。FIG. 2 is a scanning electron microscope photograph of the prepared nickel-aluminum ultrathin hydrotalcite nanosheet array.
图5位所制备的镍铝超薄水滑石纳米片在碱溶液(1摩尔每升的氢氧化钾溶液)中电催化苯甲醛氧化的线性伏安扫描曲线,在含有10毫摩尔每升苯甲醛的电解液中,镍铝超薄水滑石纳米片展现出更大的电流,说明所制备的镍铝超薄水滑石纳米片具有良好的苯甲醛电催化氧化性能。Figure 5. Linear voltammetry curve of electrocatalytic oxidation of benzaldehyde in alkaline solution (1 mol per liter potassium hydroxide solution) of the prepared nickel-aluminum ultrathin hydrotalcite nanosheets. In the electrolyte of , the nickel-aluminum ultrathin hydrotalcite nanosheets exhibited a larger current, indicating that the as-prepared nickel-aluminum ultrathin hydrotalcite nanosheets had good electrocatalytic oxidation performance of benzaldehyde.
实施例3Example 3
以本发明方法合成镍铁超薄水滑石纳米片阵列的具体步骤如下:The specific steps of synthesizing nickel-iron ultra-thin hydrotalcite nanosheet arrays by the method of the present invention are as follows:
(ⅰ)利用水热法在碳纤维布基底表面生长镍铁水滑石纳米片阵列;(i) Using the hydrothermal method to grow nickel-iron hydrotalcite nanosheet arrays on the surface of carbon fiber cloth substrate;
将Ni(NO3)2、Fe(NO3)3和尿素用去离子水溶解并超声分散,得到两者混合溶液;Dissolving Ni(NO 3 ) 2 , Fe(NO 3 ) 3 and urea with deionized water and ultrasonically dispersing them to obtain a mixed solution of the two;
将碳纤维布基底依次用稀盐酸、丙酮、无水乙醇、去离子水各超声15min左右,以去除表面的杂质;The carbon fiber cloth substrate was sonicated with dilute hydrochloric acid, acetone, anhydrous ethanol, and deionized water for about 15 minutes each to remove impurities on the surface;
将碳纤维布基底清洁后放入聚四氟乙烯水热釜中,并加入分散好的混合液,在120℃下进行反应生长12小时;生长结束后,将所得纳米片阵列洗涤并置于60℃烘箱中进行干燥;The carbon fiber cloth substrate was cleaned and put into a polytetrafluoroethylene hydrothermal kettle, and the dispersed mixed solution was added, and the reaction growth was carried out at 120 °C for 12 hours; after the growth, the obtained nanosheet array was washed and placed at 60 °C drying in an oven;
(ⅱ)将上一步所得的镍铁水滑石纳米片阵列作为正极进行锂电池组装并放电12小时;(ii) using the nickel-iron hydrotalcite nanosheet array obtained in the previous step as a positive electrode to assemble a lithium battery and discharge for 12 hours;
(ⅲ)放电完成后将电池进行拆卸并将正极去除放入无水甲醇溶液中静置12小时,干燥后可得镍铁超薄水滑石纳米片阵列。(iii) After the discharge is completed, the battery is disassembled, the positive electrode is removed, and the positive electrode is placed in an anhydrous methanol solution for 12 hours. After drying, the nickel-iron ultra-thin hydrotalcite nanosheet array can be obtained.
图2为制备所得的镍铁超薄水滑石纳米片阵列的扫描电子显微镜照片。Figure 2 is a scanning electron microscope photograph of the prepared nickel-iron ultra-thin hydrotalcite nanosheet array.
图5位所制备的镍铁超薄水滑石纳米片在碱溶液(1摩尔每升的氢氧化钾溶液)中电催化苯胺氧化的线性伏安扫描曲线,在含有10毫摩尔每升苯胺的电解液中,镍铁超薄水滑石纳米片展现出更大的电流,说明所制备的镍铁超薄水滑石纳米片具有良好的苯胺电催化氧化性能。Figure 5. Linear voltammetry curve of electrocatalytic aniline oxidation of the prepared nickel-iron ultrathin hydrotalcite nanosheets in alkaline solution (1 mol per liter of potassium hydroxide solution), in the electrolytic solution containing 10 mmol per liter of aniline In the liquid, the nickel-iron ultrathin hydrotalcite nanosheets exhibited a larger current, indicating that the as-prepared nickel-iron ultrathin hydrotalcite nanosheets had good aniline electrocatalytic oxidation performance.
本发明提供了一种通过原位剥层策略实现的用于小分子氧化耦合制氢的超薄水滑石纳米片阵列的制备方法,通过在导电基底上对水滑石纳米片进行原位剥层,获得了厚度在5nm以下的超薄结构,相比传统的剥层方法,本发明设计的原位剥层方法省时简便,同时避免了剥层后的纳米片在使用过程中重新堆叠所带来的稳定性差的问题,本发明所得的超薄水滑石纳米片阵列催化剂展现出对电催化小分子氧化的高活性和高稳定性,在各种绿色高效电催化和动力电池方面有着较强的应用的前景。The invention provides a preparation method of an ultra-thin hydrotalcite nanosheet array for small molecule oxidative coupling hydrogen production realized by an in-situ delamination strategy. An ultra-thin structure with a thickness of less than 5 nm is obtained. Compared with the traditional delamination method, the in-situ delamination method designed by the present invention is time-saving and convenient, and at the same time avoids the re-stacking of the delaminated nanosheets during use. Due to the problem of poor stability, the ultrathin hydrotalcite nanosheet array catalyst obtained by the present invention exhibits high activity and high stability for electrocatalytic small molecule oxidation, and has strong applications in various green and efficient electrocatalysis and power batteries. Prospects.
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。The applicant declares that the above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Those skilled in the art should Changes or substitutions that can be easily conceived within the technical scope all fall within the protection scope and disclosure scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110099787.1A CN112928271B (en) | 2021-01-25 | 2021-01-25 | In-situ delamination method of hydrotalcite nanosheet array for electrocatalytic small molecule oxidation coupling hydrogen production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110099787.1A CN112928271B (en) | 2021-01-25 | 2021-01-25 | In-situ delamination method of hydrotalcite nanosheet array for electrocatalytic small molecule oxidation coupling hydrogen production |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112928271A CN112928271A (en) | 2021-06-08 |
CN112928271B true CN112928271B (en) | 2022-07-05 |
Family
ID=76167546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110099787.1A Active CN112928271B (en) | 2021-01-25 | 2021-01-25 | In-situ delamination method of hydrotalcite nanosheet array for electrocatalytic small molecule oxidation coupling hydrogen production |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112928271B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114959771B (en) * | 2022-04-19 | 2023-10-20 | 南京信息工程大学 | Nickel-based electrocatalyst and hydrogen production synergistic formaldehyde wastewater degradation electrolytic cell |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102335627A (en) * | 2011-06-28 | 2012-02-01 | 太原理工大学 | Preparation method of metal complex functionalized hydrotalcite-like nano-layer sheet |
CN103920497A (en) * | 2014-04-02 | 2014-07-16 | 北京化工大学 | Preparation method of graphene-loaded ultrathin metal sheet with atomic-scale thickness |
CN106693945A (en) * | 2016-11-29 | 2017-05-24 | 北京化工大学 | Delaminated hydrotalcite nano-sheet based composite catalyst and preparation method therefor |
CN107673338A (en) * | 2017-11-13 | 2018-02-09 | 中南大学 | A kind of method for preparing graphene using discarded graphite electrode |
CN108554439A (en) * | 2018-05-11 | 2018-09-21 | 北京化工大学 | A kind of photo-reduction CO2 ultra-thin Ti bases LDHs composite photo-catalysts and preparation method thereof |
CN110876920A (en) * | 2018-09-06 | 2020-03-13 | 中国石油化工股份有限公司 | Method for preparing selective nitrate radical adsorbent |
-
2021
- 2021-01-25 CN CN202110099787.1A patent/CN112928271B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102335627A (en) * | 2011-06-28 | 2012-02-01 | 太原理工大学 | Preparation method of metal complex functionalized hydrotalcite-like nano-layer sheet |
CN103920497A (en) * | 2014-04-02 | 2014-07-16 | 北京化工大学 | Preparation method of graphene-loaded ultrathin metal sheet with atomic-scale thickness |
CN106693945A (en) * | 2016-11-29 | 2017-05-24 | 北京化工大学 | Delaminated hydrotalcite nano-sheet based composite catalyst and preparation method therefor |
CN107673338A (en) * | 2017-11-13 | 2018-02-09 | 中南大学 | A kind of method for preparing graphene using discarded graphite electrode |
CN108554439A (en) * | 2018-05-11 | 2018-09-21 | 北京化工大学 | A kind of photo-reduction CO2 ultra-thin Ti bases LDHs composite photo-catalysts and preparation method thereof |
CN110876920A (en) * | 2018-09-06 | 2020-03-13 | 中国石油化工股份有限公司 | Method for preparing selective nitrate radical adsorbent |
Non-Patent Citations (1)
Title |
---|
孟格等.水滑石纳米阵列电极在能量储存和转化中的应用.《中国科学:化学》.2017,(第04期), * |
Also Published As
Publication number | Publication date |
---|---|
CN112928271A (en) | 2021-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6749983B2 (en) | Method for producing bismuth nanosheet and use thereof | |
CN111686736B (en) | Preparation method of NiFe-LDH/NF three-dimensional self-supporting electrolytic water oxygen evolution catalyst containing high-activity high-valence iron | |
CN108118362A (en) | A kind of molybdenum disulfide electro-catalysis production hydrogen electrode and its preparation method and application | |
CN108796551B (en) | Sea urchin-like cobalt sulfide catalyst supported on nickel foam, preparation method thereof, and application as oxygen evolution catalyst for electrolysis of water | |
CN109650493B (en) | A kind of synthesis method of VS2 nanosheet array electrode material with hierarchical structure | |
CN112921351B (en) | A kind of preparation method and application of self-supporting catalytic electrode | |
CN112951623B (en) | Copper-cobalt-zinc composite self-supporting nano array electrode material and preparation method and application thereof | |
CN110820006B (en) | A MoS2 nanoribbon-embedded VS2 microflora self-supporting electrode and its preparation method and application | |
CN115928135B (en) | An iron-doped nickel hydroxide composite nickel selenide material and its preparation method and application | |
CN111101151A (en) | Preparation and application of molybdenum-doped cobalt selenide foam nickel composite electrode for water electrolysis | |
CN112080759A (en) | Preparation method of bismuth-doped bimetallic sulfide electrode for electrocatalytic oxidation of urea | |
CN115404511A (en) | A kind of nickel foam self-supporting cobalt-nickel bimetallic sulfide heterostructure anode electrocatalyst and its preparation method and application | |
CN112928271B (en) | In-situ delamination method of hydrotalcite nanosheet array for electrocatalytic small molecule oxidation coupling hydrogen production | |
CN110629248A (en) | A kind of preparation method of Fe-doped Ni(OH)2/Ni-BDC electrocatalyst | |
CN118704031A (en) | A NiCo alloy hydrogen evolution catalyst modified by rare earth oxide Eu2O3 supported on carbon cloth and its preparation method and application | |
CN117488336A (en) | Preparation method of ternary metal phosphide electrolytic water catalyst composite material | |
CN114134536B (en) | Sea urchin-shaped Ni@Ni 2 P@NiCoP electrode material and preparation method and application thereof | |
CN116219484A (en) | A high-efficiency bimetallic nitride/hydroxide heterostructure electrocatalyst, preparation method and application | |
CN116641091A (en) | Preparation method and application of dual-function catalyst for hydrogen evolution and oxygen evolution reaction | |
CN115573000B (en) | A highly active self-supporting bifunctional water electrolysis catalyst and its preparation and application | |
CN111841567A (en) | Preparation method and application of nickel-manganese oxyhydroxide film with Tuoling structure | |
CN115110113B (en) | Rod-shaped Co 2 C-MoN composite material and preparation method and application thereof | |
CN117144410B (en) | Ni5FeCuCrS3/MXene/NF electrocatalytic composite electrode and its preparation method and application | |
CN117144411B (en) | NiFeHP/MXene/NF self-supporting integral composite electrode and preparation method and application thereof | |
CN115181984B (en) | A Co-PiNiCoLDH@Nickel Foam electrode and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |