CN112846222B - 一种花状Bi/Bi2WO6纳米材料的制备方法 - Google Patents
一种花状Bi/Bi2WO6纳米材料的制备方法 Download PDFInfo
- Publication number
- CN112846222B CN112846222B CN202011600757.6A CN202011600757A CN112846222B CN 112846222 B CN112846222 B CN 112846222B CN 202011600757 A CN202011600757 A CN 202011600757A CN 112846222 B CN112846222 B CN 112846222B
- Authority
- CN
- China
- Prior art keywords
- bismuth nitrate
- flower
- deionized water
- copper pipe
- sodium tungstate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 claims abstract description 38
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910052802 copper Inorganic materials 0.000 claims abstract description 37
- 239000010949 copper Substances 0.000 claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000006243 chemical reaction Methods 0.000 claims abstract description 35
- 239000008367 deionised water Substances 0.000 claims abstract description 34
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 34
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000001816 cooling Methods 0.000 claims abstract description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 15
- 239000001257 hydrogen Substances 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000007789 sealing Methods 0.000 claims abstract description 11
- 238000005303 weighing Methods 0.000 claims abstract description 11
- 238000001035 drying Methods 0.000 claims abstract description 9
- 238000011049 filling Methods 0.000 claims abstract description 8
- 238000001914 filtration Methods 0.000 claims abstract description 8
- 238000003756 stirring Methods 0.000 claims abstract description 8
- 238000005406 washing Methods 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 239000004005 microsphere Substances 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 description 16
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 10
- 235000019270 ammonium chloride Nutrition 0.000 description 5
- 230000002194 synthesizing effect Effects 0.000 description 5
- 229910052797 bismuth Inorganic materials 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 239000002135 nanosheet Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000001699 photocatalysis Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000004729 solvothermal method Methods 0.000 description 3
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
- B22F9/26—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions using gaseous reductors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0553—Complex form nanoparticles, e.g. prism, pyramid, octahedron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种花状Bi/Bi2WO6纳米材料的制备方法,包括以下步骤:1)称取硝酸铋溶于去离子水中,调节所形成的硝酸铋溶液浓度为:0.1~0.2mol/L;2)称取钨酸钠溶解于去离子水中,调节所形成的钨酸钠溶液浓度为:0.01~0.02mol/L;3)将步骤1)所得硝酸铋溶液倒入步骤2)所得钨酸钠溶液中,调节钨酸钠和硝酸铋的摩尔比为1:1~1:2,搅拌后转移到高压反应釜中,用去离子水调节使体积占高压反应釜容积的2/3~4/5;4)将配置有反应物料的高压反应釜密闭,在120~140℃下保温14~20小时进行热处理;后降至室温,过滤,用去离子水、无水乙醇清洗,60℃~80℃温度下烘干后,转移至铜管中;5)将铜管填充0.3~0.4mPa的氢气并封闭,并转移至管式炉中,在330℃~350℃下处理2~3小时后,降至室温,制得花状Bi/Bi2WO6纳米材料。
Description
技术领域
本发明属于无机非金属材料领域,涉及一种花状Bi/Bi2WO6纳米材料的制备方法。
背景技术
钨酸铋(Bi2WO6)是一种窄禁带宽度的新型光催化剂,其禁带宽度约为2.7eV,可以吸收波长在450nm以内的可见光,因此,可以在可见光照射下催化降解有机污染物,有效地提高了对太阳光的利用效率。由[Bi2O2]和[WO4]沿[001]方向交替组成钙钛矿层状结构使得钨酸铋拥有独特的物理化学性质,使得其在光催化领域和铁电压电领域具有潜在的应用。同时,其原料资源丰富,对环境友好稳定性好等优点,因此具有广阔的应用前景。同时,将两种半导体进行复合是一种有效的提高光催化活性的手段。当两种相耦合的半导体的接触点形成良好的异质结界面时,其电子的迁移能力会得到极大的提高。
目前合成Bi2WO6和Bi系材料的主要方法包括微波、沉积和水热法等。其中,水热溶剂热法因容易控制晶体生长反应动力学,产物结晶度高等优点而广泛用于制备各种纳米材料,而不同颗粒形貌的呈现不同的电化学性能。目前,国内外花状Bi/Bi2WO6纳米材料的合成报道较少。
发明内容
本发明提出了一种工艺简单且易于控制的花状Bi/Bi2WO6纳米材料的水热-烧结合成制备方法。
本发明采取如下技术方案:
一种花状Bi/Bi2WO6纳米材料的制备方法,其包括以下步骤:
1)计量称取硝酸铋溶于去离子水中,调节所形成的硝酸铋溶液浓度为:0.1~0.2mol/L;
2)计量称取钨酸钠溶解于去离子水中,调节所形成的钨酸钠溶液浓度为:0.01~0.02mol/L;
3)将步骤1)所得硝酸铋溶液倒入步骤2)所得钨酸钠溶液中,调节其中钨酸钠和硝酸铋的摩尔比为1:1~1:2,搅拌后转移到高压反应釜中,用去离子水调节使体积占高压反应釜容积的2/3~4/5;
4)将配置有反应物料的高压反应釜密闭,在120~140℃下保温14~20小时进行热处理;后降至室温,过滤,依次用去离子水、无水乙醇清洗,60℃~80℃温度下烘干后,转移至铜管中;
5)将铜管填充0.3~0.4mPa的氢气并封闭,并转移至管式炉中,在330℃~350℃下处理 2~3小时后,降至室温,取出样品,即为花状Bi/Bi2WO6纳米材料。
优选的,氢气纯度大于99%。
优选的,所用的原料钨酸钠、硝酸铋和去离子水、无水乙醇的纯度均不低于化学纯。
优选的,所得的花状Bi/Bi2WO6纳米材料微球直径不大于2微米。
本发明所述花状Bi/Bi2WO6纳米材料的制备方法所制备的花状Bi/Bi2WO6纳米材料微球直径不大于2微米,分散性好,由厚度不大于30nm的纳米片自组装而成。Bi/Bi2WO6的颗粒尺寸小可以增大材料的比表面积,能够有效提高吸收光的能力。
本发明以硝酸铋、钨酸钠等为原料,通过调配溶剂中各项原料物质的量的比例、水热处理的时间和温度来控制钨酸铋的生长过程,和通过调控烧结过程的还原气氛压强、温度来实现花状Bi/Bi2WO6纳米材料的合成。本发明对水/溶剂热合成产物的清洗是为了清除过量的反应物,得到纯的Bi2WO6粉体。采用无水乙醇脱水和不高于80℃的烘干,是为了得到分散性良好的Bi2WO6粉体。
本发明工艺过程简单,易于控制,无环境污染,易于规模化生产;产品质量稳定,纯度高,粉体颗粒分散性好。
附图说明
图1本发明合成的花状Bi/Bi2WO6纳米材料的X射线衍射(XRD)图谱;
图2本发明合成的花状Bi/Bi2WO6纳米材料的扫描电子显微镜(SEM)照片。
具体实施方式
以下结合实施例进一步说明本发明。
实施例1
按以下工艺步骤合成花状Bi/Bi2WO6纳米材料:
1)计量量取硝酸铋溶于去离子水中,调节所形成的硝酸铋溶液浓度为:0.2mol/L(摩尔每升)。
2)计量称取钨酸钠溶解于去离子水中,调节所形成的钨酸钠溶液浓度为:0.02mol/L(摩尔每升)。
3)将步骤1)中所得溶液缓慢倒入步骤2)中所得溶液中,调节其中氯化铵和硝酸铋的摩尔比为1:2,搅拌5min后转移到高压反应釜中,用去离子水调节使其体积占反应釜容积的 4/5。
4)将配置有反应物料的反应釜密闭,在140℃下保温20小时进行热处理。而后,降至室温,过滤,依次用去离子水、无水乙醇清洗,60℃温度下烘干后,转移至铜管中。
5)将铜管填充0.3mPa的氢气并封闭(氢气纯度大于99%),并转移至管式炉中,在350℃下处理2小时后,降至室温,取出样品,得到花状Bi/Bi2WO6纳米材料。
本实施例所合成的花状Bi/Bi2WO6纳米材料的X射线衍射(XRD)图谱示于图1;其扫描电子显微镜(SEM)照片示于图2。
本实施例水/溶剂热法合成由厚度不大于30nm的纳米片自组装而成的花状Bi/Bi2WO6纳米微球。
实施例2
按以下工艺步骤合成花状Bi/Bi2WO6纳米材料:
1)计量量取硝酸铋溶于去离子水中,调节所形成的硝酸铋溶液浓度为:0.1mol/L(摩尔每升)。
2)计量称取钨酸钠溶解于去离子水中,调节所形成的钨酸钠溶液浓度为:0.01mol/L(摩尔每升)。
3)将步骤1)中所得溶液缓慢倒入步骤2)中所得溶液中,调节其中氯化铵和硝酸铋的摩尔比为1:1,搅拌后转移到高压反应釜中,用去离子水调节使其体积占反应釜容积的2/3。
4)将配置有反应物料的反应釜密闭,在120℃下保温14小时进行热处理。而后,降至室温,过滤,依次用去离子水、无水乙醇清洗,80℃温度下烘干后,转移至铜管中。
5)将铜管填充0.4mPa的氢气并封闭(氢气纯度大于99%),并转移至管式炉中,在330℃下处理3小时后,降至室温,取出样品,得到花状Bi/Bi2WO6纳米材料。
实施例3
按以下工艺步骤合成花状Bi/Bi2WO6纳米材料:
1)计量量取硝酸铋溶于去离子水中,调节所形成的硝酸铋溶液浓度为:0.1mol/L(摩尔每升)。
2)计量称取钨酸钠溶解于去离子水中,调节所形成的钨酸钠溶液浓度为:0.01mol/L(摩尔每升)。
3)将步骤1)中所得溶液缓慢倒入步骤2)中所得溶液中,调节其中氯化铵和硝酸铋的摩尔比为1:2,搅拌后转移到高压反应釜中,用去离子水调节使其体积占反应釜容积的3/4。
4)将配置有反应物料的反应釜密闭,在140℃下保温20小时进行热处理。而后,降至室温,过滤,依次用去离子水、无水乙醇清洗,80℃温度下烘干后,转移至铜管中。
5)将铜管填充0.4mPa的氢气并封闭(氢气纯度大于99%),并转移至管式炉中,在350℃下处理2小时后,降至室温,取出样品,得到花状Bi/Bi2WO6纳米材料。
实施例4
按以下工艺步骤合成花状Bi/Bi2WO6纳米材料:
1)计量量取硝酸铋溶于去离子水中,调节所形成的硝酸铋溶液浓度为:0.15mol/L(摩尔每升)。
2)计量称取钨酸钠溶解于去离子水中,调节所形成的钨酸钠溶液浓度为:0.015mol/L(摩尔每升)。
3)将步骤1)中所得溶液缓慢倒入步骤2)中所得溶液中,调节其中氯化铵和硝酸铋的摩尔比为1:1.5,搅拌后转移到高压反应釜中,用去离子水调节使其体积占反应釜容积的3/4。
4)将配置有反应物料的反应釜密闭,在130℃下保温16小时进行热处理。而后,降至室温,过滤,依次用去离子水、无水乙醇清洗,70℃温度下烘干后,转移至铜管中。
5)将铜管填充0.35mPa的氢气并封闭(氢气纯度大于99%),并转移至管式炉中,在340℃下处理2.5小时后,降至室温,取出样品,得到花状Bi/Bi2WO6纳米材料。
实施例5
按以下工艺步骤合成花状Bi/Bi2WO6纳米材料:
1)计量量取硝酸铋溶于去离子水中,调节所形成的硝酸铋溶液浓度为:0.12mol/L(摩尔每升)。
2)计量称取钨酸钠溶解于去离子水中,调节所形成的钨酸钠溶液浓度为:0.02mol/L(摩尔每升)。
3)将步骤1)中所得溶液缓慢倒入步骤2)中所得溶液中,调节其中氯化铵和硝酸铋的摩尔比为1:1,搅拌5min后转移到高压反应釜中,用去离子水调节使其体积占反应釜容积的 2/3。
4)将配置有反应物料的反应釜密闭,在125℃下保温18小时进行热处理。而后,降至室温,过滤,依次用去离子水、无水乙醇清洗,65℃温度下烘干后,转移至铜管中。
5)将铜管填充0.38mPa的氢气并封闭(氢气纯度大于99%),并转移至管式炉中,在330℃下处理3小时后,降至室温,取出样品,得到花状Bi/Bi2WO6纳米材料。
本发明制备操作简单,可重复性强。通过本发明水热-烧结法制备的花状Bi/Bi2WO6纳米微球直径不大于2微米,分散性好,由厚度不大于30nm的纳米片自组装而成,因此可以有效地增大材料的比表面积,在光催化等方面有较高的应用价值。
Claims (4)
1.一种花状Bi/Bi2WO6纳米材料的制备方法,其特征是包括以下步骤:
1)称取硝酸铋溶于去离子水中,所形成的硝酸铋溶液浓度为:0.1~0.2mol/L;
2)称取钨酸钠溶解于去离子水中,所形成的钨酸钠溶液浓度为:0.01~0.02mol/L;
3)将步骤1)所得硝酸铋溶液倒入步骤2)所得钨酸钠溶液中,钨酸钠和硝酸铋的摩尔比为1:1~1:2,搅拌后转移到高压反应釜中,用去离子水调节使体积占高压反应釜容积的2/3~4/5;
4)将配置有反应物料的高压反应釜密闭,在120~140℃下保温14~20小时进行热处理;后降至室温,过滤,依次用去离子水、无水乙醇清洗,60℃~80℃温度下烘干后,转移至铜管中;
5)将铜管填充0.3~0.4mPa的氢气并封闭,并转移至管式炉中,在330℃~350℃下处理2~3小时后,降至室温,制得花状Bi/Bi2WO6纳米材料。
2.根据权利要求1所述花状Bi/Bi2WO6纳米材料的制备方法,其特征是,氢气纯度大于99%。
3.根据权利要求1所述花状Bi/Bi2WO6纳米材料的制备方法,其特征是,所用的原料钨酸钠、硝酸铋和去离子水、无水乙醇的纯度均不低于化学纯。
4.根据权利要求1所述花状Bi/Bi2WO6纳米材料的制备方法,其特征是,所得的花状Bi/Bi2WO6纳米材料微球直径不大于2微米。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011600757.6A CN112846222B (zh) | 2020-12-29 | 2020-12-29 | 一种花状Bi/Bi2WO6纳米材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011600757.6A CN112846222B (zh) | 2020-12-29 | 2020-12-29 | 一种花状Bi/Bi2WO6纳米材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112846222A CN112846222A (zh) | 2021-05-28 |
CN112846222B true CN112846222B (zh) | 2022-08-12 |
Family
ID=75998242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011600757.6A Expired - Fee Related CN112846222B (zh) | 2020-12-29 | 2020-12-29 | 一种花状Bi/Bi2WO6纳米材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112846222B (zh) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1324472A (en) * | 1970-07-15 | 1973-07-25 | Sherritt Gordon Mines Ltd | Production of metal powder by direct reduction from aqueous solutions and slurries |
CN102989445B (zh) * | 2012-11-29 | 2015-06-24 | 天津师范大学 | 一种通过铋源过量提高钨酸铋光催化活性的方法 |
CN108295871A (zh) * | 2018-03-09 | 2018-07-20 | 南昌航空大学 | 一种钨酸铋-硫化钼复合微米花球及其制备方法和应用 |
CN110465286A (zh) * | 2019-06-21 | 2019-11-19 | 广东工业大学 | 一种表面氧空位缺陷修饰的钨酸铋光催化剂及其制备方法和应用 |
CN110743536A (zh) * | 2019-11-13 | 2020-02-04 | 盐城工学院 | 一种Bi-Bi2WO6可见光催化剂的制备方法及其应用 |
-
2020
- 2020-12-29 CN CN202011600757.6A patent/CN112846222B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN112846222A (zh) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | ZnxCd1-xS based materials for photocatalytic hydrogen evolution, pollutants degradation and carbon dioxide reduction | |
Pan et al. | Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide | |
CN112875755B (zh) | 一种钨酸铋纳米粉体的制备方法 | |
CN109806902B (zh) | 一种W18O49/NiWO4/NF自支撑电催化材料的制备方法 | |
CN114452982B (zh) | 一种W18O49/CoO/CoWO4/NF自支撑电催化材料及其制备方法 | |
CN110681395B (zh) | 一种形貌尺寸可调的Cu+掺杂W18O49复合材料及其制备方法 | |
CN111036247B (zh) | 一种钴铁氧化物-磷酸钴电催化析氧复合材料及其制备方法和应用 | |
CN103420427A (zh) | 一种铁酸铋Bi2Fe4O9单晶纳米片的制备方法 | |
CN108525695B (zh) | 一种二维层状结构的石墨烯/碳氮烯/溴氧铋复合纳米光催化材料及其制备方法和应用 | |
CN102001698B (zh) | 一种氧化铟介孔纳米球的制备方法 | |
CN112846222B (zh) | 一种花状Bi/Bi2WO6纳米材料的制备方法 | |
CN112678868B (zh) | 一种Bi12O17Cl2/Bi2O2CO3复合纳米材料的制备方法 | |
CN112850649B (zh) | 一种铋氧溴纳米片的制备方法 | |
CN114100682B (zh) | 一种羽状叶异质结光催化剂及其制备方法 | |
CN113800476B (zh) | 一种纳米金属氧化物的超声制备方法 | |
CN116196944A (zh) | 一种生物质氮掺杂碳量子点耦合超薄BiOBr纳米片复合材料光催化剂的制备方法及应用 | |
Wang et al. | Recent advances in one-dimensional alkali-metal hexatitanate photocatalysts for environmental remediation and solar fuel production | |
CN109926085A (zh) | 一种非晶/结晶型催化剂的制备方法 | |
CN112551575B (zh) | 一种Bi12O17Cl2纳米粉体的制备方法 | |
CN109967065B (zh) | 一种Sn3O4/Sn2O3/SnO2层状纳米光催化材料的制备方法 | |
CN100390248C (zh) | 半导体发光材料ZnO纳米囊的制备方法 | |
CN113502494B (zh) | 高价态金属离子掺杂富含氧空位的氧化钴纳米复合材料及其制备与应用 | |
CN111266120A (zh) | 一种空心结构的CdS/ZnO复合光催化材料及其制备方法 | |
Zhang et al. | Synthesis of Bi2O3 nanosheets and photocatalysis for rhodamine B | |
CN110745856A (zh) | 一种纳米粒状氧化铈物复合钌铂钯氧化物的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220812 |
|
CF01 | Termination of patent right due to non-payment of annual fee |