CN112125304B - Metal oxide modified micro-nano silicon-graphite composite negative electrode material and preparation method thereof - Google Patents
Metal oxide modified micro-nano silicon-graphite composite negative electrode material and preparation method thereof Download PDFInfo
- Publication number
- CN112125304B CN112125304B CN202011019339.8A CN202011019339A CN112125304B CN 112125304 B CN112125304 B CN 112125304B CN 202011019339 A CN202011019339 A CN 202011019339A CN 112125304 B CN112125304 B CN 112125304B
- Authority
- CN
- China
- Prior art keywords
- nano silicon
- metal oxide
- graphite composite
- silicon
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 39
- 239000010439 graphite Substances 0.000 title claims abstract description 39
- 239000002131 composite material Substances 0.000 title claims abstract description 33
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 24
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 24
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000005543 nano-size silicon particle Substances 0.000 claims abstract description 23
- 239000002904 solvent Substances 0.000 claims abstract description 14
- 239000010405 anode material Substances 0.000 claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims abstract description 8
- 238000003756 stirring Methods 0.000 claims abstract description 6
- 238000001354 calcination Methods 0.000 claims abstract description 5
- 150000003839 salts Chemical class 0.000 claims abstract description 5
- 230000001590 oxidative effect Effects 0.000 claims abstract 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 18
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- 239000011259 mixed solution Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 7
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 claims description 6
- 229920002401 polyacrylamide Polymers 0.000 claims description 6
- 239000004246 zinc acetate Substances 0.000 claims description 6
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 claims description 4
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 4
- 229920001661 Chitosan Polymers 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000002114 nanocomposite Substances 0.000 claims description 3
- 229920000767 polyaniline Polymers 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 238000000197 pyrolysis Methods 0.000 claims description 2
- 239000012266 salt solution Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 239000000843 powder Substances 0.000 abstract description 6
- 238000009826 distribution Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 3
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 3
- 239000007772 electrode material Substances 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000011363 dried mixture Substances 0.000 abstract 1
- 230000005518 electrochemistry Effects 0.000 abstract 1
- 238000009776 industrial production Methods 0.000 abstract 1
- 239000011261 inert gas Substances 0.000 abstract 1
- 239000007787 solid Substances 0.000 abstract 1
- 238000003786 synthesis reaction Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 229910052744 lithium Inorganic materials 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000001000 micrograph Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 5
- 239000012467 final product Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000001351 cycling effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000011232 storage material Substances 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000000707 layer-by-layer assembly Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/21—After-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明属于锂离子电池电极材料领域,具体涉及一种金属氧化物改性的微纳硅-石墨复合负极材料及其制备方法。The invention belongs to the field of lithium ion battery electrode materials, in particular to a metal oxide-modified micro-nano silicon-graphite composite negative electrode material and a preparation method thereof.
技术背景technical background
近年来,随着包括5G网络在内的电子技术的飞速发展,相应的电子产品对轻量化、大容量锂电池的需求急剧增加。开发高性能锂电池阳极材料已是大势所趋。理论比容量为372mAh/g的工业石墨在提高锂电池的能量密度方面遇到了明显的瓶颈。因此,硅(Si)材料因其4200mAh/g的理论容量和较低的放电电位而成为研究热点。但是,它仍然面临着材料固有性能和技术发展的桎梏;巨大的体积膨胀率(>300%)导致结构退化,固体电解质界面(SEI)不稳定,容量衰减快,本征电导率差严重限制了锂在硅阳极中的扩散速率,进一步限制了锂离子电池的性能。一些常用策略,包括表面改性,纳米处理,引入碳纳米材料和设计预留空间等,已经被用来解决这些问题。然而,这些工艺不可避免地降低了硅基复合材料阳极的压实密度和初始库仑效率,导致材料膨胀率超过10%,从而延缓了工业化进程。目前为止,还没有发现一种能够稳定生产低成本、高性能的硅基材料的合成策略。In recent years, with the rapid development of electronic technologies including 5G networks, the demand for lightweight and large-capacity lithium batteries for corresponding electronic products has increased dramatically. It is a general trend to develop high-performance lithium battery anode materials. Industrial graphite with a theoretical specific capacity of 372mAh/g has encountered a significant bottleneck in improving the energy density of lithium batteries. Therefore, silicon (Si) material has become a research hotspot due to its theoretical capacity of 4200 mAh/g and lower discharge potential. However, it still faces the shackles of material intrinsic properties and technological development; the huge volume expansion rate (>300%) leads to structural degradation, unstable solid electrolyte interface (SEI), fast capacity decay, and poor intrinsic conductivity severely limited The diffusion rate of lithium in the silicon anode further limits the performance of lithium-ion batteries. Some common strategies, including surface modification, nano-processing, introduction of carbon nanomaterials, and design of reserved space, etc., have been used to solve these problems. However, these processes inevitably reduce the compaction density and initial Coulombic efficiency of Si-based composite anodes, resulting in a material expansion rate exceeding 10%, which slows down the industrialization process. So far, no synthetic strategy has been found that can stably produce low-cost, high-performance silicon-based materials.
发明内容SUMMARY OF THE INVENTION
为了解决硅基负极材料存在的上述问题,本发明提供一种金属氧化物改性的微纳硅-石墨复合负极材料及其制备方法,制备工艺简单,能制备出结构稳定且电化学性能优良的硅碳负极材料。In order to solve the above-mentioned problems of silicon-based negative electrode materials, the present invention provides a metal oxide-modified micro-nano silicon-graphite composite negative electrode material and a preparation method thereof. Silicon carbon anode material.
为实现本发明的目的采用的技术方案是:The technical scheme adopted for realizing the purpose of the present invention is:
一种金属氧化物改性的微纳硅-石墨复合负极材料的制备方法,包括以下步骤:A method for preparing a metal oxide-modified micro-nano silicon-graphite composite negative electrode material, comprising the following steps:
1)分别将纳米硅,金属盐,碳源以及石墨粉末溶于溶剂中,充分搅拌得到混合溶液;1) Dissolving nano-silicon, metal salt, carbon source and graphite powder in a solvent respectively, and fully stirring to obtain a mixed solution;
2)将混合溶液置于60~90℃的水浴锅中搅拌0.5~2小时以蒸发溶剂,得到混合物;2) The mixed solution is placed in a water bath at 60 to 90°C and stirred for 0.5 to 2 hours to evaporate the solvent to obtain a mixture;
3)将混合物在200~300℃的空气中预氧化1~3小时,升温速率为1~5℃/分钟;3) pre-oxidize the mixture in air at 200~300°C for 1~3 hours, and the heating rate is 1~5°C/min;
4)将所得产物置于气氛炉中,在惰性气氛下煅烧,煅烧温度为600~1000℃,升温速率为2~10℃/分钟,煅烧时间为0.5~5小时;煅烧完毕后随炉降温至室温,得到微纳硅-石墨复合负极材料。4) The obtained product is placed in an atmosphere furnace, and calcined under an inert atmosphere. The calcination temperature is 600 to 1000 ° C, the heating rate is 2 to 10 ° C/min, and the calcination time is 0.5 to 5 hours; At room temperature, a micro-nano silicon-graphite composite negative electrode material was obtained.
步骤1)中,所述的纳米硅的平均粒径为100~300nm;优选地,所述纳米硅为纳米硅晶体、纳米硅非晶体中的一种或两种的组合,优选为单分散的纳米硅颗粒。In step 1), the average particle size of the nano-silicon is 100-300 nm; preferably, the nano-silicon is one or a combination of nano-silicon crystal and nano-silicon amorphous, preferably monodisperse Nano silicon particles.
所述的金属盐溶液为醋酸锌、氢氧化锆、钛酸丁酯等可生成金属氧化物的金属盐的一种或几种。优选的,所述的纳米硅为单分散的纳米硅颗粒。The metal salt solution is one or more of metal salts such as zinc acetate, zirconium hydroxide, butyl titanate, etc., which can generate metal oxides. Preferably, the nano-silicon is monodisperse nano-silicon particles.
所述的碳源包括聚丙烯酰胺、聚丙烯睛、聚苯胺、壳聚糖的一种或两种。The carbon source includes one or two of polyacrylamide, polyacrylonitrile, polyaniline and chitosan.
所述的溶剂包括N,N-二甲基甲酰胺、无水乙醇的一种。The solvent includes one of N,N-dimethylformamide and absolute ethanol.
所述的石墨粉末为商用石墨。The graphite powder is commercial graphite.
所述的惰性气氛为氩气。The inert atmosphere is argon.
本发明制备得到的金属氧化物改性的微纳硅-石墨复合负极材料中,所述的硅纳米颗粒的含量为10~30wt%,碳源热解的碳含量为5~15wt%,石墨烯含量为25~45wt%,金属氧化物含量为5~15wt%。In the metal oxide-modified micro-nano silicon-graphite composite negative electrode material prepared by the present invention, the content of the silicon nanoparticles is 10-30 wt %, the carbon content of the carbon source pyrolysis is 5-15 wt %, and the graphene content is 5-15 wt %. The content is 25-45 wt %, and the metal oxide content is 5-15 wt %.
本发明具有以下优点:其一,制得的微纳硅-石墨复合储锂材料具备以石墨为内核、以裂解碳-硅为包裹层的微纳复合结构,以多维碳支撑骨架稳定结构和增强电导;以微量的金属氧化物掺杂在外壳层增强硅-石墨复合材料在循环过程中的界面兼容,从而增强循环稳定性。其二,在技术的原创性上,开发静电自组装技术进行前驱液的简易液相搅拌配置,实现硅含量可控调制的高容量硅碳材料具备微纳复合结构满足商用的振实密度要求;多维度的碳纳米材料复合包覆/支撑来提升材料电导和增强材料的结构稳定性;引入必要的金属氧化物修饰来促进材料循环过程中的界面兼容性。其三,在制备的成本优势上,本技术以简便的液相搅拌及烧结处理实现微纳硅-石墨复合储锂材料的制备,具备操作步骤少、能耗低的特点,充分体现成本优势。The invention has the following advantages: firstly, the prepared micro-nano silicon-graphite composite lithium storage material has a micro-nano composite structure with graphite as the core and cracked carbon-silicon as the wrapping layer, and the multi-dimensional carbon supports the skeleton to stabilize the structure and enhance the Conductivity; doping the outer shell layer with a trace amount of metal oxide enhances the interfacial compatibility of the silicon-graphite composite during cycling, thereby enhancing the cycling stability. Second, in terms of technical originality, develop electrostatic self-assembly technology for simple liquid phase stirring configuration of precursor liquid, and realize high-capacity silicon carbon material with controllable silicon content modulation with micro-nano composite structure to meet commercial tap density requirements; Multi-dimensional carbon nanomaterial composite coating/support to improve the material conductivity and enhance the structural stability of the material; introduce necessary metal oxide modifications to promote the interfacial compatibility during material cycling. Third, in terms of the cost advantage of preparation, this technology realizes the preparation of micro-nano silicon-graphite composite lithium storage materials with simple liquid phase stirring and sintering treatment, which has the characteristics of few operation steps and low energy consumption, which fully reflects the cost advantage.
附图说明Description of drawings
图1是本发明实施例1制备的样品的扫描电子显微镜照片和透射电子显微镜照片。FIG. 1 is a scanning electron microscope photograph and a transmission electron microscope photograph of the sample prepared in Example 1 of the present invention.
图2是本发明实施例1制备的样品在0.3A/g电流密度下的循环曲线。Figure 2 is the cycle curve of the sample prepared in Example 1 of the present invention at a current density of 0.3 A/g.
图3是本发明实施例1制备的样品在1.2A/g电流密度下的循环曲线。Figure 3 is the cycle curve of the sample prepared in Example 1 of the present invention at a current density of 1.2 A/g.
具体实施方式Detailed ways
下面结合附图及实施例,对本发明做进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.
实施例1Example 1
金属氧化物改性的微纳硅-石墨复合负极材料的制备方法Preparation method of metal oxide modified micro-nano silicon-graphite composite negative electrode material
称取0.8克商业石墨和0.8克硅纳米颗粒(100nm),并在150毫升N,N-二甲基甲酰胺中搅拌。将0.4克醋酸锌进一步溶解于上述溶液中并搅拌0.5小时。然后缓慢添加0.6克PAM(聚丙烯酰胺,Mw=150000)并搅拌以形成混合溶液。然后将溶液加热至80℃并在密封环境下剧烈搅拌1小时。随后,移除密封膜并继续在90℃下搅拌溶液以蒸发溶剂。混合物在260℃的空气中稳定2小时,加热速率为2℃/分钟。然后将所得产物在700℃氩气流中退火1小时,升温速率为5℃/分钟,之后随炉自然降温至室温,取出粉末并研磨,即得到最终产物(记为样品1)。0.8 g of commercial graphite and 0.8 g of silicon nanoparticles (100 nm) were weighed and stirred in 150 mL of N,N-dimethylformamide. 0.4 g of zinc acetate was further dissolved in the above solution and stirred for 0.5 hour. Then 0.6 g of PAM (polyacrylamide, Mw=150000) was slowly added and stirred to form a mixed solution. The solution was then heated to 80°C and stirred vigorously for 1 hour in a sealed environment. Subsequently, the sealing film was removed and the solution was continued to be stirred at 90°C to evaporate the solvent. The mixture was stabilized in air at 260°C for 2 hours with a heating rate of 2°C/min. Then, the obtained product was annealed at 700°C in an argon stream for 1 hour at a heating rate of 5°C/min, and then naturally cooled to room temperature with the furnace, and the powder was taken out and ground to obtain the final product (referred to as sample 1).
图1是样品1的扫描电子显微镜图和透射电子显微镜图,表明制得的样品1颗粒分布均匀,形貌为10±3μm左右的球状复合体。FIG. 1 is a scanning electron microscope image and a transmission electron microscope image of
取0.1克最终样品、10%乙炔黑和10%羧甲基纤维素钠(CMC)溶解在去离子水中,形成均匀的浆液,涂于集流体上,于100℃真空干燥12小时,制得电极。采用体积比为10%:90%的FEC(氟代碳酸乙烯酯)和1.0mol/L的LiPF6/EC/DEC/DMC的混合溶液为电解液,其中LiPF6为导电盐,EC(碳酸乙烯酯)/DEC(碳酸二乙酯)/DMC(碳酸二甲酯)为复合溶剂,三者的体积比(EC:DEC:DMC)为1:1:1。以金属锂片为负极、微孔聚丙烯膜(Cellgard 2400)为隔膜,与上述电极组装成CR2025扣式电池,分别以0.3A/g和1.2A/g的电流密度进行充放电,充放电的电压范围为0.01-3.0V,电池测试结果列于表1。Dissolve 0.1 g of the final sample, 10% acetylene black and 10% sodium carboxymethyl cellulose (CMC) in deionized water to form a uniform slurry, apply it on the current collector, and vacuum dry it at 100 °C for 12 hours to prepare an electrode . A mixed solution of FEC (fluoroethylene carbonate) and 1.0mol/L LiPF 6 /EC/DEC/DMC with a volume ratio of 10%: 90% is used as the electrolyte, wherein LiPF 6 is a conductive salt, EC (ethylene carbonate) Ester)/DEC (diethyl carbonate)/DMC (dimethyl carbonate) is a composite solvent, and the volume ratio of the three (EC:DEC:DMC) is 1:1:1. A CR2025 button cell was assembled with the above electrodes using lithium metal sheet as the negative electrode and a microporous polypropylene film (Cellgard 2400) as the separator. The cells were charged and discharged at current densities of 0.3A/g and 1.2A/g, respectively. The voltage range is 0.01-3.0V, and the battery test results are listed in Table 1.
图2和图3分别是实施例1得到的硅碳负极材料在0.3A/g和1.2Ag克电流密度下的测试结果,可以看出该硅碳负极材料在0.3A/g循环400次后仍然具有1105.6mAh/g的容量和98.2%的容量保持率,同时在1.2A/g的高倍率下循环2000次仍然具有660mAh/g的高可逆容量。Figure 2 and Figure 3 are respectively the test results of the silicon carbon negative electrode material obtained in Example 1 under the current density of 0.3A/g and 1.2Ag grams. It can be seen that the silicon carbon negative electrode material still remains after 400 cycles of 0.3A/g. It has a capacity of 1105.6 mAh/g and a capacity retention rate of 98.2%, while still having a high reversible capacity of 660 mAh/g after 2000 cycles at a high rate of 1.2 A/g.
实施例2Example 2
金属氧化物改性的微纳硅-石墨复合负极材料的制备方法Preparation method of metal oxide modified micro-nano silicon-graphite composite negative electrode material
称取1.0克商业石墨和0.8克硅纳米颗粒(200nm)并在150毫升N,N-二甲基甲酰胺中搅拌。将0.5克醋酸锌进一步溶解于上述溶液中并搅拌1小时。然后缓慢添加0.5克聚丙烯睛(Mw=150000)并搅拌以形成混合溶液。然后将溶液加热至60℃并在密封环境下剧烈搅拌3小时。随后,移除密封膜并继续在90℃下搅拌溶液以蒸发溶剂。混合物在220℃的空气中稳定2小时,加热速率为2℃/分钟。然后将所得产物在700℃氩气流中退火3小时,升温速率为5℃/分钟,之后随炉自然降温至室温,取出粉末并研磨,即得到最终产物。1.0 g of commercial graphite and 0.8 g of silicon nanoparticles (200 nm) were weighed and stirred in 150 mL of N,N-dimethylformamide. 0.5 g of zinc acetate was further dissolved in the above solution and stirred for 1 hour. Then 0.5 g of polyacrylonitrile (Mw=150000) was slowly added and stirred to form a mixed solution. The solution was then heated to 60°C and stirred vigorously for 3 hours in a sealed environment. Subsequently, the sealing film was removed and the solution was continued to be stirred at 90°C to evaporate the solvent. The mixture was stabilized in air at 220°C for 2 hours with a heating rate of 2°C/min. The obtained product was then annealed in an argon flow at 700°C for 3 hours at a heating rate of 5°C/min, and then cooled to room temperature naturally with the furnace, and the powder was taken out and ground to obtain the final product.
扫描电子显微镜图表明制得的样品2颗粒分布均匀,形貌大致为10±3μm左右的褶皱球形。Scanning electron microscope images show that the particles of the prepared sample 2 are evenly distributed, and the morphology is roughly a wrinkled spherical shape of about 10±3 μm.
电池的对电极、电解液、电池组装以及测试方式与实施例1相同,电池的测试结果列于表1。The battery's counter electrode, electrolyte, battery assembly and testing methods are the same as in Example 1, and the battery test results are listed in Table 1.
实施例3Example 3
一种金属氧化物改性的微纳硅-石墨复合负极材料的制备方法A kind of preparation method of metal oxide modified micro-nano silicon-graphite composite negative electrode material
1.0克商业石墨和0.6克硅纳米颗粒(100nm)并在150毫升N-甲基吡咯烷酮中搅拌。将0.3克氢氧化锆进一步溶解于上述溶液中并搅拌1.5小时。然后缓慢添加0.4克聚苯胺(Mw=100000)并搅拌以形成混合溶液。然后将溶液加热至60℃并在密封环境下剧烈搅拌2小时。随后,移除密封膜并继续在80℃下搅拌溶液以蒸发溶剂。混合物在300℃的空气中稳定1.5小时,加热速率为5℃/分钟。然后将所得产物在800℃氩气流中退火2小时,升温速率为5℃/分钟,之后随炉自然降温至室温,取出粉末并研磨,即得到最终产物。1.0 g of commercial graphite and 0.6 g of silicon nanoparticles (100 nm) and stirred in 150 mL of N-methylpyrrolidone. 0.3 g of zirconium hydroxide was further dissolved in the above solution and stirred for 1.5 hours. Then 0.4 g of polyaniline (Mw=100000) was slowly added and stirred to form a mixed solution. The solution was then heated to 60°C and stirred vigorously for 2 hours in a sealed environment. Subsequently, the sealing film was removed and the solution was continued to be stirred at 80°C to evaporate the solvent. The mixture was stabilized in air at 300°C for 1.5 hours with a heating rate of 5°C/min. Then, the obtained product was annealed in argon flow at 800° C. for 2 hours at a heating rate of 5° C./min, and then naturally cooled to room temperature with the furnace, and the powder was taken out and ground to obtain the final product.
扫描电子显微镜图表明制得的样品3颗粒分布均匀,形貌大致为10±2μm左右的球形。Scanning electron microscope images show that the particles of the prepared sample 3 are evenly distributed, and the morphology is roughly spherical with a shape of about 10±2 μm.
电池的对电极、电解液、电池组装以及测试方式与实施例1相同,电池的测试结果列于表1。The battery's counter electrode, electrolyte, battery assembly and testing methods are the same as in Example 1, and the battery test results are listed in Table 1.
实施例4Example 4
一种金属氧化物改性的微纳硅-石墨复合负极材料的制备方法A kind of preparation method of metal oxide modified micro-nano silicon-graphite composite negative electrode material
1.2克商业石墨和0.8克硅纳米颗粒(300nm),并在150毫升N,N-二甲基甲酰胺中搅拌。将0.2克醋酸锌、0.3克氢氧化锆进一步溶解于上述溶液中并搅拌1小时。然后缓慢添加0.2克聚丙烯酰胺(Mw=150000)、0.4克聚丙烯腈(Mw=15000)并搅拌以形成混合溶液。然后将溶液加热至90℃并在密封环境下剧烈搅拌2小时。随后,移除密封膜并继续在90℃下搅拌溶液以蒸发溶剂。干燥混合物在260℃的空气中稳定3小时,加热速率为2℃/分钟。然后将所得产物在900℃氩气流中退火1小时,升温速率为3℃/分钟,之后随炉自然降温至室温,取出粉末并研磨,即得到最终产物。1.2 g of commercial graphite and 0.8 g of silicon nanoparticles (300 nm) and stirred in 150 mL of N,N-dimethylformamide. 0.2 g of zinc acetate and 0.3 g of zirconium hydroxide were further dissolved in the above solution and stirred for 1 hour. Then 0.2 g of polyacrylamide (Mw=150000), 0.4 g of polyacrylonitrile (Mw=15000) were slowly added and stirred to form a mixed solution. The solution was then heated to 90°C and stirred vigorously for 2 hours in a sealed environment. Subsequently, the sealing film was removed and the solution was continued to be stirred at 90°C to evaporate the solvent. The dry mixture was stabilized in air at 260°C for 3 hours with a heating rate of 2°C/min. Then, the obtained product was annealed at 900°C in an argon stream for 1 hour at a heating rate of 3°C/min, and then naturally cooled to room temperature with the furnace, and the powder was taken out and ground to obtain the final product.
扫描电子显微镜图表明制得的样品4颗粒分布均匀,形貌大致为10±3μm的球形。Scanning electron microscope images show that the prepared sample 4 has a uniform particle distribution, and the morphology is roughly spherical with 10±3 μm.
电池的对电极、电解液、电池组装以及测试方式与实施例1相同,电池的测试结果列于表1。The battery's counter electrode, electrolyte, battery assembly and testing methods are the same as in Example 1, and the battery test results are listed in Table 1.
实施例5Example 5
金属氧化物改性的微纳硅-石墨复合负极材料的制备方法Preparation method of metal oxide modified micro-nano silicon-graphite composite negative electrode material
称取0.8克商业石墨和1.2克硅纳米颗粒(100nm),并在100毫升N,N-二甲基甲酰胺和50毫升无水乙醇的混合溶液中搅拌。将0.46克醋酸锌进一步溶解于上述溶液中并搅拌2.5小时。然后缓慢添加0.2克聚丙烯酰胺(Mw=150000)、0.3克壳聚糖并搅拌以形成混合溶液。然后将溶液加热至90℃并在密封环境下剧烈搅拌3小时。随后,移除密封膜并继续在90℃下搅拌溶液以蒸发溶剂。混合物在300℃的空气中稳定1.5小时,加热速率为1℃/分钟。然后将所得产物在1000℃氩气流中退火1.5小时,升温速率为4℃/分钟,之后随炉自然降温至室温,取出粉末并研磨,即得到最终产物。0.8 g of commercial graphite and 1.2 g of silicon nanoparticles (100 nm) were weighed and stirred in a mixed solution of 100 mL of N,N-dimethylformamide and 50 mL of absolute ethanol. 0.46 g of zinc acetate was further dissolved in the above solution and stirred for 2.5 hours. Then 0.2 g of polyacrylamide (Mw=150000), 0.3 g of chitosan were slowly added and stirred to form a mixed solution. The solution was then heated to 90°C and stirred vigorously for 3 hours in a sealed environment. Subsequently, the sealing film was removed and the solution was continued to be stirred at 90°C to evaporate the solvent. The mixture was stabilized in air at 300°C for 1.5 hours with a heating rate of 1°C/min. Then, the obtained product was annealed in argon flow at 1000°C for 1.5 hours at a heating rate of 4°C/min, and then naturally cooled to room temperature with the furnace, and the powder was taken out and ground to obtain the final product.
扫描电子显微镜图表明制得的样品5颗粒分布均匀,形貌大致为10±3μm的褶皱球形。Scanning electron microscope images show that the prepared sample 5 has a uniform particle distribution, and the morphology is roughly a wrinkled spherical shape of 10±3 μm.
电池的对电极、电解液、电池组装以及测试方式与实施例1相同,电池的测试结果列于表1。The battery's counter electrode, electrolyte, battery assembly and testing methods are the same as in Example 1, and the battery test results are listed in Table 1.
表1实施例1~5的测试结果汇总Table 1 Summary of test results for Examples 1 to 5
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the objectives, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the scope of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011019339.8A CN112125304B (en) | 2020-09-25 | 2020-09-25 | Metal oxide modified micro-nano silicon-graphite composite negative electrode material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011019339.8A CN112125304B (en) | 2020-09-25 | 2020-09-25 | Metal oxide modified micro-nano silicon-graphite composite negative electrode material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112125304A CN112125304A (en) | 2020-12-25 |
CN112125304B true CN112125304B (en) | 2022-08-23 |
Family
ID=73839688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011019339.8A Active CN112125304B (en) | 2020-09-25 | 2020-09-25 | Metal oxide modified micro-nano silicon-graphite composite negative electrode material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112125304B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112993224A (en) * | 2021-02-08 | 2021-06-18 | 湖北工程学院 | Cross-linked chitosan derived silicon-carbon negative electrode material and preparation method thereof |
CN114744172B (en) * | 2022-04-06 | 2024-03-22 | 广东海洋大学 | Silicon-carbon composite anode material and preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104638252A (en) * | 2015-02-13 | 2015-05-20 | 深圳市贝特瑞新能源材料股份有限公司 | Silicon composited negative electrode material, preparation method of silicon composited negative electrode material and lithium ion battery |
CN104752698A (en) * | 2013-12-25 | 2015-07-01 | 北京有色金属研究总院 | Silicon carbon composite material for lithium ion battery cathode, and preparation method of composite material |
CN108448080A (en) * | 2018-03-07 | 2018-08-24 | 深圳市本征方程石墨烯技术股份有限公司 | A kind of graphene coated silicon/metal composite negative pole material and preparation method thereof |
CN109216686A (en) * | 2018-10-11 | 2019-01-15 | 天能电池集团有限公司 | A kind of lithium ion battery silicon-carbon composite material and preparation method |
CN111653745A (en) * | 2020-05-28 | 2020-09-11 | 长沙矿冶研究院有限责任公司 | Silicon-carbon negative electrode precursor material, silicon-carbon negative electrode material and preparation method thereof |
-
2020
- 2020-09-25 CN CN202011019339.8A patent/CN112125304B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104752698A (en) * | 2013-12-25 | 2015-07-01 | 北京有色金属研究总院 | Silicon carbon composite material for lithium ion battery cathode, and preparation method of composite material |
CN104638252A (en) * | 2015-02-13 | 2015-05-20 | 深圳市贝特瑞新能源材料股份有限公司 | Silicon composited negative electrode material, preparation method of silicon composited negative electrode material and lithium ion battery |
CN108448080A (en) * | 2018-03-07 | 2018-08-24 | 深圳市本征方程石墨烯技术股份有限公司 | A kind of graphene coated silicon/metal composite negative pole material and preparation method thereof |
CN109216686A (en) * | 2018-10-11 | 2019-01-15 | 天能电池集团有限公司 | A kind of lithium ion battery silicon-carbon composite material and preparation method |
CN111653745A (en) * | 2020-05-28 | 2020-09-11 | 长沙矿冶研究院有限责任公司 | Silicon-carbon negative electrode precursor material, silicon-carbon negative electrode material and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
"MoO2/C共包覆Si /石墨复合锂离子电池负极材料的研究";尹红 等;《高等学校化学学报》;20151010;第36卷(第10期);第1990-1994页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112125304A (en) | 2020-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110299516B (en) | Preparation method of carbon nanotube array loaded lithium titanate flexible electrode material | |
WO2018161821A1 (en) | Compound, preparation method therefore, and use in lithium ion secondary battery | |
CN103730645B (en) | Coated carbon fiber nanometer composite material of a kind of silicon and its preparation method and application | |
CN102324511B (en) | Preparation method for lithium ion battery composite cathode material | |
CN103022483A (en) | Preparation method of power lithium ion battery anode material | |
CN103490047B (en) | A kind of preparation method of three-dimensional hole carbon/nano NiO composite | |
CN108390033A (en) | A kind of preparation method and applications preparing anode material of lithium-ion battery carbon-coated antimony nano-tube material | |
CN115566170B (en) | Preparation method of high-energy-density quick-charging lithium ion battery anode material | |
CN102315440A (en) | Spinel composite material, preparation method and application thereof | |
CN103094551B (en) | Graphite/manganous oxide composite electrode material and preparation method thereof | |
CN110042503A (en) | A kind of MoSe2@C electrospinning hollow Nano fiber in use and its preparation method and application | |
CN102130324A (en) | A preparation method of lithium titanate/carbon nanotube composite negative electrode material | |
CN113292065B (en) | Large-interlayer-spacing monodisperse nano hard carbon material, and synthesis method and application thereof | |
CN116936771A (en) | Hollow spherical shell structure ferric sodium sulfate composite positive electrode material, preparation method and sodium ion battery | |
CN112125304B (en) | Metal oxide modified micro-nano silicon-graphite composite negative electrode material and preparation method thereof | |
CN103500828B (en) | The preparation method of a kind of carbon/nano NiO composite material | |
CN115498149A (en) | Method for preparing titanium oxide doped silicon carbon lithium ion battery cathode material by sand milling and spray drying | |
CN111435732A (en) | Anode material for lithium ion battery and preparation method thereof, and lithium ion battery | |
CN115224241A (en) | Negative plate for lithium battery and preparation method and application thereof | |
CN106450226A (en) | Preparation method of natural pollen-based metal sulfide-carbon composite material and application thereof | |
CN108630916A (en) | A kind of bacteria cellulose supported titanium niobium O compoiste material and its preparation method and application | |
CN108493406B (en) | Application of high-nickel ternary cathode material as catalyst in preparation of carbon nanotube, cathode material and preparation method thereof, and lithium battery | |
CN114068869B (en) | Core-shell structure silicon @ silicon oxide/carbon anode material and preparation method and application thereof | |
CN110165154A (en) | A kind of carbon quantum dot surface modification 1-dimention nano SnO2Double salt cell positive materials of magnesium-lithium and preparation method thereof and its application | |
CN114864916A (en) | A kind of niobium pentoxide-coated graphite composite negative electrode material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |