CN111994943A - Synthesis method of silanized zinc oxide quantum dots of uniform size - Google Patents
Synthesis method of silanized zinc oxide quantum dots of uniform size Download PDFInfo
- Publication number
- CN111994943A CN111994943A CN202010793432.8A CN202010793432A CN111994943A CN 111994943 A CN111994943 A CN 111994943A CN 202010793432 A CN202010793432 A CN 202010793432A CN 111994943 A CN111994943 A CN 111994943A
- Authority
- CN
- China
- Prior art keywords
- zinc oxide
- oxide quantum
- silanized
- quantum dots
- ethanol solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims abstract description 140
- 238000001308 synthesis method Methods 0.000 title description 2
- 239000002096 quantum dot Substances 0.000 claims abstract description 47
- 239000011787 zinc oxide Substances 0.000 claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000003756 stirring Methods 0.000 claims abstract description 29
- 239000002244 precipitate Substances 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000843 powder Substances 0.000 claims abstract description 19
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 9
- 239000008367 deionised water Substances 0.000 claims abstract description 9
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 9
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 8
- 238000010992 reflux Methods 0.000 claims abstract description 6
- 238000009833 condensation Methods 0.000 claims abstract description 5
- 230000005494 condensation Effects 0.000 claims abstract description 5
- 238000004108 freeze drying Methods 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 48
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 41
- 239000007864 aqueous solution Substances 0.000 claims description 12
- 238000003760 magnetic stirring Methods 0.000 claims description 12
- YLLIGHVCTUPGEH-UHFFFAOYSA-M potassium;ethanol;hydroxide Chemical compound [OH-].[K+].CCO YLLIGHVCTUPGEH-UHFFFAOYSA-M 0.000 claims description 11
- JJNZPYICTRAQKM-UHFFFAOYSA-L C(C)O.O.O.C(C)(=O)[O-].[Zn+2].C(C)(=O)[O-] Chemical compound C(C)O.O.O.C(C)(=O)[O-].[Zn+2].C(C)(=O)[O-] JJNZPYICTRAQKM-UHFFFAOYSA-L 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 238000004090 dissolution Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 claims 1
- 238000010189 synthetic method Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 238000005054 agglomeration Methods 0.000 abstract description 3
- 230000002776 aggregation Effects 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- 150000001298 alcohols Chemical class 0.000 abstract 2
- 239000000203 mixture Substances 0.000 abstract 2
- 230000001476 alcoholic effect Effects 0.000 abstract 1
- 239000005416 organic matter Substances 0.000 abstract 1
- 150000003751 zinc Chemical class 0.000 abstract 1
- 238000004458 analytical method Methods 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 11
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 239000000084 colloidal system Substances 0.000 description 6
- 230000005284 excitation Effects 0.000 description 6
- 238000002189 fluorescence spectrum Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 238000002073 fluorescence micrograph Methods 0.000 description 4
- YZYKBQUWMPUVEN-UHFFFAOYSA-N zafuleptine Chemical compound OC(=O)CCCCCC(C(C)C)NCC1=CC=C(F)C=C1 YZYKBQUWMPUVEN-UHFFFAOYSA-N 0.000 description 4
- XKKVXDJVQGBBFQ-UHFFFAOYSA-L zinc ethanol diacetate Chemical compound C(C)O.C(C)(=O)[O-].[Zn+2].C(C)(=O)[O-] XKKVXDJVQGBBFQ-UHFFFAOYSA-L 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 238000005352 clarification Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 238000001215 fluorescent labelling Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000004098 selected area electron diffraction Methods 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- 229910052984 zinc sulfide Inorganic materials 0.000 description 3
- NWBPZTYHZJLHHQ-UHFFFAOYSA-N acetic acid;ethanol;zinc Chemical compound [Zn].CCO.CC(O)=O NWBPZTYHZJLHHQ-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000002444 silanisation Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- 229910014033 C-OH Inorganic materials 0.000 description 1
- 229910014570 C—OH Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- -1 dihydrate acetic acid Zinc ethanol Chemical compound 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000695 excitation spectrum Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000000593 microemulsion method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/67—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/84—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Luminescent Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明涉及一种均匀尺寸的硅烷化氧化锌量子点的合成方法。本发明采用的技术方案包括:1)使用冷凝回流装置将锌盐溶解于醇类有机物中获得溶液A;2)在超声辅助下将强碱溶解于醇类有机物中获得溶液B;3)在搅拌条件下混合溶液A与B,搅拌至获得澄清溶液C;4)将硅烷偶联剂溶解于去离子水中获得溶液D;5)在搅拌条件下混合溶液C与D,静置后离心,获得初始沉淀物;6)使用醇类有机物洗涤沉淀物;7)使用冷冻干燥法获得硅烷化氧化锌量子点粉末。本方法简单易行,反应条件温和,可实现硅烷化氧化锌量子点的大量合成,同时本方法制得的硅烷化氧化锌量子点可在水中均匀分散,避免了氧化锌量子点容易团聚、尺寸不均一的缺点。
The invention relates to a method for synthesizing silanized zinc oxide quantum dots with uniform size. The technical scheme adopted in the present invention includes: 1) using a condensation reflux device to dissolve zinc salts in organic alcohols to obtain solution A; 2) dissolving strong bases in organic alcohols under ultrasonic assistance to obtain solution B; 3) stirring Mix solutions A and B under stirring conditions, and stir until clear solution C is obtained; 4) Dissolve the silane coupling agent in deionized water to obtain solution D; 5) Mix solutions C and D under stirring conditions, and centrifuge after standing to obtain initial Precipitate; 6) Wash the precipitate with alcoholic organic matter; 7) Use freeze-drying method to obtain silanized zinc oxide quantum dot powder. The method is simple and easy to operate, and the reaction conditions are mild, and can realize the synthesis of a large number of silanized zinc oxide quantum dots. Meanwhile, the silanized zinc oxide quantum dots prepared by the method can be uniformly dispersed in water, which avoids the easy agglomeration and size of the zinc oxide quantum dots. Uneven disadvantages.
Description
技术领域technical field
本发明涉及氧化锌量子点制备领域,特别涉及一种均匀尺寸的硅烷化氧化锌量子点的合成方法。The invention relates to the field of preparation of zinc oxide quantum dots, in particular to a method for synthesizing silanized zinc oxide quantum dots with uniform size.
背景技术Background technique
量子点是指一类尺寸与激子波尔半径相当或更小的纳米材料,通常尺寸小于10nm,较小的尺寸赋予其独特的物理化学性质,包括量子尺寸效应、介电限域效应、表面效应等。其中荧光性能是这类材料的一种独特性能,使得量子点在生物荧光标记、半导体荧光材料等方面获得越来越多的应用。氧化锌量子点作为一种性能优秀的量子点材料,因其良好的生物相容性、抗菌活性、荧光性能,在生物医学领域特别是生物荧光标记与抗菌材料方面具有良好的应用前景。Quantum dots refer to a class of nanomaterials whose size is comparable to or smaller than the exciton Bohr radius, usually less than 10 nm in size. The smaller size endows them with unique physical and chemical properties, including quantum size effect, dielectric confinement effect, surface effect etc. Among them, the fluorescence property is a unique property of this kind of material, which makes quantum dots have more and more applications in biological fluorescent labeling, semiconductor fluorescent materials and so on. As an excellent quantum dot material, zinc oxide quantum dots have good application prospects in the field of biomedicine, especially in biofluorescence labeling and antibacterial materials due to their good biocompatibility, antibacterial activity, and fluorescence properties.
然而,氧化锌量子点容易团聚、尺寸不均一的缺点却大大限制了它的广泛应用。团聚后的氧化锌量子点尺寸变大导致其荧光效率减弱,同时较大的尺寸也不利于其抗菌性能的发挥。目前制备氧化锌量子点的方法包括微乳液法、水热法、溶胶-凝胶法等,各种方法所制得的氧化锌存在着上述尺寸不均一、容易团聚等缺点,同时其制备流程过于复杂,对设备的要求过高。因此,如何简单高效地制备氧化锌量子点,并使其具有不易团聚、尺寸均一的特点,是使氧化锌量子点材料得以广泛应用的关键技术问题。However, the shortcomings of ZnO QDs, which are easy to agglomerate and non-uniform in size, greatly limit their wide application. The larger size of the agglomerated ZnO QDs leads to the weakening of their fluorescence efficiency, and the larger size is not conducive to the exertion of their antibacterial properties. The current methods for preparing zinc oxide quantum dots include microemulsion method, hydrothermal method, sol-gel method, etc. The zinc oxide prepared by various methods has the above-mentioned shortcomings such as uneven size and easy agglomeration, and its preparation process is too It is complex and requires too much equipment. Therefore, how to prepare ZnO quantum dots simply and efficiently, and make them have the characteristics of not easy to agglomerate and uniform size, is the key technical issue for the wide application of ZnO quantum dot materials.
发明内容SUMMARY OF THE INVENTION
针对目前氧化锌量子点合成技术中存在的问题,本发明提供一种尺寸均一、不易团聚的硅烷化氧化锌量子点的合成方法。本发明方案的研究得到国家自然科学基金(NO:81901044)的资助。Aiming at the problems existing in the current synthesis technology of zinc oxide quantum dots, the present invention provides a synthesis method of silanized zinc oxide quantum dots with uniform size and not easy to agglomerate. The research on the scheme of the present invention was supported by the National Natural Science Foundation of China (NO: 81901044).
为实现上述目的,本发明所提供的均匀尺寸的硅烷化氧化锌量子点的合成方法,其特征在于:包括如下步骤:In order to achieve the above object, the method for synthesizing silanized zinc oxide quantum dots of uniform size provided by the present invention is characterized in that: it comprises the following steps:
S1:配制二水醋酸锌乙醇溶液和氢氧化钾乙醇溶液;S1: prepare dihydrate zinc acetate ethanol solution and potassium hydroxide ethanol solution;
S2:将上述两种溶液在磁力搅拌器搅拌下混合,获得氧化锌量子点乙醇溶液;S2: mixing the above two solutions under the stirring of a magnetic stirrer to obtain an ethanol solution of zinc oxide quantum dots;
S3:将硅烷偶联剂(APTES)溶解于去离子水获得APTE水溶液;S3: Dissolving silane coupling agent (APTES) in deionized water to obtain APTE aqueous solution;
S4:在磁力搅拌条件下,将APTE水溶液加入氧化锌量子点乙醇溶液中,静置沉淀后离心,获得初始硅烷化氧化锌量子点沉淀;S4: adding the APTE aqueous solution to the ethanol solution of zinc oxide quantum dots under the condition of magnetic stirring, and centrifuging after standing for precipitation to obtain the initial silanized zinc oxide quantum dots precipitate;
S5:用乙醇洗涤初始白色沉淀物3次后离心,获得纯净的硅烷化氧化锌量子点沉淀;S5: Wash the initial white precipitate with ethanol for 3 times and then centrifuge to obtain pure silanized zinc oxide quantum dot precipitate;
S6:将上述纯净的硅烷化氧化锌量子点沉淀进行冷冻干燥,获得硅烷化氧化锌量子点粉末。S6: freeze-drying the pure silanized zinc oxide quantum dot precipitate to obtain silanized zinc oxide quantum dot powder.
作为优选方案,所述步骤S1中,二水醋酸锌乙醇溶液的摩尔浓度为:0.15-0.20mol/L。As a preferred solution, in the step S1, the molar concentration of the dihydrate zinc acetate ethanol solution is: 0.15-0.20 mol/L.
进一步地,所述步骤S1中,氢氧化钾乙醇溶液的摩尔浓度为:1-2mol/L。Further, in the step S1, the molar concentration of the potassium hydroxide ethanol solution is: 1-2 mol/L.
更进一步地,所述步骤S3中,APTE水溶液的体积比为:1:3-1:6。Further, in the step S3, the volume ratio of the APTE aqueous solution is: 1:3-1:6.
更进一步地,所述步骤S1中,二水醋酸锌乙醇溶液的配置方法为恒温水浴搅拌加热配合冷凝回流装置,水浴温度为75~85℃,搅拌时间为1~3小时;所述步骤S1中,氢氧化钾乙醇溶液的配制方法为超声振荡辅助溶解,超声频率为40HZ,超声时间为15~30分钟。Further, in the step S1, the configuration method of the zinc acetate dihydrate ethanol solution is a constant temperature water bath stirring and heating with a condensing reflux device, the water bath temperature is 75-85 ° C, and the stirring time is 1-3 hours; in the step S1 , The preparation method of the potassium hydroxide ethanol solution is ultrasonic vibration assisted dissolution, the ultrasonic frequency is 40HZ, and the ultrasonic time is 15 to 30 minutes.
更进一步地,所述步骤S2中,磁力搅拌的速度为:100-200rpm。Further, in the step S2, the speed of magnetic stirring is: 100-200rpm.
更进一步地,所述步骤S4中,磁力搅拌速率为:100-200rpm,APTE水溶液与氧化锌量子点乙醇溶液的体积比为:1:100-2:100;所述步骤S4中,离心的转速为:2000-5000rpm,时间为:5-15min。Further, in the step S4, the magnetic stirring rate is: 100-200rpm, and the volume ratio of the APTE aqueous solution to the zinc oxide quantum dot ethanol solution is: 1:100-2:100; in the step S4, the rotation speed of the centrifugal For: 2000-5000rpm, time: 5-15min.
更进一步地,所述步骤S6中,冷冻干燥的时间为:6-12h。Further, in the step S6, the freeze-drying time is: 6-12h.
本发明的优点及有益效果如下:The advantages and beneficial effects of the present invention are as follows:
(1)本发明中,各反应进行的条件较为温和,对设备的要求较低,从而实现硅烷化氧化锌量子点的简单高效制备。(1) In the present invention, the conditions for each reaction are relatively mild, and the requirements for equipment are relatively low, thereby realizing the simple and efficient preparation of silanized zinc oxide quantum dots.
(2)本发明通过硅烷偶联剂对氧化锌量子点进行表面改性,获得的硅烷化氧化锌量子点具有不易团聚,尺寸均一的特点。(2) In the present invention, the surface modification of the zinc oxide quantum dots is carried out by a silane coupling agent, and the obtained silanized zinc oxide quantum dots have the characteristics of being difficult to agglomerate and uniform in size.
(3)本发明所制备的硅烷化氧化锌量子点具有较好的荧光性能。(3) The silanized zinc oxide quantum dots prepared by the present invention have good fluorescence properties.
附图说明Description of drawings
图1为本发明合成的硅烷化氧化锌量子点过程中使用的恒温水浴搅拌加热配合冷凝回流装置图示;Fig. 1 is the schematic diagram of the constant temperature water bath stirring and heating used in the silanized zinc oxide quantum dot process of the present invention to cooperate with the condensation reflux device;
图2为本发明合成的硅烷化氧化锌量子点的透射电镜图,其中上层两图为低分辨TEM图与高分辨TEM图,左下图为晶格间距图,右下图为选区电子衍射图;Fig. 2 is the transmission electron microscope picture of the silanized zinc oxide quantum dots synthesized by the present invention, wherein the upper two pictures are low-resolution TEM pictures and high-resolution TEM pictures, the lower left picture is a lattice spacing diagram, and the lower right picture is a selected area electron diffraction diagram;
图3为本发明合成的硅烷化氧化锌量子点的X射线光电子能谱图;Fig. 3 is the X-ray photoelectron spectrogram of the silanized zinc oxide quantum dot synthesized by the present invention;
图4为本发明合成的硅烷化氧化锌量子点的X射线衍射图;Fig. 4 is the X-ray diffractogram of the silanized zinc oxide quantum dot synthesized by the present invention;
图5为本发明合成的硅烷化氧化锌量子点的傅里叶红外吸收光谱图;Fig. 5 is the Fourier transform infrared absorption spectrogram of the silanized zinc oxide quantum dot synthesized by the present invention;
图6为本发明合成的硅烷化氧化锌量子点的荧光光谱图,左图为激发光谱,右图为发射光谱;6 is a fluorescence spectrum diagram of the silanized zinc oxide quantum dots synthesized by the present invention, the left diagram is the excitation spectrum, and the right diagram is the emission spectrum;
图7为本发明合成的硅烷化氧化锌量子点的粉末荧光图(在350nm左右紫外线光源激发下)。7 is a powder fluorescence image of the silanized zinc oxide quantum dots synthesized by the present invention (excited by an ultraviolet light source at about 350 nm).
具体实施方式Detailed ways
下面结合附图与具体实施方法对本发明的方案进行详细地介绍。The solution of the present invention will be described in detail below with reference to the accompanying drawings and specific implementation methods.
实施例1:Example 1:
(1)在80摄氏度的恒温水浴锅内,将3.3g二水醋酸锌溶解于90mL无水乙醇溶液中,使用电动搅拌器搅拌2h使其充分溶解后静置于室温中冷却,获得二水醋酸锌乙醇溶液即氧化锌量子点前驱体。(1) Dissolve 3.3 g of zinc acetate dihydrate in 90 mL of anhydrous ethanol solution in a constant temperature water bath at 80 degrees Celsius, stir with an electric stirrer for 2 hours to fully dissolve it, and then let it stand at room temperature for cooling to obtain dihydrated acetic acid Zinc ethanol solution is the precursor of zinc oxide quantum dots.
(2)在室温下,将1.176g氢氧化钾溶解于12mL无水乙醇中,超声振荡20分钟辅助溶解,获得氢氧化钾乙醇溶液。(2) At room temperature, 1.176 g of potassium hydroxide was dissolved in 12 mL of absolute ethanol, and the solution was assisted by ultrasonic vibration for 20 minutes to obtain a potassium hydroxide ethanol solution.
(3)在室温下,在磁力搅拌器搅拌条件下,将氢氧化钾乙醇溶液缓慢倒入醋酸锌乙醇溶液中,磁力搅拌的速度为:150rpm,搅拌20分钟,可见混合溶液逐渐由浑浊变为澄清,得到氧化锌量子点乙醇溶液。(3) at room temperature, under the stirring condition of magnetic stirrer, slowly pour potassium hydroxide ethanol solution into zinc acetate ethanol solution, the speed of magnetic stirring is: 150rpm, stir for 20 minutes, it can be seen that the mixed solution gradually changes from turbidity to After clarification, an ethanol solution of zinc oxide quantum dots was obtained.
(4)在室温条件下,将0.24mLAPTE溶解于1.2mL去离子水中,使用涡旋振荡器使其充分分散,获得APTE水溶液。(4) Dissolve 0.24 mL of APTE in 1.2 mL of deionized water at room temperature, and use a vortex shaker to fully disperse to obtain an APTE aqueous solution.
(5)在室温下,在磁力搅拌器搅拌条件下,磁力搅拌速率为:150rpm,使用滴管将1.44mlAPTE稀释液缓慢逐滴滴加至氧化锌量子点乙醇溶液中,产生白色沉淀。(5) At room temperature, under the stirring condition of a magnetic stirrer, the magnetic stirring rate is: 150 rpm, and 1.44 ml of APTE diluent is slowly added dropwise to the zinc oxide quantum dot ethanol solution using a dropper, resulting in a white precipitate.
(6)4000rpm离心10min后获得白色沉淀物并用无水乙醇洗涤三次,获得纯净的白色沉淀物即硅烷化氧化锌量子点沉淀,使用冷冻干燥机冻干8h后获得硅烷化氧化锌量子点粉末,在超声条件下将粉末分散于去离子水中获得硅烷化氧化锌量子点胶体。(6) After centrifuging at 4000 rpm for 10 min, a white precipitate was obtained and washed three times with absolute ethanol to obtain a pure white precipitate, that is, a silanized zinc oxide quantum dot precipitate. After lyophilizing for 8 hours, a silanized zinc oxide quantum dot powder was obtained, The powders were dispersed in deionized water under ultrasonic conditions to obtain silanized zinc oxide quantum dot colloids.
对上述的硅烷化氧化锌量子点胶体行透射电镜分析、荧光光谱分析,对硅烷化氧化锌量子点粉末行X射线光电子能谱分析、X射线衍射分析、傅里叶红外光谱分析并拍摄上述硅烷化氧化锌量子点粉末的荧光显微图片。The above-mentioned silanized zinc oxide quantum dot colloid is subjected to transmission electron microscopy analysis and fluorescence spectrum analysis, and the silanized zinc oxide quantum dot powder is subjected to X-ray photoelectron spectroscopy analysis, X-ray diffraction analysis, and Fourier transform infrared spectroscopy analysis and photographing the above-mentioned silane. Fluorescence micrograph of ZnO quantum dot powder.
1、恒温水浴搅拌加热配合冷凝回流装置示意图(图1所示)1. Schematic diagram of constant temperature water bath stirring and heating with condensation reflux device (as shown in Figure 1)
水浴锅提供80℃的恒温水浴加热条件,三颈烧瓶为反应容器,右端口为加样口,加样结束后用橡皮塞塞住确保密封;中间口为搅拌口,使用电动搅拌器配合搅拌桨实现对二水醋酸锌的定速搅拌,促进氧化锌量子点前驱体溶液的形成;左端口为了冷凝回流装置连接口,连接蛇形冷凝管以确保搅拌过程中不出现因乙醇挥发而导致的前驱体浓度改变。恒温水浴搅拌时间为1-3小时,以获得澄清的醋酸锌乙醇溶液。The water bath provides a constant temperature water bath heating condition of 80°C. The three-necked flask is the reaction vessel, and the right port is the sample addition port. After the sample addition is completed, it is plugged with a rubber stopper to ensure sealing; the middle port is the stirring port, and an electric stirrer is used with a stirring paddle. Realize constant speed stirring of zinc acetate dihydrate to promote the formation of zinc oxide quantum dot precursor solution; the left port is the connection port of the condensation reflux device, and a serpentine condenser tube is connected to ensure that there is no precursor caused by ethanol volatilization during the stirring process. body concentration changes. The stirring time in a constant temperature water bath is 1-3 hours to obtain a clear zinc acetate ethanol solution.
2、硅烷化氧化锌量子点胶体透射电镜分析(图2所示)2. Transmission electron microscopy analysis of silanized zinc oxide quantum dot colloids (shown in Figure 2)
对硅烷化氧化锌量子点胶体进行透射电镜分析,包括低分辨率图像、高分辨率图像、晶格间距分析与选区电子衍射分析。低分辨率图像显示量子点均匀分散,没有出现团聚的现象;高分辨率图像显示量子点的粒径分布较为均匀,平均粒径在5nm左右;晶格间距图像显示出清晰的0.26nm的晶格间距;选区电子衍射呈现了规则清晰的衍射环,说明该氧化锌具有良好的结晶性,为六角纤锌矿型晶体结构。Transmission electron microscopy analysis of silanized zinc oxide quantum dot colloids, including low-resolution images, high-resolution images, lattice spacing analysis and selected area electron diffraction analysis. The low-resolution image shows that the quantum dots are uniformly dispersed without agglomeration; the high-resolution image shows that the particle size distribution of the quantum dots is relatively uniform, with an average particle size of about 5nm; the lattice spacing image shows a clear lattice of 0.26nm The selected area electron diffraction shows a regular and clear diffraction ring, indicating that the zinc oxide has good crystallinity and is a hexagonal wurtzite crystal structure.
3、硅烷化氧化锌里量子点粉末X射线光电子能谱分析(图3所示)3. X-ray photoelectron spectroscopy analysis of quantum dot powder in silanized zinc oxide (shown in Figure 3)
X射线光电子能谱分析(XPS)用于表征硅烷化氧化锌量子点的结合态,呈现出Zn2p、O1s、Si1s、C1s、N1s,其中Zn2p、O1s说明了氧化锌结构的存在,而Si1s、C1s、N1s应证了量子点表面硅烷化的存在。X-ray photoelectron spectroscopy (XPS) was used to characterize the binding state of silanized ZnO quantum dots, showing Zn2p, O1s, Si1s, C1s, N1s, of which Zn2p, O1s indicated the existence of ZnO structure, while Si1s, C1s , N1s proved the existence of silanization on the surface of quantum dots.
4、硅烷化氧化锌里量子点粉末X射线衍射分析(图4所示)4. Powder X-ray diffraction analysis of quantum dots in silanized zinc oxide (shown in Figure 4)
X射线衍射分析(XRD)用于分析硅烷化氧化锌量子点的晶体结构,其中底部的黑线为标准纤锌矿结构的氧化锌的标准卡,上方蓝线为硅烷化氧化锌量子点的衍射峰图谱,其中(100)、(002)、(101)、(102)、(110)、(103)、(112)处的特征衍射峰与标准卡一一对应,说明此方法合成的硅烷化氧化锌量子点为纤锌矿结构。X-ray diffraction analysis (XRD) was used to analyze the crystal structure of silanized zinc oxide quantum dots, in which the bottom black line is the standard card of standard wurtzite structure zinc oxide, and the upper blue line is the diffraction of silanized zinc oxide quantum dots Peak spectrum, in which the characteristic diffraction peaks at (100), (002), (101), (102), (110), (103), (112) correspond to the standard card one by one, indicating that the silanization synthesized by this method Zinc oxide quantum dots have a wurtzite structure.
5、硅烷化氧化锌里量子点粉末傅里叶红外光谱分析(图5所示)5. Fourier transform infrared spectroscopy analysis of quantum dot powder in silanized zinc oxide (shown in Figure 5)
傅里叶红外光谱可用于检测硅烷化氧化锌量子点所含有的化学官能团,如图所示,在3506.5cm-1处的吸收峰代表0-H键,代表着粉末中存在着的水分;1580.9cm-1处的吸收峰为N=O键的伸缩振动峰;1401.1cm-1处的吸收峰为O-H键的变形振动;1339.1cm-1处的吸收峰为羧基的伸缩振动峰;1018.6cm-1处的吸收峰为C-OH键的特征吸收峰;677.3cm-1处的吸收峰为C-H键的摇摆振动峰;466.4cm-1处的吸收峰为氧化锌的特征吸收峰。这些吸收峰的出现说明氧化锌结构的存在,并证实氧化性量子点表面被APTE修饰成硅烷化氧化锌量子点,从而使其不易出现团聚,保证了粒径的均一稳定。Fourier transform infrared spectroscopy can be used to detect the chemical functional groups contained in the silanized zinc oxide quantum dots. As shown in the figure, the absorption peak at 3506.5cm -1 represents the 0-H bond, which represents the moisture present in the powder; 1580.9 The absorption peak at cm -1 is the stretching vibration peak of N=O bond; the absorption peak at 1401.1 cm -1 is the deformation vibration of OH bond; the absorption peak at 1339.1 cm -1 is the stretching vibration peak of carboxyl group; 1018.6 cm - The absorption peak at 1 is the characteristic absorption peak of C-OH bond; the absorption peak at 677.3 cm -1 is the rocking vibration peak of CH bond; the absorption peak at 466.4 cm -1 is the characteristic absorption peak of zinc oxide. The appearance of these absorption peaks indicates the existence of the zinc oxide structure and confirms that the surface of the oxidative quantum dots is modified by APTE into silanized zinc oxide quantum dots, which makes it difficult to agglomerate and ensures the uniform and stable particle size.
6、硅烷化氧化锌里量子点胶体荧光光谱分析(图6所示)6. Fluorescence spectrum analysis of quantum dots in silanized zinc oxide (shown in Figure 6)
荧光光谱可用于分析硅烷化氧化锌量子点的激发光光谱范围和发射光光谱范围,横坐标为激发或发射波长,纵坐标为光强度。如图所知,硅烷化氧化锌量子点拥有一个较窄的激发波长范围,其最佳激发波长位于359nm;同时呈现出一个较宽的发射光范围,其最佳发射波长为552nm。这与粉末荧光显微图片所呈现的一致,即硅烷化氧化锌量子点可以在紫外线的激发下发出黄色的荧光,说明其可用于生物医学中的荧光标记领域。The fluorescence spectrum can be used to analyze the excitation light spectral range and emission light spectral range of the silanized zinc oxide quantum dots, the abscissa is the excitation or emission wavelength, and the ordinate is the light intensity. As shown in the figure, the silanized zinc oxide quantum dots have a narrow excitation wavelength range, and the optimal excitation wavelength is located at 359 nm; at the same time, they exhibit a wide emission light range, and the optimal emission wavelength is 552 nm. This is consistent with the powder fluorescence micrographs, that is, silanized zinc oxide quantum dots can emit yellow fluorescence under the excitation of ultraviolet light, indicating that they can be used in the field of fluorescent labeling in biomedicine.
7、硅烷化氧化锌里量子点粉末荧光显微图片(图7所示)7. Fluorescence micrograph of quantum dot powder in silanized zinc oxide (shown in Figure 7)
使用350nm左右的紫外线照射硅烷化氧化锌量子点粉末,并用正置荧光显微镜观察粉末的荧光效果,发现在紫外线的激发下,硅烷化氧化锌量子点发出黄色的荧光,这与荧光光谱的结果一致,说明其具有较好的荧光性能,可用于生物医学的荧光标记领域。The silanized zinc oxide quantum dot powder was irradiated with ultraviolet light of about 350 nm, and the fluorescence effect of the powder was observed with an upright fluorescence microscope. It was found that under the excitation of ultraviolet light, the silanized zinc oxide quantum dots emitted yellow fluorescence, which was consistent with the results of the fluorescence spectrum. , indicating that it has good fluorescence properties and can be used in the field of biomedical fluorescent labeling.
实施例2:Example 2:
(1)在85摄氏度的恒温水浴锅内,将3.96g二水醋酸锌溶解于90mL无水乙醇溶液中,使用电动搅拌器搅拌3h使其充分溶解后静置于室温中冷却,获得二水醋酸锌乙醇溶液即氧化锌量子点前驱体。(1) In a constant temperature water bath at 85 degrees Celsius, dissolve 3.96 g of zinc acetate dihydrate in 90 mL of anhydrous ethanol solution, stir with an electric stirrer for 3 hours to fully dissolve it, and then let it stand at room temperature for cooling to obtain dihydrated acetic acid Zinc ethanol solution is the precursor of zinc oxide quantum dots.
(2)在室温下,将1.344g氢氧化钾溶解于12mL无水乙醇中,超声振荡30分钟辅助溶解,获得氢氧化钾乙醇溶液。(2) At room temperature, 1.344 g of potassium hydroxide was dissolved in 12 mL of anhydrous ethanol, and the solution was assisted by ultrasonic vibration for 30 minutes to obtain a potassium hydroxide ethanol solution.
(3)在室温下,在磁力搅拌器搅拌条件下,将氢氧化钾乙醇溶液缓慢倒入醋酸锌乙醇溶液中,磁力搅拌的速度为:200rpm,搅拌20分钟,可见混合溶液逐渐由浑浊变为澄清,得到氧化锌量子点乙醇溶液。(3) at room temperature, under the stirring condition of magnetic stirrer, slowly pour potassium hydroxide ethanol solution into zinc acetate ethanol solution, the speed of magnetic stirring is: 200rpm, stir for 20 minutes, it can be seen that the mixed solution gradually changes from turbidity to After clarification, an ethanol solution of zinc oxide quantum dots was obtained.
(4)在室温条件下,将0.8mLAPTE溶解于2.4mL去离子水中,使用涡旋振荡器使其充分分散,获得APTE水溶液。(4) Dissolve 0.8 mL of APTE in 2.4 mL of deionized water at room temperature, and use a vortex shaker to fully disperse to obtain an APTE aqueous solution.
(5)在室温下,在磁力搅拌器搅拌条件下,磁力搅拌速率为:200rpm,使用滴管将2.04mlAPTE稀释液缓慢逐滴滴加至氧化锌量子点乙醇溶液中,产生白色沉淀。(5) At room temperature, under the stirring condition of a magnetic stirrer, the magnetic stirring rate is: 200rpm, and 2.04ml of APTE diluent is slowly added dropwise to the zinc oxide quantum dot ethanol solution dropwise using a dropper, resulting in a white precipitate.
(6)5000rpm离心15min后获得白色沉淀物并用无水乙醇洗涤三次,获得纯净的白色沉淀物即硅烷化氧化锌量子点沉淀,使用冷冻干燥机冻干12h后获得硅烷化氧化锌量子点粉末,在超声条件下将粉末分散于去离子水中获得硅烷化氧化锌量子点胶体。(6) After centrifuging at 5000rpm for 15min, a white precipitate was obtained and washed three times with absolute ethanol to obtain a pure white precipitate, that is, a silanized zinc oxide quantum dot precipitate. After lyophilizing for 12 hours, a silanized zinc oxide quantum dot powder was obtained, The powders were dispersed in deionized water under ultrasonic conditions to obtain silanized zinc oxide quantum dot colloids.
实施例3:Example 3:
(1)在75摄氏度的恒温水浴锅内,将2.97g二水醋酸锌溶解于90mL无水乙醇溶液中,使用电动搅拌器搅拌1h使其充分溶解后静置于室温中冷却,获得二水醋酸锌乙醇溶液即氧化锌量子点前驱体。(1) In a constant temperature water bath at 75 degrees Celsius, dissolve 2.97g of zinc acetate dihydrate in 90mL of anhydrous ethanol solution, stir with an electric stirrer for 1 hour to fully dissolve it, and then let it stand at room temperature for cooling to obtain dihydrate acetic acid Zinc ethanol solution is the precursor of zinc oxide quantum dots.
(2)在室温下,将0.672g氢氧化钾溶解于12mL无水乙醇中,超声振荡15分钟辅助溶解,获得氢氧化钾乙醇溶液。(2) At room temperature, 0.672 g of potassium hydroxide was dissolved in 12 mL of absolute ethanol, and the solution was assisted by ultrasonic vibration for 15 minutes to obtain a potassium hydroxide ethanol solution.
(3)在室温下,在磁力搅拌器搅拌条件下,将氢氧化钾乙醇溶液缓慢倒入醋酸锌乙醇溶液中,磁力搅拌的速度为:100rpm,搅拌20分钟,可见混合溶液逐渐由浑浊变为澄清,得到氧化锌量子点乙醇溶液。(3) At room temperature, under the stirring condition of magnetic stirrer, slowly pour potassium hydroxide ethanol solution into zinc acetate ethanol solution, the speed of magnetic stirring is: 100rpm, stir for 20 minutes, it can be seen that the mixed solution gradually changes from turbidity to After clarification, an ethanol solution of zinc oxide quantum dots was obtained.
(4)在室温条件下,将0.2mLAPTE溶解于1.2mL去离子水中,使用涡旋振荡器使其充分分散,获得APTE水溶液。(4) Dissolve 0.2 mL of APTE in 1.2 mL of deionized water at room temperature, and use a vortex shaker to fully disperse it to obtain an APTE aqueous solution.
(5)在室温下,在磁力搅拌器搅拌条件下,磁力搅拌速率为:100rpm,使用滴管将1.02ml的APTE稀释液缓慢逐滴滴加至氧化锌量子点乙醇溶液中,产生白色沉淀。(5) At room temperature, under the stirring condition of a magnetic stirrer, the magnetic stirring rate is: 100rpm, and 1.02ml of APTE diluent is slowly added dropwise to the zinc oxide quantum dot ethanol solution dropwise using a dropper, resulting in a white precipitate.
(6)2000rpm离心5min后获得白色沉淀物并用无水乙醇洗涤三次,获得纯净的白色沉淀物即硅烷化氧化锌量子点沉淀,使用冷冻干燥机冻干6h后获得硅烷化氧化锌量子点粉末,在超声条件下将粉末分散于去离子水中获得硅烷化氧化锌量子点胶体。(6) After centrifuging at 2000 rpm for 5 min, a white precipitate was obtained and washed three times with absolute ethanol to obtain a pure white precipitate, that is, a precipitate of silanized zinc oxide quantum dots. After lyophilizing for 6 hours, a silanized zinc oxide quantum dot powder was obtained, The powders were dispersed in deionized water under ultrasonic conditions to obtain silanized zinc oxide quantum dot colloids.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010793432.8A CN111994943A (en) | 2020-08-10 | 2020-08-10 | Synthesis method of silanized zinc oxide quantum dots of uniform size |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010793432.8A CN111994943A (en) | 2020-08-10 | 2020-08-10 | Synthesis method of silanized zinc oxide quantum dots of uniform size |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111994943A true CN111994943A (en) | 2020-11-27 |
Family
ID=73463954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010793432.8A Pending CN111994943A (en) | 2020-08-10 | 2020-08-10 | Synthesis method of silanized zinc oxide quantum dots of uniform size |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111994943A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112830510A (en) * | 2021-02-19 | 2021-05-25 | 安徽景成新材料有限公司 | Synthesis method of zinc oxide quantum dots |
CN113861966A (en) * | 2021-10-15 | 2021-12-31 | 吉隆达(成都)新材料科技有限公司 | Method for preparing high-purity zinc oxide quantum dots on large scale |
CN115518192A (en) * | 2022-09-22 | 2022-12-27 | 重庆桑禾动物药业有限公司 | Chitosan-zinc oxide quantum dot and application thereof in skin infection dressing |
CN116285960A (en) * | 2023-03-08 | 2023-06-23 | 郑州大学 | A kind of preparation method of large-scale transparent scintillator |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010540398A (en) * | 2007-10-05 | 2010-12-24 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Method for forming nanocrystals |
CN102533257A (en) * | 2010-12-17 | 2012-07-04 | 中国科学院理化技术研究所 | A kind of surface-modified ZnO quantum dot and preparation method thereof |
CN104609460A (en) * | 2015-01-29 | 2015-05-13 | 武汉大学 | A kind of nano zinc oxide with controllable length and preparation method thereof |
CN106544002A (en) * | 2016-10-12 | 2017-03-29 | 浙江工业大学 | Stable Zinc oxide quantum dot of bio-based and preparation method thereof |
CN108611088A (en) * | 2018-05-22 | 2018-10-02 | 温州大学苍南研究院 | A kind of method that sonochemical method prepares ZnO quantum dot |
CN109292812A (en) * | 2018-12-04 | 2019-02-01 | 淮阴工学院 | Preparation method of monodisperse ZnO quantum dots hydrosol |
CN109929540A (en) * | 2017-12-15 | 2019-06-25 | Tcl集团股份有限公司 | A kind of nano particle and preparation method thereof and solar battery |
-
2020
- 2020-08-10 CN CN202010793432.8A patent/CN111994943A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010540398A (en) * | 2007-10-05 | 2010-12-24 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Method for forming nanocrystals |
CN102533257A (en) * | 2010-12-17 | 2012-07-04 | 中国科学院理化技术研究所 | A kind of surface-modified ZnO quantum dot and preparation method thereof |
CN104609460A (en) * | 2015-01-29 | 2015-05-13 | 武汉大学 | A kind of nano zinc oxide with controllable length and preparation method thereof |
CN106544002A (en) * | 2016-10-12 | 2017-03-29 | 浙江工业大学 | Stable Zinc oxide quantum dot of bio-based and preparation method thereof |
CN109929540A (en) * | 2017-12-15 | 2019-06-25 | Tcl集团股份有限公司 | A kind of nano particle and preparation method thereof and solar battery |
CN108611088A (en) * | 2018-05-22 | 2018-10-02 | 温州大学苍南研究院 | A kind of method that sonochemical method prepares ZnO quantum dot |
CN109292812A (en) * | 2018-12-04 | 2019-02-01 | 淮阴工学院 | Preparation method of monodisperse ZnO quantum dots hydrosol |
Non-Patent Citations (1)
Title |
---|
刘凯凯: "氧化锌量子点的制备与应用研究", 《中国博士学位论文全文数据库 基础科学辑》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112830510A (en) * | 2021-02-19 | 2021-05-25 | 安徽景成新材料有限公司 | Synthesis method of zinc oxide quantum dots |
CN113861966A (en) * | 2021-10-15 | 2021-12-31 | 吉隆达(成都)新材料科技有限公司 | Method for preparing high-purity zinc oxide quantum dots on large scale |
CN113861966B (en) * | 2021-10-15 | 2024-05-10 | 四川吉隆达生物科技集团有限公司 | Method for preparing high-purity zinc oxide quantum dots on large scale |
CN115518192A (en) * | 2022-09-22 | 2022-12-27 | 重庆桑禾动物药业有限公司 | Chitosan-zinc oxide quantum dot and application thereof in skin infection dressing |
CN116285960A (en) * | 2023-03-08 | 2023-06-23 | 郑州大学 | A kind of preparation method of large-scale transparent scintillator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111994943A (en) | Synthesis method of silanized zinc oxide quantum dots of uniform size | |
CN113817469B (en) | Ultra-bright monochromatic up-conversion nano probe for excitation/emission in biological window and preparation method and application thereof | |
CN103540310A (en) | Surface direct mesoporous modification method used for multi-morphology rear earth-doped up-conversion luminescent nanocrystallines | |
CN112080278A (en) | An up/down conversion dual-mode luminescent nanocrystal and its preparation method and application | |
CN101555040A (en) | Preparation method of manganese sulfide nano material | |
CN109292812A (en) | Preparation method of monodisperse ZnO quantum dots hydrosol | |
CN101260299B (en) | A method for preparing yttrium oxide, gadolinium, europium nano-luminescent powder by microemulsion method | |
CN101792666B (en) | Rare earth phosphate nano-phosphor and preparation method thereof | |
CN110746972B (en) | Preparation of calcium-doped fluorescence-enhanced water-soluble NaErF4:Yb nanomaterials for red light upconversion | |
CN1230472C (en) | Method for preparing nano iron oxide red | |
CN105969346B (en) | A kind of method that microwave method prepares the fluorescence silicon quantum dot of fluorine doped | |
CN105602566B (en) | A kind of rear-earth-doped NaGdF4Upper conversion nano crystalline substance and preparation method thereof | |
CN104876266B (en) | A kind of aqueous phase preparation method of bismuth sulfide/protein composite Nano ball | |
CN106517356B (en) | A kind of sheet Cu9Fe9S16The preparation method of nano flower | |
CN108175859A (en) | A kind of multimode magnetic photo-thermal diagnosis integration nano-probe and its preparation method and application | |
CN101962532A (en) | Method for synthesizing polyacrylic acid (PAA)-coated rare earth fluoride functionalized nanomaterial by in-situ polymerization | |
CN106244140B (en) | A near-infrared long-lasting nanomaterial activated by divalent nickel ions and its preparation method and application | |
CN102631937B (en) | Synthesis method of supported silver iodide nanoparticles visible light photocatalyst | |
CN110317606B (en) | Method and product for preparing carbon dots by using bromoacetonitrile and imidazole compounds | |
CN108504354A (en) | A kind of preparation method of silicon doped graphene quantum dot | |
CN109081380B (en) | Method for preparing rod-like beta-iron oxide hydroxide | |
CN102786931B (en) | Method for synthesizing PAM-coated rare earth fluoride nanomaterials by in-situ polymerization | |
CN105692697A (en) | A method for preparing nano-Bi2Zr2O7 powder by using precipitation calcination method to assist molten salt method | |
CN101264925A (en) | A kind of method for preparing nano zinc sulfide | |
CN110003902A (en) | A kind of preparation method of high-brightness MoS2 quantum dots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201127 |