CN1113009A - 使用聚合压电膜的探物传感器 - Google Patents

使用聚合压电膜的探物传感器 Download PDF

Info

Publication number
CN1113009A
CN1113009A CN94115306A CN94115306A CN1113009A CN 1113009 A CN1113009 A CN 1113009A CN 94115306 A CN94115306 A CN 94115306A CN 94115306 A CN94115306 A CN 94115306A CN 1113009 A CN1113009 A CN 1113009A
Authority
CN
China
Prior art keywords
diaphragm
transducer apparatus
lid
base
supporting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN94115306A
Other languages
English (en)
Inventor
麦诺卢·托德
昆·T·帕克
阿尔伯特·卡肖蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whitaker LLC
Original Assignee
Whitaker LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whitaker LLC filed Critical Whitaker LLC
Publication of CN1113009A publication Critical patent/CN1113009A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0688Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/48Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using wave or particle radiation means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/524Transmitters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/122Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
    • G10K9/125Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means with a plurality of active elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
    • G01S2015/938Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details in the bumper area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S310/00Electrical generator or motor structure
    • Y10S310/80Piezoelectric polymers, e.g. PVDF
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S367/00Communications, electrical: acoustic wave systems and devices
    • Y10S367/908Material level detection, e.g. liquid level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S367/00Communications, electrical: acoustic wave systems and devices
    • Y10S367/909Collision avoidance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

一种用于探物传感器的换能器装置,包括细长的 聚合压电膜(16)。该膜片(16)被支撑成由一系列弧 形段构成的细长条,所有弧形段的弯曲方向相同,且 曲率半径(R)相同。压电膜(16)两边的电极(18)形 成相对的电极对,每一对电极分别对应于一弧段。电 极(18)用来把变化电场加于膜片(16)的厚度之上,从 而使膜片(16)发射超声波。

Description

本发明涉及超声探物传感器,特别涉及在换能器装置中使用聚合压电膜的改进型超声探物传感器。
探物传感器有多种用途。例如,装在车辆上的探物传感器能用来警告车辆操纵者道路上有障碍物存在。因此,若把探物传感器装在卡车后部,当卡车向装料场倒车时,就可用来提请卡车司机注意卡车与装料场之间剩下的距离。因此本发明的目的是提供可以用于这类场合的探物传感器。
在这类应用中我们所要使用的是一种利用超声波发射和反射的探物传感器。探物所要使用的超声波射束呈扁平直进形状。因此本发明的另一个目的是提供产生这种形状超声波的换能器装置。
按照本发明的原理,上述和其它的目的由用于探物传感器的换能器装置实现,它包括细长的聚合压电膜。该装置还包括把膜片支撑成细长的一系列弧形段用的机构。所有弧形段的弯曲方向和曲率半径均相同。此外,还有把变化电场加于各弧段膜片厚度上的机构,以使膜片发射超声波。
按照本发明的一个方面,膜片支撑机构包括刚性底座和刚性盖子,底座上有支撑面,为一由一系列弧形段构成的细长表面,所有弧形段的弯曲方向和曲率半径均相同,膜片即位于底座和盖子之间。盖子上有凹槽,凹槽内表面的形状与底座支撑面相合。膜片支撑机构还包括把盖子固定到底座上,从而把膜片夹紧在底座支撑面和盖子的凹槽内表面之间的构件。按照本发明的另一个方面,盖子上有一系列与凹槽相通的彼此隔开的孔,每一个孔与膜片的一个弧段相对应,换能器装置还包括在与盖子的孔对应的区域中使膜片和底座保持间隔的装置。按照本发明的又一个方面,底座支撑面由一对相间隔的狭长支撑表面构成,上述间隔保持装置包括底座上该对狭长支撑表面间的表面区域,它一般与该对狭长的支撑面平行,并从盖子处后退一段距离。按照本发明的再一个方面,电场施加机构包括由膜片两边上的导电区构成的一种电极形式,膜片两边的导电区彼此隔开,每一导电区与直接跨过膜片厚度的膜片另一边上的导电区对应,从而形成一系列隔开相对的电极对。
用作探物传感器的换能器装置包括细长的聚合压电膜。本发明提供了把膜片支撑成由一系列弧形段构成的细长形膜片的机构,这些弧形段的曲率半径和弯曲方向均相同。本发明提供了把变化电场加到每一弧段膜片厚度上以使膜片发射超声波的机构。
下面参照附图通过实施例对本发明进行说明,附图中:
图1为本发明的使用聚合压电膜发生直线超声束的超声波发生换能器的立体示意图;
图2为图1聚合压电膜的侧视图,用来说明如何确定换能器装置的工作频率;
图3A和3B分别为本发明换能器装置的俯视图和侧视图,分别表示射束的水平和垂直传播角度;
图4为本发明实际换能器装置的立体分解图;
图5例示图4装置的安装;
图6A和6B分别为使用单个换能器装置进行发射和接收的第一探物传感器实施例的俯视图和侧视图;
图7为本发明探物传感器的第二实施例的俯视图,其中,使用了三个独立的换能器装置,每个换能器装置既用作发射器,又用作接收器;
图8为本发明探物传感器的第三实施例的俯视图,并使用了三个换能器装置,其中二个用作发射器,第三个用作接收器;
图9用来说明如何计算图8传感器与障碍物之间的距离;
图10A和10B为本发明的距离确定和显示装置的两个实施例的框图;
图11A和11B分别为换能器装置和例示性波形的示意图,用来说明本发明传感器的自诊断功能;
图12说明如何按照本发明确定障碍物的两维位置。
聚合压电膜是一种能用来制造柔性的宽频带超声波换能器的材料。探物所需的超声波射束为扁平直射型。只要加长超声波源,所生成的射束便会变得较直。图1示出了本发明的这类换能器。如图1所示,聚合压电膜10为细长形,并被支撑成一系列弧形段。所有弧形段的曲率半径和弯曲方向均相同。膜片10被支撑在形状合适的支撑件12上,使得膜片10的每一弧形段与支撑件12之间保持间隔14。当合适频率的变化电场加于压电膜10的厚度之上时,膜片10以该频率振动,发射超声波。间隔14使得膜片10在振动时不致碰上支撑件12。
聚合压电材料,特别是聚偏二氟乙烯(PVDF或PVF2),即使经拉长和支撑也能形成柔性的膜片。当膜片10处于具有两个夹紧区13的曲线形状时,在膜片厚度上施加交流电压,夹紧点之间的区域就会在与平面垂直的方向上振动(曲率半径增大或减小)。
此振动是由沿分子链方向(箭头15所示)的长度的膨胀或收缩造成的,分子链方向选为与膜片10弧线的切线方向平行。声学工程协会杂志1975年第23卷第21~26页上M.Tamura等人的文章“使用压电高聚物的电声换能器”对这一原理作了描述。当驱动信号频率变动时,来回振动在共振频率fo处达到最大。该共振由膜片质量及其弹性造成。该共振频率由下式给出:
f o = ( 1 / 2 πR ) × Y / p
式中,R为弧形段的半径、Y为杨氏模量、p为压电膜片10的密度。例如,若R等于0.2英寸,工作频率fo则等于45千赫。
超声波射束的角度决定于换能器的尺寸,如图3A和3B所示。若换能器长L、宽W,则射束水平角φh由下式给出:
φh=2 arc sin(1.895 Vs/(πfoL))
射束垂直角φv由下式给出:
φv=2 arc sin(1.895 Vs/(πfoW))
式中,Vs为空气中的声速。例如,L为7英尺时φh为0°,L为8英寸时φh为2.5°,W为4英寸时φv为5°。
图4示出图1所示意的那类换能器装置的实际构造。如图4所示,细长形压电膜片16的表面上有一定形式的电极18。该电极18最好是用银浆料沉积在膜片16两边上的导电区。膜片16两边上的电极18相互隔开,一般为长方形,每一电极在直接跨过膜片厚度的膜片另一边有一与之相应的导电区,从而形成一系列相隔相对的电极对。膜片16两边上的所有电极18由一定形式的银浆料互相连结并在膜片一端与导线20连结。把合适频率(例如45千赫)的变化电信号加于导线20,就能使压电膜16振动,产生超声波。
底座22用来把膜片16支撑成一系列弧形段。因此底座22包括第一支撑面24和第二支撑面26。支撑面24、26为底座22上一对相间距的狭长表面,每一表面的形状为曲率半径和弯曲方向均相同的一系列弧形段。如前所述,弧形段的曲率半径根据换能器装置所需工作频率加以选择。为了在膜片16和底座22之间保持能让膜片16振动的合适间隔,底座22在该对支撑面24、26之间还有一表面区28。表面区28一般与支撑面24、26平行,但与表面24、26错开。
为了使膜片16靠在底座22上并保持所需的弧状,本发明使用了盖子30。盖子30有凹槽32,其内表面的形状与支撑面24、26相合。凹槽32的内表面在与支撑面24、26相合的部分之间是连续的,因此当把盖子30装到底座22上时,在凹槽32内表面与底座22的错开面28之间有一间隔。
盖子30上有一系列与凹槽32相通的彼此隔开的孔34。每一个孔34与底座22并因此与膜片16的一弧形段对应,因此,使膜片16振动而生成的超声波能从盖子30中传出。
图4所示装置还包括膜片16和盖子30之间的柔性垫片36,用来密封并保护装置的其余部分不受元件损伤。
为了把底座22、膜片16、垫片36和盖子30对齐,每个底座22、膜片16和垫片36上在合适位置分别开有若干可以对齐的孔38、40和42,而在盖子30的凹槽32中相应模制有若干销钉44。装配时,销钉44穿过对齐孔38、40和42。若干螺丝46把底座22固定到盖子30上,膜片16和垫片36即夹于其中;最后装配的一步是用螺丝48把底板50固定到底座22和盖子30上。用螺丝54固定在底座22上的防拉脱件52用来防止导线20被拉脱,垫圈56用来密封底板50上的导线20穿孔58。
图5示出把细长形换能器装置60装到车辆,例如卡车62后部的情况。如图所示,装置60为图4所示的细长形装置。
图6A和6B为换能器装置60(图5)的俯视图和侧视图,表示其射束的形式。因换能器装置60的长度约为7英尺,因此图6A的俯视图表示出射束为直线型;图6B的侧视图表示出,对于高度为4英寸的装置,射束的垂直传播角为5°。为了达到最高***效率,形成装置60的压电膜在发射期中,其所有弧形段都工作;而在接收期中只有一个或二个弧形段工作。
图7为一个使用三个独立的换能器装置64、66和68的探物传感器实施例的俯视图,这三个装置中,中间的换能器装置66为弧形而不是直线形,其它两个为图4所示的直线形。因此,如图7所示,装置64、66和68安装成它们的主轴大体上位于同一个水平面中。两侧的换能器装置64和68离中间换能器装置66的距离相等,并且与中间装置66所成的角度也相等。由于装置64、66和68较短,它们的射束成扩散状。但是,如图7所示,通过适当调整两侧装置64和68的安装角,由各重叠射束形成的整个射束还是比较直的。此外,可以看到,在装置66与装置64、装置66与装置68之间形成两盲区,但若适当调整两侧装置64和68的安装角,可使这两个盲区的面积减至最小。每一个换能器装置64、66和68都既用作发射器,又用作接收器。
图8是又一个实施例的俯视图,其中,单弧段换能器装置70用作接收器,一对发射换能器装置72和74等距离地放置在换能器装置70的两侧,换能器装置72和74都产生大体为90°的射束。在图8所示的结构中,探物范围受到限制,大体上等于换能器装置72和74之间的距离,但测距精度非常高。
图9表示如何根据从发射器72、74到接收器70测得的传播时间计算障碍物76与图8所示探物传感器之间的距离。因此,当声波从装置72发出、为障碍物76反射并为接收器70所接收时,测得的传播时间K1为K1=(X+Z)/Vs,而从发射器74发出的超声波的传播时间为K2=(Y+Z)/Vs,其中Vs为空气中的声速。X、Y和Z可从下式解得:
A2=X2+Z2-2XZ cosθ1
A2=Y2+Z2-2YZ cosθ2
(2A)2=X2+Y2-2XY cos(θ12
式中,A为接收器70与发射器72或74之间的已知距离。距离H即可从已知的三角和几何关系中计算而得。
图10A为本发明的应用一例,其中,上述换能器装置78连结到测量超声脉冲发射与接收之间的时间的电路80。该测量值提供给距离计算器82,从而确定离开障碍物的距离,距离计算器再把此信息提供给声音合成器84,从而把声音传给驾驶员。或者,如图10B所示,也可通过由发射器86和接收器88组成的无线传送装置连结测量线路80和计算线路82,这样就可更方便地使用这一方法,车辆前部和后部之间不需使用导线。
在上述类型的换能器装置中使用压电膜的一个优点是可以设计自诊断功能。如图11A所示,换能器装置90由发射元件92和接收元件94组成。当把脉冲经过导线96加在发射元件92上时,产生的声波通过空气直接传送给接收元件94。图11B表示输入电脉冲以及接收元件94在导线98上的输出,该输出包括响应通过空气直接传来的声波的脉冲100以及其后响应障碍物反射信号的脉冲102。第一脉冲100用于诊断,以显示***处于工作状态,但与测距无关,测距时只考虑第二脉冲102。
图12表示出如何确定障碍物104的二维坐标。如图12所示,换能器装置106由若干发射元件组成。各元件相继工作,通过计算声波传播到各接收器的时间,即能确定障碍物104的二维坐标位置。
因此,上面公开了在换能器装置中使用压电膜的改进型探物传感器。尽管以上公开了本发明的例示性实施例,但应指出,本专业普通技术人员很容易对所公开的实施例作出种种变换和改动,因此本发明只受下列权利要求书范围的限定。

Claims (5)

1、一种用于探物传感器的换能器装置,其特征在于它包括:
细长形聚合压电膜片;
用来把所述膜片支撑成由一系列弧形段构成的细长条形状的膜片支撑机构,所有所述弧形段具有相同的预定曲率半径(R),且弯曲方向都相同;以及
把变化电场加到所述每一弧形段膜片厚度上,使该膜片发射超声波的电场施加机构。
2、如权利要求1所述的换能器装置,其特征在于,所述膜片支撑机构包括:
刚性底座,其上有形状为一细长系列弧形段的支撑面,所有弧形段具有相同的预定曲率半径(R),且弯曲方向均相同;
刚性盖子,其位置放置得使所述膜片位于所述底座与所述盖子之间,所述盖子上有凹槽,其内表面的形状与所述底座上的支撑面相合;以及
把所述盖子固定到所述底座上,从而使所述膜片夹紧在所述底座上的支撑面与盖子内表面之间的构件。
3、如权利要求2所述的换能器装置,其特征在于,所述盖子上有若干与所述凹槽相通的相间隔的孔,每一个孔与所述膜片的一个弧形段对应,该换能器装置还包括在与所述盖子的孔对应的区域中使所述膜片与所述底座间保持一定间隔的装置。
4、如权利要求3所述的换能器装置,其特征在于,所述底座上的支撑面由一对相间隔的较狭长表面组成,所述间隔保持装置包括所述底座上位于该对狭长支撑面之间的一个表面区,它一般与该对狭长支撑面平行,并与所述盖子错开一定间隔。
5、如权利要求1所述的换能器装置,其特征在于,所述电场施加机构包括一由所述膜片两边导电区形成的电极,所述膜片两边的导电区彼此相隔开,且每一导电区在直接跨过膜片厚度的膜片的另一边有一对应的导电区,以形成一系列隔开相对的电极对。
CN94115306A 1993-09-14 1994-09-14 使用聚合压电膜的探物传感器 Pending CN1113009A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/121,392 1993-09-14
US08/121,392 US5515341A (en) 1993-09-14 1993-09-14 Proximity sensor utilizing polymer piezoelectric film

Publications (1)

Publication Number Publication Date
CN1113009A true CN1113009A (zh) 1995-12-06

Family

ID=22396420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94115306A Pending CN1113009A (zh) 1993-09-14 1994-09-14 使用聚合压电膜的探物传感器

Country Status (6)

Country Link
US (1) US5515341A (zh)
EP (1) EP0642843A1 (zh)
JP (1) JPH0836048A (zh)
KR (1) KR950009280A (zh)
CN (1) CN1113009A (zh)
BR (1) BR9403468A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8052606B2 (en) 1996-06-28 2011-11-08 Sonosite, Inc. Balance body ultrasound system
CN111107947A (zh) * 2017-09-22 2020-05-05 皇家飞利浦有限公司 超声换能器设备及其控制方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495137A (en) * 1993-09-14 1996-02-27 The Whitaker Corporation Proximity sensor utilizing polymer piezoelectric film with protective metal layer
US5734336A (en) * 1995-05-01 1998-03-31 Collision Avoidance Systems, Inc. Collision avoidance system
US5590658A (en) * 1995-06-29 1997-01-07 Teratech Corporation Portable ultrasound imaging system
US7500952B1 (en) * 1995-06-29 2009-03-10 Teratech Corporation Portable ultrasound imaging system
US6812624B1 (en) * 1999-07-20 2004-11-02 Sri International Electroactive polymers
DE19714606A1 (de) * 1997-04-09 1998-10-15 Itt Mfg Enterprises Inc Ultraschallsensormodul mit Folienwandler
US6339369B1 (en) * 1998-09-23 2002-01-15 Ajit P. Paranjpe Retrofittable vehicle collision warning apparatus
US6392327B1 (en) 2000-03-29 2002-05-21 James L. Sackrison Sonic transducer and feedback control method thereof
US6657365B1 (en) * 2000-05-31 2003-12-02 Westerngeco, L.L.C. Hybrid piezo-film continuous line and discrete element arrays
US7548015B2 (en) * 2000-11-02 2009-06-16 Danfoss A/S Multilayer composite and a method of making such
US7518284B2 (en) * 2000-11-02 2009-04-14 Danfoss A/S Dielectric composite and a method of manufacturing a dielectric composite
US8181338B2 (en) * 2000-11-02 2012-05-22 Danfoss A/S Method of making a multilayer composite
ES2299614T3 (es) * 2001-12-21 2008-06-01 Danfoss A/S Estructura de dispositivo dielectrico de accionamiento o deteccion y metodo para fabricar el mismo.
DE10393505D2 (de) * 2002-07-22 2005-06-23 Hans-Werner Bender Schallapplikator-Vorrichtung zur Verbesserung der Behandlungsbedingungen
CN100530931C (zh) * 2002-09-20 2009-08-19 丹福斯有限公司 弹性体致动器及制造致动器的方法
US7868221B2 (en) 2003-02-24 2011-01-11 Danfoss A/S Electro active elastic compression bandage
ITTO20030149A1 (it) * 2003-03-03 2004-09-04 Azimut S P A Apparecchiatura per rilevare la distanza istantanea tra la poppa di un' imbarcazione ed una struttura fissa quale una banchina o molo o pontile.
WO2005017965A2 (en) * 2003-08-06 2005-02-24 Measurement Specialities, Inc. Ultrasonic air transducer arrays using polymer piezoelectric films and impedance matching structures for ultrasonic polymer transducer arrays
DE602004014476D1 (de) 2004-05-03 2008-07-31 Fiat Ricerche Kraftfahrzeug-Sto stange mit als Sender und Empfänger wirkenden, piezoelektrischen Elementen
US7388810B2 (en) * 2005-03-23 2008-06-17 Viren Pty Limited Ultrasonic distance measurement system
GB2428478A (en) * 2005-07-22 2007-01-31 Shih-Hsiung Li Parking guidance device for large vehicles
US7880371B2 (en) * 2006-11-03 2011-02-01 Danfoss A/S Dielectric composite and a method of manufacturing a dielectric composite
US7732999B2 (en) * 2006-11-03 2010-06-08 Danfoss A/S Direct acting capacitive transducer
US7683521B2 (en) * 2006-12-05 2010-03-23 Simmonds Precision Products, Inc. Radio frequency surface acoustic wave proximity detector
WO2009006318A1 (en) 2007-06-29 2009-01-08 Artificial Muscle, Inc. Electroactive polymer transducers for sensory feedback applications
WO2009132650A2 (en) * 2008-04-30 2009-11-05 Danfoss A/S A power actuated valve
CN102084133A (zh) * 2008-04-30 2011-06-01 丹佛斯强力聚合公司 由聚合物换能器提供动力的泵
FR2936650B1 (fr) * 2008-09-26 2011-03-11 Commissariat Energie Atomique Transducteur a polymere electroactif
EP2239793A1 (de) 2009-04-11 2010-10-13 Bayer MaterialScience AG Elektrisch schaltbarer Polymerfilmaufbau und dessen Verwendung
US8345511B1 (en) * 2010-03-15 2013-01-01 The United States Of America As Represented By The Secretary Of The Navy Blazed array for broadband transmission/reception
KR20120063743A (ko) * 2010-12-08 2012-06-18 삼성전자주식회사 수술 로봇용 근접센서 및 그 동작 방법
US9553254B2 (en) 2011-03-01 2017-01-24 Parker-Hannifin Corporation Automated manufacturing processes for producing deformable polymer devices and films
TW201250288A (en) 2011-03-22 2012-12-16 Bayer Materialscience Ag Electroactive polymer actuator lenticular system
JP5540361B2 (ja) * 2011-06-07 2014-07-02 日立Geニュークリア・エナジー株式会社 超音波センサ及びその製造方法
US8692442B2 (en) 2012-02-14 2014-04-08 Danfoss Polypower A/S Polymer transducer and a connector for a transducer
US8891222B2 (en) 2012-02-14 2014-11-18 Danfoss A/S Capacitive transducer and a method for manufacturing a transducer
US9876160B2 (en) 2012-03-21 2018-01-23 Parker-Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
US9761790B2 (en) 2012-06-18 2017-09-12 Parker-Hannifin Corporation Stretch frame for stretching process
US9590193B2 (en) 2012-10-24 2017-03-07 Parker-Hannifin Corporation Polymer diode
CN108883296A (zh) * 2016-01-20 2018-11-23 富士设计科技有限公司 硼中子俘获治疗法用***
DE102018202303B4 (de) * 2018-02-15 2022-06-15 Robert Bosch Gmbh Sensorsystem zum Anbringen einer Sensoranordnung an einem Fahrzeug
US11137494B2 (en) 2018-12-03 2021-10-05 TE Connectivity Services Gmbh Distance-detection system for determining a time-of-flight measurement and having a reduced dead zone
CN110031831B (zh) * 2019-04-24 2022-11-18 吉林大学 一种具备超声波和红外发射功能的小型三维超声波发射器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3396366A (en) * 1965-05-18 1968-08-06 Lab For Electronics Inc Ultrasonic wave directive assembly
US3816774A (en) * 1972-01-28 1974-06-11 Victor Company Of Japan Curved piezoelectric elements
US4015232A (en) * 1975-08-05 1977-03-29 Thomas Sindle Ultrasonic distance detector for vehicles
US4056742A (en) * 1976-04-30 1977-11-01 Tibbetts Industries, Inc. Transducer having piezoelectric film arranged with alternating curvatures
US4322877A (en) * 1978-09-20 1982-04-06 Minnesota Mining And Manufacturing Company Method of making piezoelectric polymeric acoustic transducer
US4278962A (en) * 1978-11-14 1981-07-14 Reino International Corporation Automatic alarm system for detecting obstacles behind a backing vehicle
JPS5954861U (ja) * 1982-10-02 1984-04-10 株式会社日立ホームテック 超音波物体検出装置
JPS5954859U (ja) * 1982-10-02 1984-04-10 株式会社日立ホームテック 超音波物体検出装置
JPS5962570U (ja) * 1982-10-20 1984-04-24 株式会社日立ホームテック 超音波物体検出装置
JPS5962563U (ja) * 1982-10-20 1984-04-24 株式会社日立ホームテック 超音波物体検出装置
US5028920A (en) * 1984-02-10 1991-07-02 Steven F. Sommers Driver alerting device
JPS60173996A (ja) * 1984-02-17 1985-09-07 Nippon Soken Inc 超音波送受波器
US4803670A (en) * 1987-07-07 1989-02-07 Li-Ling Lin Ultrasonic ranging device
DE3881327D1 (de) * 1987-10-19 1993-07-01 Siemens Ag Ueberwachungseinrichtung fuer rueckwaertsfahrtsicherungen bei fahrzeugen.
DE8717468U1 (de) * 1987-10-19 1989-03-09 Siemens Ag, 1000 Berlin Und 8000 Muenchen Überwachungseinrichtung für Sensoren, insbesondere Ultraschallsensoren für Kraftfahrzeug-Rückfahr-Überwachung
GB2218298A (en) * 1987-11-28 1989-11-08 Anthony David Heyes An ultra-sonic pulse-echo ranging device
JPH01148876U (zh) * 1988-04-01 1989-10-16
US5059946A (en) * 1989-05-10 1991-10-22 Hollowbush Richard R Ultrasonic obstacle detector
US4967180A (en) * 1989-05-15 1990-10-30 Wang Hsug Fang Pre-impact alarm apparatus
DE4042575C2 (de) * 1989-10-17 1996-05-30 Mitsubishi Electric Corp Ultraschallsensor zur Hinderniserfassung
US5160927A (en) * 1990-04-25 1992-11-03 Armatron International, Inc. System and method for detecting the presence of objects in the path of movable vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8052606B2 (en) 1996-06-28 2011-11-08 Sonosite, Inc. Balance body ultrasound system
CN111107947A (zh) * 2017-09-22 2020-05-05 皇家飞利浦有限公司 超声换能器设备及其控制方法
CN111107947B (zh) * 2017-09-22 2022-09-06 皇家飞利浦有限公司 超声换能器设备及其控制方法

Also Published As

Publication number Publication date
KR950009280A (ko) 1995-04-21
EP0642843A1 (en) 1995-03-15
BR9403468A (pt) 1995-06-27
US5515341A (en) 1996-05-07
JPH0836048A (ja) 1996-02-06

Similar Documents

Publication Publication Date Title
CN1113009A (zh) 使用聚合压电膜的探物传感器
US5495137A (en) Proximity sensor utilizing polymer piezoelectric film with protective metal layer
US5483501A (en) Short distance ultrasonic distance meter
JP4128144B2 (ja) 円筒形超音波トランシーバ
EP0598715B1 (en) Ultrasonic transducer
JP3810430B2 (ja) 超音波測距装置
JPH0734344Y2 (ja) クランプ留めタイプの超音波流量計
JP3469243B2 (ja) 音響送信および受信装置
US6420816B2 (en) Method for exciting lamb waves in a plate, in particular a container wall, and an apparatus for carrying out the method and for receiving the excited lamb waves
US3846779A (en) Ultrasonic transducer
US20220214312A1 (en) Plate bending wave direction sensor
JP4945092B2 (ja) 超音波探触子
JP4106207B2 (ja) 力センサ
WO2017141402A1 (ja) 超音波送受信装置、壁部材、および、壁部材への超音波センサの取付方法
US5434830A (en) Ultrasonic transducer
EP1202249A1 (en) Waterproof transducer for half-wavelength array
SU1078314A1 (ru) Пьезоэлектрический преобразователь дл приема второй симметричной волны Лэмба в металлах
JP2001331266A (ja) 座標入力装置
JPH04204251A (ja) 水分検出センサ
JPH0986725A (ja) スキュー調整装置
SU620283A1 (ru) Мозаичный ультразвуковой преобразователь
Bhat et al. Design and development of refined (3, 1) drive low‐frequency piezofilm hydrophones
KR20180059178A (ko) 공기 중 광대역 파라메트릭 어레이 응용을 위한 다공진 요철판 트랜스듀서
JP2008107084A (ja) 複合センサ
JPH10243495A (ja) 屈曲振動型送受波器アレイ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication