CN111254435A - 一种Ti/Sb-SnO2/PVDF-CNT-PbO2电极及其制备方法 - Google Patents
一种Ti/Sb-SnO2/PVDF-CNT-PbO2电极及其制备方法 Download PDFInfo
- Publication number
- CN111254435A CN111254435A CN202010087985.1A CN202010087985A CN111254435A CN 111254435 A CN111254435 A CN 111254435A CN 202010087985 A CN202010087985 A CN 202010087985A CN 111254435 A CN111254435 A CN 111254435A
- Authority
- CN
- China
- Prior art keywords
- sno
- electrode
- titanium substrate
- pbo
- intermediate layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4672—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/04—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
- C23C18/1216—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1229—Composition of the substrate
- C23C18/1241—Metallic substrates
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D15/00—Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
- C02F2001/46138—Electrodes comprising a substrate and a coating
- C02F2001/46142—Catalytic coating
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Ceramic Engineering (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
本发明公开了一种Ti/Sb‑SnO2/PVDF‑CNT‑PbO2电极及其制备方法,属于电催化技术领域。该电极的制备方法包括:首先将钛基体经超声清洗、碱洗、超声清洗和酸洗预处理形成均匀的麻面,然后将预处理后的钛基体置于中间层涂覆液中浸泡,再经烘干和灼烧得到沉积有Sb‑SnO2氧化物中间层的钛基体,最后在含有碳纳米管和聚偏二氟乙稀的电镀液中电沉积得到Ti/Sb‑SnO2/PVDF‑CNT‑PbO2电极。本发明通过在电镀液中添加碳纳米管和聚偏二氟乙稀实现了二者在PbO2活性层中的共掺杂,制备出Ti/Sb‑SnO2/PVDF‑CNT‑PbO2电极,与未改性及单一掺杂改性的Ti/Sb‑SnO2/PbO2电极相比,Ti/Sb‑SnO2/PVDF‑CNT‑PbO2电极的催化活性及电极使用寿命均得到提高。
Description
技术领域
本发明具体涉及一种Ti/Sb-SnO2/PVDF-CNT-PbO2电极及其制备方法,属于电催化技术领域。
背景技术
随着世界各国工业的迅猛发展,废水的排放量急剧增加,尤其是化学、农药、染料、医药、食品等行业排放的废水,其浓度高、色度大、毒性强,含有大量生物难降解的成分,给全球水环境造成了严重的污染,对生态环境和人类健康造成危害。
常规的废水处理技术已经很难满足处理这类浓度高、毒性强废水处理的需求,随着高级氧化技术研究的不断的深入,并快速发展。其中,电催化技术已经成为现代高级氧化技术研究领域的一个热点。电催化氧化法的优势在于:只需要提供电源,由电子参与,不需要其他的化学试剂,避免了高级氧化药剂添加而导致的二次污染;反应条件温和,设备占地小,操作方便;既可单独处理,也可与其他工艺相结合,同时还具有絮凝、气浮和消毒等功能。
阳极的电极材料是影响电催化氧化效能得最重要因素。形稳性阳极电极(Dimensionally Stable Anode,DSA)的出现克服了传统的电极的不足,是电化学氧化领域性能卓越的一类电催化电极。DSA电极能够保持极板的稳定,使电解过程中槽电压保持稳定,进而保证提供电解过程中所需的稳定电流;与传统的电极相比,DSA电极使用过程中所需工作电压低,能耗小,具有较强的耐腐蚀性,可以延长电极的使用寿命,从而提高有机污染物处理的效率。在各类DSA电极中,PbO2电极具有很多优势,该电极具有较高的析氧电位,化学性质稳定,使用寿命长,价格低等优点。
为了提高PbO2电极活性,最常规PbO2电极以Ti为基体,结合中间层Sb-SnO2得到催化活性和稳定性较好的Ti/Sb-SnO2/PbO2电极。目前,可在电沉积表面活性层时,掺杂某些活性物质对其进行改性,进一步提高电极的性能。但是目前对Ti/Sb-SnO2/PbO2电极的活性掺杂大多为单一活性物质的掺杂,此种掺杂方式对电极性能的改善有限。
发明内容
针对现有技术中的问题,本发明提供一种Ti/Sb-SnO2/PVDF-CNT-PbO2电极及其制备方法,本发明通过在电镀液中添加碳纳米管和聚偏二氟乙稀实现了二者在PbO2活性层中的共掺杂,制备出Ti/Sb-SnO2/PVDF-CNT-PbO2电极,与未改性及单一掺杂改性的Ti/Sb-SnO2/PbO2电极相比,Ti/Sb-SnO2/PVDF-CNT-PbO2电极的催化活性及电极使用寿命均得到提高。
为实现以上技术目的,本发明的技术方案是:
一种Ti/Sb-SnO2/PVDF-CNT-PbO2电极的制备方法,包括如下步骤:
(1)基体预处理:将钛基体放入蒸馏水中,超声清洗,将清洗好的钛基体浸泡在质量分数为30~50%的NaOH溶液中,在50~80℃下碱洗2h,然后将碱洗后的钛基体浸泡于蒸馏水中超声清洗,再置于质量分数为10~30%的草酸溶液中,在80~100℃下酸刻蚀2h,以形成均匀的麻面,将刻蚀后的钛基体用蒸馏水冲洗干净后放入无水乙醇中待用;
(2)中间层制备:将3~10g SnCl4·5H2O和0.2~0.5g SbCl3溶解于25mL异丙醇中,并加入2.5mL浓盐酸,得到中间层涂覆液;将经步骤(1)预处理后的钛基体置于中间层涂覆液中浸泡,然后于150℃烘箱中干燥10min,再放入马弗炉中500℃灼烧10min,浸泡-干燥-灼烧反复操作数次,最后在马弗炉中500℃退火1h,得到沉积有Sb-SnO2氧化物中间层的钛基体;
(3)将步骤(2)得到的沉积有Sb-SnO2氧化物中间层的钛基体作为阳极,等面积的石墨作为阴极,在电镀液中电沉积表面活性层得到Ti/Sb-SnO2/PVDF-CNT-PbO2电极,其中,电镀液中含有Pb(NO3)2,NaF,HNO3,碳纳米管和聚偏二氟乙稀,电沉积条件为:电流密度10~80mA/cm2,温度50~80℃,电沉积时间为0.5~1h。
优选地,步骤(3)中所述的Pb(NO3)2浓度为0.5~1.0mol/L。
优选地,步骤(3)中所述的NaF浓度为0.01~0.05mol/L。
优选地,步骤(3)中所述的HNO3浓度为0.5~1.0mol/L。
优选地,步骤(3)中所述的碳纳米管浓度为0~4g/L。
优选地,步骤(3)中所述的聚偏二氟乙稀浓度为0~4g/L。
优选地,步骤(1)中所述的钛基体为TA2钛片。
优选地,步骤(2)中所述的反复操作次数为10次。
采用上述制备方法制得的Ti/Sb-SnO2/PVDF-CNT-PbO2电极。
从以上描述可以看出,本发明具备以下优点:
1.聚偏二氟乙稀化学性质稳定,在电沉积过程中被镶嵌于镀层中,填塞和封闭了部分空隙,可以避免β-PbO2的连续沉积,分散镀层中的内应力,增强镀层的韧性和机械强度,从而提高电极的耐腐蚀性能,同时,CNT比表面积可以为电化学反应提供大量的活性点。本发明通过在电镀液中添加碳纳米管和聚偏二氟乙稀实现了PVDF和CNT在PbO2活性层中的共掺杂,制备出Ti/Sb-SnO2/PVDF-CNT-PbO2电极,与未改性及单一掺杂改性的Ti/Sb-SnO2/PbO2电极相比,Ti/Sb-SnO2/PVDF-CNT-PbO2电极的催化活性及电极使用寿命均得到提高。
附图说明
图1是实施例1、对比例1~3中所制备的电极的极化曲线图;
图2是实施例1、对比例1~3中所制备的电极的Tafel曲线图;
图3是实施例1、对比例1中所制备的电极的强化寿命时间曲线图;
具体实施方式
下面通过实施例子,进一步阐述本发明的特点,但不对本发明的权利要求做任何限定。
实施例1
一种Ti/Sb-SnO2/PVDF-CNT-PbO2电极的制备方法,包括如下步骤:
(1)基体预处理:将钛基体(采用TA2钛片,尺寸为1cm×1cm,厚1mm)放入蒸馏水中,超声清洗30min,将清洗好的钛基体浸泡在质量分数为40%的NaOH溶液中,在80℃下碱洗2h,然后将碱洗后的钛基体浸泡于蒸馏水中超声清洗30min,再置于质量分数为30%的草酸溶液中,在98℃下酸刻蚀2h,以形成均匀的麻面,增强钛基体与金属氧化物膜层之间的结合力,将刻蚀后的钛基体用蒸馏水冲洗干净后放入无水乙醇中待用;
(2)中间层制备:将5g SnCl4·5H2O和0.3g SbCl3溶解于25mL异丙醇中,并加入2.5mL浓盐酸防止水解,得到中间层涂覆液;将经步骤(1)预处理后的钛基体置于中间层涂覆液中浸泡,然后于150℃烘箱中干燥10min,再放入马弗炉中500℃灼烧10min,浸泡-干燥-灼烧反复操作10次,最后在马弗炉中500℃退火1h,得到沉积有Sb-SnO2氧化物中间层的钛基体;
(3)将步骤(2)得到的沉积有Sb-SnO2氧化物中间层的钛基体作为阳极,等面积的石墨作为阴极,在20mL电镀液中电沉积表面活性层得到Ti/Sb-SnO2/PVDF-CNT-PbO2电极,其中,电镀液中含有0.5mol/L Pb(NO3)2,0.01mol/L NaF,1.0mol/L HNO3,2g/L碳纳米管,3g/L聚偏二氟乙稀,电沉积条件为:电流密度20mA/cm2,温度50℃,电沉积时间为1h。
经测试,上述制得的Ti/Sb-SnO2/PVDF-CNT-PbO2电极的析氧过电位(如图1所示)为1.91V,塔菲尔斜率(如图2所示)为0.19,加速使用寿命(如图3所示)为12h(实际使用寿命约2598天)。
对比例1
一种Ti/Sb-SnO2/PbO2电极的制备方法,包括如下步骤:
(1)基体预处理:将钛基体(采用TA2钛片,尺寸为1cm×1cm,厚1mm)放入蒸馏水中,超声清洗30min,将清洗好的钛基体浸泡在质量分数为40%的NaOH溶液中,在80℃下碱洗2h,然后将碱洗后的钛基体浸泡于蒸馏水中超声清洗30min,再置于质量分数为30%的草酸溶液中,在98℃下酸刻蚀2h,以形成均匀的麻面,增强钛基体与金属氧化物膜层之间的结合力,将刻蚀后的钛基体用蒸馏水冲洗干净后放入无水乙醇中待用;
(2)中间层制备:将5g SnCl4·5H2O和0.3g SbCl3溶解于25mL异丙醇中,并加入2.5mL浓盐酸防止水解,得到中间层涂覆液;将经步骤(1)预处理后的钛基体置于中间层涂覆液中浸泡,然后于150℃烘箱中干燥10min,再放入马弗炉中500℃灼烧10min,浸泡-干燥-灼烧反复操作10次,最后在马弗炉中500℃退火1h,得到沉积有Sb-SnO2氧化物中间层的钛基体;
(3)将步骤(2)得到的沉积有Sb-SnO2氧化物中间层的钛基体作为阳极,等面积的石墨作为阴极,在20mL电镀液中电沉积表面活性层得到Ti/Sb-SnO2/PbO2电极,其中,电镀液中含有0.5mol/L Pb(NO3)2,0.01mol/L NaF,1.0mol/L HNO3,电沉积条件为:电流密度20mA/cm2,温度50℃,电沉积时间为1h。
经测试,上述制得的Ti/Sb-SnO2/PbO2电极的析氧过电位(如图1所示)为1.80V,塔菲尔斜率(如图2所示)为0.36,加速使用寿命(如图3所示)为8h(实际使用寿命约1732天)。
对比例2
一种Ti/Sb-SnO2/CNT-PbO2电极的制备方法,包括如下步骤:
(1)基体预处理:将钛基体(采用TA2钛片,尺寸为1cm×1cm,厚1mm)放入蒸馏水中,超声清洗30min,将清洗好的钛基体浸泡在质量分数为40%的NaOH溶液中,在80℃下碱洗2h,然后将碱洗后的钛基体浸泡于蒸馏水中超声清洗30min,再置于质量分数为30%的草酸溶液中,在98℃下酸刻蚀2h,以形成均匀的麻面,增强钛基体与金属氧化物膜层之间的结合力,将刻蚀后的钛基体用蒸馏水冲洗干净后放入无水乙醇中待用;
(2)中间层制备:将5g SnCl4·5H2O和0.3g SbCl3溶解于25mL异丙醇中,并加入2.5mL浓盐酸防止水解,得到中间层涂覆液;将经步骤(1)预处理后的钛基体置于中间层涂覆液中浸泡,然后于150℃烘箱中干燥10min,再放入马弗炉中500℃灼烧10min,浸泡-干燥-灼烧反复操作10次,最后在马弗炉中500℃退火1h,得到沉积有Sb-SnO2氧化物中间层的钛基体;
(3)将步骤(2)得到的沉积有Sb-SnO2氧化物中间层的钛基体作为阳极,等面积的石墨作为阴极,在20mL电镀液中电沉积表面活性层得到Ti/Sb-SnO2/CNT-PbO2电极,其中,电镀液中含有0.5mol/L Pb(NO3)2,0.01mol/L NaF,1.0mol/L HNO3,2g/L碳纳米管,电沉积条件为:电流密度20mA/cm2,温度50℃,电沉积时间为1h。
经测试,上述制得的Ti/Sb-SnO2/CNT-PbO2电极的析氧过电位(如图1所示)为1.84V,塔菲尔斜率(如图2所示)为0.36。
对比例3
一种Ti/Sb-SnO2/PVDF-PbO2电极的制备方法,包括如下步骤:
(1)基体预处理:将钛基体(采用TA2钛片,尺寸为1cm×1cm,厚1mm)放入蒸馏水中,超声清洗30min,将清洗好的钛基体浸泡在质量分数为40%的NaOH溶液中,在80℃下碱洗2h,然后将碱洗后的钛基体浸泡于蒸馏水中超声清洗30min,再置于质量分数为30%的草酸溶液中,在98℃下酸刻蚀2h,以形成均匀的麻面,增强钛基体与金属氧化物膜层之间的结合力,将刻蚀后的钛基体用蒸馏水冲洗干净后放入无水乙醇中待用;
(2)中间层制备:将5g SnCl4·5H2O和0.3g SbCl3溶解于25mL异丙醇中,并加入2.5mL浓盐酸防止水解,得到中间层涂覆液;将经步骤(1)预处理后的钛基体置于中间层涂覆液中浸泡,然后于150℃烘箱中干燥10min,再放入马弗炉中500℃灼烧10min,浸泡-干燥-灼烧反复操作10次,最后在马弗炉中500℃退火1h,得到沉积有Sb-SnO2氧化物中间层的钛基体;
(3)将步骤(2)得到的沉积有Sb-SnO2氧化物中间层的钛基体作为阳极,等面积的石墨作为阴极,在20mL电镀液中电沉积表面活性层得到Ti/Sb-SnO2/PVDF-PbO2电极,其中,电镀液中含有0.5mol/L Pb(NO3)2,0.01mol/L NaF,1.0mol/L HNO3,3g/L聚偏二氟乙稀,电沉积条件为:电流密度20mA/cm2,温度50℃,电沉积时间为1h。
经测试,上述制得的Ti/Sb-SnO2/PVDF-PbO2电极的析氧过电位(如图1所示)为1.86V,塔菲尔斜率(如图2所示)为0.27。
由实施例1和对比例1~3对比可知,PVDF和CNT在PbO2活性层中的共掺杂提高了所制备电极的析氧过电位,降低了电极的塔菲尔斜率,这说明PVDF与CNT共掺杂提高了二氧化铅电极的催化活性,且共同掺杂时的析氧活性优于二者单独掺杂的情况。
由实施例1和对比例1对比可知,PVDF与CNT共掺杂制得的电极寿命约为掺杂前的1.5倍。
可以理解的是,以上关于本发明的具体描述,仅用于说明本发明而并非受限于本发明实施例所描述的技术方案。本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,以达到相同的技术效果;只要满足使用需要,都在本发明的保护范围之内。
Claims (9)
1.一种Ti/Sb-SnO2/PVDF-CNT-PbO2电极的制备方法,其特征在于,包括如下步骤:
(1)基体预处理:将钛基体放入蒸馏水中,超声清洗,将清洗好的钛基体浸泡在质量分数为30~50%的NaOH溶液中,在50~80℃下碱洗2h,然后将碱洗后的钛基体浸泡于蒸馏水中超声清洗,再置于质量分数为10~30%的草酸溶液中,在80~100℃下酸刻蚀2h,以形成均匀的麻面,将刻蚀后的钛基体用蒸馏水冲洗干净后放入无水乙醇中待用;
(2)中间层制备:将3~10g SnCl4·5H2O和0.2~0.5g SbCl3溶解于25mL异丙醇中,并加入2.5mL浓盐酸,得到中间层涂覆液;将经步骤(1)预处理后的钛基体置于中间层涂覆液中浸泡,然后于150℃烘箱中干燥10min,再放入马弗炉中500℃灼烧10min,浸泡-干燥-灼烧反复操作数次,最后在马弗炉中500℃退火1h,得到沉积有Sb-SnO2氧化物中间层的钛基体;
(3)将步骤(2)得到的沉积有Sb-SnO2氧化物中间层的钛基体作为阳极,等面积的石墨作为阴极,在电镀液中电沉积表面活性层得到Ti/Sb-SnO2/PVDF-CNT-PbO2电极,其中,电镀液中含有Pb(NO3)2,NaF,HNO3,碳纳米管和聚偏二氟乙稀,电沉积条件为:电流密度10~80mA/cm2,温度50~80℃,电沉积时间为0.5~1h。
2.如权利要求1所述的电极的制备方法,其特征在于,步骤(3)中所述的Pb(NO3)2浓度为0.5~1.0mol/L。
3.如权利要求1所述的电极的制备方法,其特征在于,步骤(3)中所述的NaF浓度为0.01~0.05mol/L。
4.如权利要求1所述的电极的制备方法,其特征在于,步骤(3)中所述的HNO3浓度为0.5~1.0mol/L。
5.如权利要求1所述的电极的制备方法,其特征在于,步骤(3)中所述的碳纳米管浓度为0~4g/L。
6.如权利要求1所述的电极的制备方法,其特征在于,步骤(3)中所述的聚偏二氟乙稀浓度为0~4g/L。
7.如权利要求1所述的电极的制备方法,其特征在于,步骤(1)中所述的钛基体为TA2钛片。
8.如权利要求1所述的电极的制备方法,其特征在于,所述反复操作次数为10次。
9.采用权利要求1~8任一所述的制备方法制得的电极。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010087985.1A CN111254435A (zh) | 2020-02-12 | 2020-02-12 | 一种Ti/Sb-SnO2/PVDF-CNT-PbO2电极及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010087985.1A CN111254435A (zh) | 2020-02-12 | 2020-02-12 | 一种Ti/Sb-SnO2/PVDF-CNT-PbO2电极及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111254435A true CN111254435A (zh) | 2020-06-09 |
Family
ID=70945560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010087985.1A Pending CN111254435A (zh) | 2020-02-12 | 2020-02-12 | 一种Ti/Sb-SnO2/PVDF-CNT-PbO2电极及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111254435A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111924941A (zh) * | 2020-08-11 | 2020-11-13 | 河北建设集团安装工程有限公司 | 一种改性PbO2电极的制备方法及电催化去除BPA的方法 |
CN112158920A (zh) * | 2020-09-15 | 2021-01-01 | 中国南方电网有限责任公司超高压输电公司天生桥局 | 适用于外冷水处理的阳极材料、制备方法以及处理工艺 |
CN113061955A (zh) * | 2021-03-17 | 2021-07-02 | 宜兴禹博治环保科技有限公司 | 一种导电聚苯胺改性电极的制备方法 |
CN113562815A (zh) * | 2021-08-13 | 2021-10-29 | 安徽康菲尔检测科技有限公司 | 一种用于水处理复合涂层dsa电极的制备方法及制得的复合涂层dsa电极 |
CN115627510A (zh) * | 2022-10-20 | 2023-01-20 | 西安西热水务环保有限公司 | 一种Ti/PbO2电极的制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104047020A (zh) * | 2014-07-03 | 2014-09-17 | 环境保护部华南环境科学研究所 | 一种钛基掺聚偏二氟乙烯二氧化铅阳极及其制备和应用 |
-
2020
- 2020-02-12 CN CN202010087985.1A patent/CN111254435A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104047020A (zh) * | 2014-07-03 | 2014-09-17 | 环境保护部华南环境科学研究所 | 一种钛基掺聚偏二氟乙烯二氧化铅阳极及其制备和应用 |
Non-Patent Citations (1)
Title |
---|
XIAOYUE DUAN 等: "Comparative studies on the electro-catalytic oxidation performance of surfactant-carbon nanotube-modified PbO2 electrodes", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111924941A (zh) * | 2020-08-11 | 2020-11-13 | 河北建设集团安装工程有限公司 | 一种改性PbO2电极的制备方法及电催化去除BPA的方法 |
CN112158920A (zh) * | 2020-09-15 | 2021-01-01 | 中国南方电网有限责任公司超高压输电公司天生桥局 | 适用于外冷水处理的阳极材料、制备方法以及处理工艺 |
CN112158920B (zh) * | 2020-09-15 | 2022-06-03 | 中国南方电网有限责任公司超高压输电公司天生桥局 | 适用于外冷水处理的阳极材料、制备方法以及处理工艺 |
CN113061955A (zh) * | 2021-03-17 | 2021-07-02 | 宜兴禹博治环保科技有限公司 | 一种导电聚苯胺改性电极的制备方法 |
CN113061955B (zh) * | 2021-03-17 | 2023-02-21 | 宜兴禹博治环保科技有限公司 | 一种导电聚苯胺改性电极的制备方法 |
CN113562815A (zh) * | 2021-08-13 | 2021-10-29 | 安徽康菲尔检测科技有限公司 | 一种用于水处理复合涂层dsa电极的制备方法及制得的复合涂层dsa电极 |
CN115627510A (zh) * | 2022-10-20 | 2023-01-20 | 西安西热水务环保有限公司 | 一种Ti/PbO2电极的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111254435A (zh) | 一种Ti/Sb-SnO2/PVDF-CNT-PbO2电极及其制备方法 | |
CN101417831A (zh) | 一种新型钛基二氧化铅电极及其制备方法 | |
CN106277216A (zh) | 铟掺杂钛基二氧化铅电极及其制备方法和应用 | |
CN101857288A (zh) | 钛基二氧化钛纳米管二氧化锡电极的制备方法 | |
CN105621541A (zh) | 一种用于废水处理的过渡金属掺杂二氧化铅电极及其制备方法和应用 | |
CN105110425A (zh) | 一种碳纳米管改性三维多孔钛基体二氧化铅电极的制备方法 | |
CN110803743B (zh) | 一种缺陷态氧化钛-氧化铝-石墨烯陶瓷电极的制备方法 | |
CN106395999B (zh) | 一种镍掺杂二氧化锡微孔阳极、制备方法及应用 | |
CN108217852B (zh) | 在电催化污水处理中用作阳极的二氧化铅电极及其制备方法 | |
CN108328703B (zh) | 钛基二氧化钛纳米管沉积锡锑氟电极的制备及其对电镀铬废水中铬抑雾剂降解的应用 | |
CN105621540A (zh) | 一种降解处理抗生素制药废水的方法 | |
CN106277228A (zh) | 一种新型高催化活性电极制备及其电催化降解甲基蓝的研究方法 | |
CN103253743A (zh) | 一种Fe掺杂PTFE-PbO2/TiO2-NTs/Ti电极的制备方法和应用 | |
CN113072137A (zh) | 一种中间层改性钛基氧化铅电极及其制备方法和应用 | |
CN106086989B (zh) | 一种银改性二氧化钛纳米管复合阳极及其制备方法 | |
CN108793339A (zh) | 一种新型高催化活性电极制备及其电催化降解邻氯苯酚的方法 | |
CN102320683B (zh) | 钛基锡锑铂氧化物电极材料及其制备方法 | |
CN106809918B (zh) | 一种碳纳米管修饰二氧化铅电极及其制备方法 | |
CN111924941A (zh) | 一种改性PbO2电极的制备方法及电催化去除BPA的方法 | |
CN111926345B (zh) | 具有TiN纳米管中间层的IrO2-Ta2O5阳极 | |
CN104099636A (zh) | 一种粉末固化法制备金属氧化物电极的方法 | |
CN108060451B (zh) | 一种疏水天然纤维复合二氧化铅阳极的制备方法 | |
CN113061955B (zh) | 一种导电聚苯胺改性电极的制备方法 | |
CN112376047B (zh) | 一种钛基二氧化铱复合石墨烯和Mn-Mo氧化物电极及其制备方法 | |
CN104562077B (zh) | 一种人造沸石改性钛基含氟二氧化铅电极及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200609 |