CN111216876A - 特别适用于飞机构件的可热构造结构元件 - Google Patents

特别适用于飞机构件的可热构造结构元件 Download PDF

Info

Publication number
CN111216876A
CN111216876A CN201911163200.8A CN201911163200A CN111216876A CN 111216876 A CN111216876 A CN 111216876A CN 201911163200 A CN201911163200 A CN 201911163200A CN 111216876 A CN111216876 A CN 111216876A
Authority
CN
China
Prior art keywords
sma
sintered
aircraft
thermally configurable
structural element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911163200.8A
Other languages
English (en)
Inventor
保罗·安谢塔·达·席尔瓦
法比奥·桑多斯·达·席尔瓦
达尼洛·卡法尔多·多斯·赖斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Embraer SA
Original Assignee
Embraer SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Embraer SA filed Critical Embraer SA
Publication of CN111216876A publication Critical patent/CN111216876A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/44Varying camber
    • B64C3/48Varying camber by relatively-movable parts of wing structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/06Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices
    • B64C23/065Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices at the wing tips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/06Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices
    • B64C23/065Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices at the wing tips
    • B64C23/069Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices at the wing tips using one or more wing tip airfoil devices, e.g. winglets, splines, wing tip fences or raked wingtips
    • B64C23/072Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices at the wing tips using one or more wing tip airfoil devices, e.g. winglets, splines, wing tip fences or raked wingtips the wing tip airfoil devices being moveable in their entirety
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/18Spars; Ribs; Stringers
    • B64C3/185Spars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/01Shape memory effect
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Automation & Control Theory (AREA)

Abstract

本发明涉及特别适用于飞机构件的可热构造结构元件。具体地,提供了能够采取至少第一结构构造和第二结构构造的可热构造结构元件(例如,诸如飞机小翼梁的飞机构件),由此该结构元件包括一体致动机构,该一体致动机构由至少一个可热构造区域和与所述至少一个可热构造区域一体地毗邻的至少一个非可热构造区域提供。所述至少一个可热构造区域能够响应于是否存在热输入而采取至少第一位置定向和第二位置定向,从而使结构元件分别采取所述至少第一结构构造和第二结构构造。可热构造区域和非可热构造区域可以由通过诸如3D打印的加层制造(ALM)工艺形成的烧结形状记忆合金(SMA)颗粒和烧结非SMA颗粒形成。

Description

特别适用于飞机构件的可热构造结构元件
技术领域
本文中公开的实施例大体上涉及适于并且能够采取至少第一结构构造和第二结构构造的可热构造结构元件。在特别优选的形式中,可热构造结构元件可以在例如机翼结构(诸如小翼)的飞机构件中实施。
背景技术
几种类型的结构构件传统上被设计成在其使用寿命期间经受各种操作载荷,这可能会在获得更好的操作性能时促进相矛盾的目标。举例来说,具有大跨度的飞机机翼虽然呈现良好的航程和燃料效率,但是缺乏机动性并且具有相对较低的巡航速度。在另一方面,具有低纵横比的飞机机翼虽然可以提供更快的巡航速度和更高的机动性,但是呈现低的空气动力学效率。因此,修改这种飞机机翼的空气动力学构造能够允许设计具有更大的运行包线和空气动力学效率的空气动力学结构。
可以采用以修改飞机构件的空气动力学特性的传统致动器通常使用液压、气动或电动马达来致动可构造的结构构件。然而,由于压力、应力或活动零件的数目,这种传统致动器***可能是重的并且随着时间而易于失效。传统致动器的一些替代方案使用热致动形状记忆合金(SMA)来在至少两个不同的稳定构造之间转变结构构件。通常,SMA具有基于特定温度下的材料相变实现的两个预先形成的稳定构造。如由美国专利No.7,744,038;8,110,050;8,348,201和8,726,652(每件这样的在先专利的全部内容通过引用明确地并入本文)所证明的,归因于由SMA形成的结构构件的预先形成的稳定构造因此已被作为致动器采用,以便引起这些构件响应于热输入而采取不同的构造。
通常,传统的SMA致动器部件被限制为可以从传统的SMA坯料、杆、纤维和棒坯形状制造的相对简单的结构形状,例如杆、棒、管、板、线缆等。结果,因此,尚未提供具有允许结构构件在使用期间根据要求变形的、所谓“智能”可热构造定向的相对复杂的结构构件。
因此,如果复杂的结构构件能够设有SMA致动器以允许该结构构件响应于热输入而采取各种结构定向,则将是非常理想的。本文中描述的实施例正是为了满足这种需要。
发明内容
本文中描述的实施例大体上涉及提供能够采取至少第一结构构造和第二结构构造的可热构造结构元件(例如,诸如飞机小翼梁的飞机构件),由此该结构元件包括一体致动机构,该一体致动机构由至少一个可热构造区域和至少一个非可热构造区域提供,所述至少一个非可热构造区域与所述至少一个可热构造区域一体地毗邻。所述至少一个可热构造区域能够响应于是否存在热输入而采取至少第一位置定向和第二位置定向,以由此引起结构元件分别采取所述至少第一结构构造和第二结构构造。可热构造区域和非可热构造区域可以由烧结形状记忆合金(SMA)颗粒和烧结非SMA颗粒形成,所述烧结形状记忆合金(SMA)颗粒和烧结非SMA颗粒通过诸如3D打印的加层制造(ALM)工艺形成。
根据某些示例性实施例,所述至少一个可热构造区域和非可热构造区域可以分别由3D激光烧结形状记忆合金(SMA)颗粒和3D激光烧结非SMA颗粒组成。烧结SMA颗粒由Ni-Ti基合金和/或Cu基合金构成,例如,选自由Ni-Ti、Ni-Al、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Zn-Ga、Cu-Cu-Sn、Au-Cd、Fe-Pt、Mg-Cu、Fe-Mn-Si-Cr-Ni组成的组的形状记忆合金。烧结非SMA颗粒可以由在航空航天工业中通常采用的几乎任何非SMA材料形成,例如铝合金、镁合金和/或钛合金。举例来说,当在飞机构件中实施可热构造结构构件时,烧结SMA颗粒可以由形状记忆Ni-Ti合金形成,而烧结非SMA颗粒可以由非形状记忆铝合金形成。
在仔细地考虑了对本发明的优选示例性实施例的以下详细描述之后,本发明的这些和其它方面以及优点将变得更加清楚。
附图说明
通过结合附图参考示例性非限制性示意实施例的以下详细描述,将更好并且更完整地理解本发明公开的实施例:
图1是可以将可热构造结构元件实施为飞机小翼的构件部分的示例性飞机的透视图;
图2A和图2B是分别在第一结构构造和第二结构构造中描绘的、在图1中描绘的飞机小翼的放大视图;
图3是在移除机翼蒙皮的情况下描绘的飞机小翼的一部分的放大透视图;
图4是在飞机小翼中采用的代表性小翼梁的详细正视图;并且
图5是图4中所示小翼梁的一部分和用以响应于来自控制***的热输入而以可控制的方式移动翼梁的相关联的热控制***的放大示意图。
具体实施方式
在图1至图5中以与飞机AC的飞机机翼12相关联的角度可调节的小翼10的形式描绘了在本文中描述的本发明的一个示例性且非限制性的实施例。在某些飞行条件下(例如,巡航飞行相对于起飞和着陆),可能期望小翼相对于机翼12至少采用第一角度定向和第二角度定向,如图2A和图2B中所示。为了使小翼10相对于飞机机翼12的纵向和/或弦向范围在不同的角度定向(如由图2B中的角度α和β所示)之间移动,设置了小翼梁20,以便允许小翼相对于迎面而来的气流弯曲和/或扭曲。
如在图3和图4中更详细示出的那样,小翼梁20中的每个小翼梁将优选包括至少一个可热构造区域20-1。在所描绘的实施例中,小翼梁20还将分别包括与该可热构造区域一体地毗连的内侧非可热构造梁区域20-2和外侧非可热构造梁区域20-3。这样,小翼梁20在一件式结构构件中实施,该构件可以包括一个或多个相应的SMA区域(例如,对应于区域20-1),实施一个或多个相应的SMA区域与相邻的非SMA区域(例如,对应于区域20-2)一体地毗连。因此,根据某些实施例,可热构造区域20-1由SMA材料形成,而非可热构造梁区域20-2、20-3由非SMA材料形成。当然,将理解的是,尽管在图3和图4的示例性实施例中分别描绘了仅仅一个可热构造区域20-1与内侧区域20-2以及外侧区域20-3,但是可以取决于特定结构构件设计及其预期功能来设置这种区域的不同数目和构造。
如图5中所示,一种***被设置成使翼梁20的可热构造梁区域20-1以可控的方式变形,以允许其移动,如先前描述地那样。在图5中所描绘的***包括一个或多个热致动器22,所述一个或多个热致动器22与可热构造梁区域20-1可操作关联(例如,热接触)(例如,如所描绘地那样与在梁凸缘之间的内部梁部件热接触)。热致动器22可以是任何传统的致动器,其例如使用飞机AC的机载电能将热能传递到形成可热构造区域20-1的SMA材料。在特别优选实施例中,致动器可以在致动器中实施,如在2018年3月2日提交的未决美国专利申请系列No.15/910,584(其全部内容通过引用明确地并入本文)中更充分地公开的那样。
多个传感器24被设置成与可热构造梁区域20-1可操作关联,以便确定可热构造区域20-1的温度和/或位置参数,并将这些参数输出到多通道或多路复用可变电压控制器MVVC。取决于飞行条件和/或飞行剖面,提供到MVVC的手动输入(例如,飞行员启动)或自动输入(例如,基于飞机性能数据计算机启动)。因此,MVVC将信号输出到热致动器22,以便使得该热致动器快速并且以可控的方式加热可热构造梁区域,以如前所述实现期望的角度定向α和β。
形成可热构造区域20-1的SMA材料通常是金属合金,其在记住其原始形状的同时呈现由加热触发的结构变形(即,单向形状记忆效应)。在加热和冷却循环时,SMA能够经受较大变形而不会显示出残余应变,并且能够通过热循环来恢复其原始形状(例如,形状记忆效应)。这种材料行为归因于具有两种不同的晶体结构(即奥氏体和马氏体)的材料微观结构。奥氏体是晶体学上较有序的相和较高的模量,而马氏体是晶体学上较无序的相和较低的模量。由此,SMA材料在高温下将作为长程有序的奥氏体相(母相或记忆相)存在。
小翼梁20的可热构造区域20-1实际上可以由具有形状记忆特性的任何金属合金形成。虽然种类相对多的合金呈现所要求的形状记忆效应,但是在本文中公开的实施例中理想地仅仅采用能够恢复大量变形或在形状变化时生成显著恢复力的那些合金。例如,合适的SMA包括Ni-Ti基合金和Cu基合金(诸如Cu-Zn-Al、Cu-Al-Ni)。更具体地,在本文中公开的实施例中可以令人满意地采用Ni-Ti、Ni-Al、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Zn-Ga、Cu-Cu-Sn、Au-Cd、Fe-Pt、Mg-Cu、Fe-Mn-Si-Cr-Ni的合金。
最常见的形状记忆合金中的一种合金是
Figure BDA0002286711240000051
合金,这是镍和钛(Ni-Ti)的一种合金,该合金于1960年代在美国海军军械实验室(NOL)处被发现。首字母缩写词NiTi-NOL(或
Figure BDA0002286711240000052
合金)在本文中被用于指镍和钛的混合物改变材料响应的Ni-Ti基形状记忆合金。
为了在被加热时提供梁20的期望的偏转响应特性(致动范围),可热构造区域20-1可以仅由SMA组成(即,由100重量%的SMA材料(0重量%的其它合金)形成),或者除了至少一种其它合金材料之外还可以包括SMA材料。只要区域20-1的热致动形状记忆特性不会受到不利影响,这种其它合金就可以是非SMA材料(即不呈现形状记忆特性的材料)。替代地,其它合金可以是呈现超弹性(SE)效应的合金材料。虽然这种SE合金是已知的,并且能够由提供形状记忆效应的、与本文中上述相同的合金(例如,
Figure BDA0002286711240000061
合金)形成,但是根据本领域技术人员已知的技术进行不同热处理,以使得合金能够呈现SE效应(即双向形状记忆效应)。因此,虽然SMA材料被热致动,但是SE合金材料响应于应变呈现机械超弹性。在低温下,SE合金材料将以马氏体形式存在,而在高温下,基本上在高温下,SE合金材料以奥氏体形式存在。在刚好高于SE合金材料向奥氏体的转变温度的温度下,所施加的应力能够将奥氏体转变成马氏体,使得材料在恒定的施加应力下呈现增加的应变(即,对于相对小的施加应力产生相当大的变形)。当移除这种应力后,SE合金材料的马氏体将回复到奥氏体,并且材料恢复成其原始形状。
因此,SE合金材料能够在不被热致动的情况下从大的结构位移恢复。而且,这种SE合金材料可能在弯曲位置中具有记忆的形状,使得在改变SMA材料温度(从而改变其弹性模量)时,在这些SMA材料和SE合金材料之间的平衡将确定区域20-1的致动范围。
取决于特定的结构构件和可能期望的机械偏转特性,SMA材料和其它合金材料(例如,SE材料)能够作为彼此的均匀混合物或以离散区域的形式(例如,在SMA材料海中的SE合金材料岛)被设置在区域20-1中。举例来说,基于区域20-1中的SMA材料的总重量,例如,从约5重量%至约50重量%,约10重量%至约40重量%或约20重量%至约30重量%,SE合金材料可以以0重量%至约60重量%的量存在于区域20-1中。因此,为了实现包括所述区域20-1中的至少一个区域的结构构件的期望结构偏转,SE合金可以基于区域20-1中的SMA材料的总重量,以任何认为必要的量存在,例如,小于约60重量%,小于约50重量%,小于约40重量%,小于约30重量%,小于约20重量%或小于约10重量%。
形成非可热构造梁区域20-2、20-3的非SMA材料可以是不呈现形状记忆效应的任何合金。因此,实际上,可以为这种目的采用在航空工业中传统采用的任何合金,诸如铝、钛、镁等的合金。
为了实现复杂的一件式(一体式)结构,最优选地,小翼梁20通过加层制造(ALM)工艺(例如3D打印)形成。在这方面,例如,如在美国专利No.9,388,078和10,065,240中更完整地描述的(每件这样的在先授予的专利的全部内容通过引用明确地并入本文),可以根据所制造的结构构件的计算机辅助设计使用激光烧结来“印刷”SMA材料和非SMA材料的金属粉末。如已知的那样,能够利用3D计算机模型设计完整的结构构件,然后,该模型以逐层添加的方式辅助ALM工艺。即,合金粉末的薄层可以被铺展到支撑托盘上,以便然后基于计算机辅助3D模型的第一切片进行激光烧结。然后,将以类似方式对与3D模型的后续切片相对应的随后的层进行激光烧结,直到制造出完整的结构构件为止。因此,如能够理解地,取决于在ALM工艺期间小翼梁20的设计,能够通过提供不同的SMA材料粉末和非SMA材料粉末来制造区域20-1、20-2和20-3。
当采用
Figure BDA0002286711240000071
SMA时,可以通过在相对高的温度(例如,高于700℃)下退火和/或等静压来将期望的形状施加到可热构造区域20-1上。由
Figure BDA0002286711240000072
SMA形成的区域20-1可以由此在约500℃下经至少25分钟被练就成期望形状。例如,完成的3D打印梁20可以使用如上所述的SMA材料和非SMA材料的激光烧结粉末被制造为一件式(一体式)结构构件,并且然后通过在高温下进行退火和/或等静压进行热训练。如果将SE合金材料与SMA材料组合用于可热构造区域,则能够采用相同的合金,但是要适当地操作3D激光烧结参数,以便将SE特性赋予到形成热致动区域20-1的某些烧结层、元件或区域。例如,可以采用不同的温度和/或热处理时间,以便触发区域20-1内的不同晶体结构,从而允许实现形状记忆或超弹性效应。
可以设想在本领域技术人员的能力范围内的各种修改。因此,尽管已经结合目前被认为是最实用和优选的实施例描述了本发明,但是应当理解,本发明不限于所公开的实施例,而是相反,本发明旨在涵盖在其精神和范围内包括的各种修改和等效布置。

Claims (23)

1.一种能够采取至少第一结构构造和第二结构构造的可热构造结构元件,其中,所述结构元件包括一体致动机构,所述一体致动机构包括:
至少一个可热构造区域,以及
至少一个非可热构造区域,所述至少一个非可热构造区域与所述至少一个可热构造区域一体地毗邻,其中
所述至少一个可热构造区域能够响应于是否存在热输入而采取至少第一位置定向和第二位置定向,以由此导致所述结构元件分别采取所述至少第一结构构造和第二结构构造。
2.根据权利要求1所述的可热构造结构元件,其中,所述结构元件是飞机结构构件。
3.根据权利要求2所述的可热构造结构元件,其中,所述飞机结构构件是小翼梁。
4.根据权利要求1所述的可热构造结构元件,其中,所述至少一个可热构造区域和所述至少一个非可热构造区域分别包括烧结形状记忆合金(SMA)颗粒和烧结非SMA颗粒。
5.根据权利要求4所述的可热构造结构元件,其中,所述至少一个可热构造区域除了烧结超弹性(SE)合金颗粒之外还包括烧结形状记忆合金(SMA)颗粒。
6.根据权利要求5所述的可热构造结构元件,其中,所述烧结SMA颗粒和烧结SE合金颗粒彼此混合。
7.根据权利要求4所述的可热构造结构元件,其中,所述烧结SMA颗粒和所述烧结非SMA颗粒分别是3D激光烧结SMA和非SMA颗粒。
8.根据权利要求4所述的可热构造结构元件,其中,所述烧结SMA颗粒包括Ni-Ti基合金和/或Cu基合金。
9.根据权利要求8所述的可热构造结构元件,其中,所述SMA颗粒是选自由Ni-Ti、Ni-Al、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Zn-Ga、Cu-Cu-Sn、Au-Cd、Fe-Pt、Mg-Cu、Fe-Mn-Si-Cr-Ni组成的组的形状记忆合金。
10.根据权利要求4所述的可热构造结构元件,其中,所述烧结非SMA颗粒是选自由铝合金、镁合金和钛合金组成的组的非形状记忆合金。
11.根据权利要求4所述的可热构造结构元件,其中,所述烧结SMA颗粒由形状记忆Ni-Ti合金形成,并且其中,所述烧结非SMA颗粒由非形状记忆铝合金形成。
12.一种飞机小翼,所述飞机小翼包括根据权利要求1所述的可热构造结构元件,其中
所述至少一个可热构造区域能够分别响应于是否存在热输入来使所述小翼采取至少两种不同的空气动力学构造。
13.根据权利要求12所述的飞机小翼,其中,所述至少两种不同的空气动力学构造包括相对于飞机机翼的纵向和/或弦向范围的不同的角度定向。
14.根据权利要求13所述的飞机小翼,其中,所述可热构造结构元件是小翼梁。
15.一种飞机,所述飞机包括根据权利要求12所述的飞机小翼。
16.一种飞机,包括:
飞机机翼;
在所述机翼的末端处的小翼,所述小翼具有小翼梁,所述小翼梁能够响应于热输入而采取至少第一结构构造和第二结构构造,以分别使所述小翼相对于所述飞机机翼采取第一位置定向和第二位置定向;以及
热控制***,所述热控制***以可操作方式连接到所述小翼梁,以向所述小翼梁提供热输入,并且由此使所述小翼在所述小翼的第一位置定向和第二位置定向之间以可控制方式移动,其中
所述小翼梁包括:
(i)至少一个可热构造区域,所述至少一个可热构造区域由形状记忆合金(SMA)材料形成,以及
(ii)至少一个非可热构造区域,所述至少一个非可热构造区域由非SMA材料形成,所述至少一个非可热构造区域与所述至少一个可热构造区域一体地毗邻,其中
(iii)所述至少一个可热构造区域能够响应于是否存在来自所述热控制***的热输入而采取所述至少第一结构构造和第二结构构造,以由此使所述小翼相对于所述飞机机翼分别采取所述小翼的所述至少第一位置定向和第二位置定向。
17.根据权利要求16所述的飞机,其中,所述至少一个可热构造区域和所述至少一个非可热构造区域分别由烧结形状记忆合金(SMA)颗粒和烧结非SMA颗粒组成。
18.根据权利要求17所述的飞机,其中,所述烧结SMA颗粒和所述烧结非SMA颗粒分别是3D激光烧结SMA和非SMA颗粒。
19.根据权利要求17所述的飞机,其中,所述烧结SMA颗粒包括Ni-Ti基合金和/或Cu基合金。
20.根据权利要求17所述的飞机,其中,所述SMA颗粒是选自由Ni-Ti、Ni-Al、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Zn-Ga、Cu-Cu-Sn、Au-Cd、Fe-Pt、Mg-Cu、Fe-Mn-Si-Cr-Ni组成的组的形状记忆合金。
21.根据权利要求17所述的飞机,其中,所述烧结非SMA颗粒是选自由铝合金、镁合金和钛合金组成的组的非形状记忆合金。
22.根据权利要求17所述的飞机,其中,所述烧结SMA颗粒由形状记忆Ni-Ti合金形成,并且其中,所述烧结非SMA颗粒由非形状记忆铝合金形成。
23.一种制作根据权利要求1所述的可热构造结构元件的方法,其中,所述方法包括:
(i)以添加方式烧结SMA颗粒的层,以形成所述构件的所述至少一个可热构造区域;以及
(ii)以添加方式烧结非SMA颗粒的层,以形成所述构件的所述至少一个非可热构造区域,
其中
步骤(i)和(ii)能够按照任何顺序执行。
CN201911163200.8A 2018-11-26 2019-11-25 特别适用于飞机构件的可热构造结构元件 Pending CN111216876A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/200,298 2018-11-26
US16/200,298 US20200164963A1 (en) 2018-11-26 2018-11-26 Thermally configurable structural elements especially useful for aircraft components

Publications (1)

Publication Number Publication Date
CN111216876A true CN111216876A (zh) 2020-06-02

Family

ID=68699171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911163200.8A Pending CN111216876A (zh) 2018-11-26 2019-11-25 特别适用于飞机构件的可热构造结构元件

Country Status (4)

Country Link
US (2) US20200164963A1 (zh)
EP (1) EP3656491B1 (zh)
CN (1) CN111216876A (zh)
BR (1) BR102019024824A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210121949A1 (en) * 2019-10-25 2021-04-29 Goodrich Corporation Shape memory alloy particle toughening of cast or additive manufactured al-cu-mg-ag-tib2
EP3822006A1 (en) * 2019-11-14 2021-05-19 Rolls-Royce Corporation Fused filament fabrication of shape memory alloys
US11939055B2 (en) * 2022-04-15 2024-03-26 Toyota Motor Engineering & Manufacturing North America, Inc. Winglets with passive aeroelastic tailoring
US11932390B2 (en) 2022-04-15 2024-03-19 Toyota Motor Engineering & Manufacturing North America, Inc. Wing shape control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080308683A1 (en) * 2007-06-15 2008-12-18 The Boeing Company Controllable winglets
CN102191394A (zh) * 2009-11-09 2011-09-21 中南大学 孔结构参数可控的多孔CuAlMn形状记忆合金的制备方法
CN103306926A (zh) * 2012-03-16 2013-09-18 通用汽车环球科技运作有限责任公司 相变分级的sma致动器
US20130309089A1 (en) * 2012-05-16 2013-11-21 Casey Lyn Madsen Shape memory alloy active spars for blade twist

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7798443B2 (en) 2006-12-18 2010-09-21 The Boeing Company Composite material for geometric morphing wing
BRPI0811862A2 (pt) 2007-05-16 2014-11-04 Thyssenkrupp Elevator Capital Corp Membro de tensão amortecido ativamente.
ITTO20080566A1 (it) 2008-07-23 2010-01-24 Alenia Aeronautica Spa Dispositivo attuatore basato su lega a memoria di forma e gruppo di flap alare dotato di un tale dispositivo attuatore
US8726652B1 (en) 2010-09-10 2014-05-20 The Boeing Company Torque controlled antagonistic shape memory alloy actuator
WO2013043908A1 (en) 2011-09-20 2013-03-28 The Regents Of The University Of California 3d printing powder compositions and methods of use
CN103785860B (zh) 2014-01-22 2016-06-15 宁波广博纳米新材料股份有限公司 3d打印机用的金属粉末及其制备方法
US9981421B2 (en) 2014-07-16 2018-05-29 The Boeing Company Adaptive composite structure using shape memory alloys
US10167727B2 (en) * 2014-08-13 2019-01-01 United Technologies Corporation Gas turbine engine blade containment system
JP2016160454A (ja) * 2015-02-27 2016-09-05 日本シリコロイ工業株式会社 レーザー焼結積層方法、熱処理方法、金属粉末、及び、造形品
US9796137B2 (en) * 2015-06-08 2017-10-24 The Boeing Company Additive manufacturing methods
WO2017053480A1 (en) * 2015-09-21 2017-03-30 Confluent Medical Technologies, Inc. Superelastic devices made from nitihf alloys using powder metallurgical techniques
US10677229B2 (en) * 2017-03-03 2020-06-09 Metis Design Corporation Thermally driven actuator system
FR3071225B1 (fr) 2017-09-19 2019-09-13 Airbus Operations Ailette equippee d'un dispositif de changement de configuration a faible consommation d'energie, aeronef comprenant ladite ailette
US11286042B2 (en) * 2018-08-10 2022-03-29 The Boeing Company Methods, systems, and apparatuses for in-line variably porous surfaces
US20210121949A1 (en) * 2019-10-25 2021-04-29 Goodrich Corporation Shape memory alloy particle toughening of cast or additive manufactured al-cu-mg-ag-tib2

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080308683A1 (en) * 2007-06-15 2008-12-18 The Boeing Company Controllable winglets
CN102191394A (zh) * 2009-11-09 2011-09-21 中南大学 孔结构参数可控的多孔CuAlMn形状记忆合金的制备方法
CN103306926A (zh) * 2012-03-16 2013-09-18 通用汽车环球科技运作有限责任公司 相变分级的sma致动器
US20130309089A1 (en) * 2012-05-16 2013-11-21 Casey Lyn Madsen Shape memory alloy active spars for blade twist

Also Published As

Publication number Publication date
US11912397B2 (en) 2024-02-27
EP3656491B1 (en) 2022-03-30
US20200164963A1 (en) 2020-05-28
US20230057985A1 (en) 2023-02-23
EP3656491A1 (en) 2020-05-27
BR102019024824A2 (pt) 2020-06-09

Similar Documents

Publication Publication Date Title
CN111216876A (zh) 特别适用于飞机构件的可热构造结构元件
CA2767049C (en) High stiffness shape memory alloy actuated aerostructure
US11110647B2 (en) Adaptive composite structure using shape memory alloys
Barbarino et al. A review on shape memory alloys with applications to morphing aircraft
EP3446968B1 (en) Shape memory alloy rods for actuation of continuous surfaces
JP6232208B2 (ja) ブレード湾曲のための形状記憶合金が有効な桁
Benafan et al. Shape memory alloy actuator design: CASMART collaborative best practices and case studies
US6220550B1 (en) Actuating device with multiple stable positions
Benafan et al. High temperature shape memory alloy Ni50. 3Ti29. 7Hf20 torque tube actuators
US20170066519A1 (en) Thermally graded adaptive multifunctional cellular structures with shape memory alloys
WO2009140019A1 (en) Shape-changing structure with superelastic foam material
Calkins et al. Overview of Boeing’s shape memory alloy based morphing aerostructures
Schick et al. Incorporation of shape memory alloy actuators into morphing aerostructures
Benafan et al. Shape memory alloy actuated vortex generators: alloy design
Boller Shape Memory Alloys–Their challenge to contribute to smart structures
김남극 Development of a Morphing Flap Using a Smart Soft Composite Actuator
Abreu et al. Nonlinear angle control of a sectioned airfoil by using shape memory alloys
Twala et al. A Review of Shape Memory Alloy Applications and Future Trends in the Aerospace Industry
Seow Design, fabrication, evaluation of low-speed UAV wing flap actuated with shape memory alloy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination