CN111208730A - 一种快速终端滑模阻抗控制算法 - Google Patents

一种快速终端滑模阻抗控制算法 Download PDF

Info

Publication number
CN111208730A
CN111208730A CN202010019659.7A CN202010019659A CN111208730A CN 111208730 A CN111208730 A CN 111208730A CN 202010019659 A CN202010019659 A CN 202010019659A CN 111208730 A CN111208730 A CN 111208730A
Authority
CN
China
Prior art keywords
model
force feedback
formula
joint
sliding mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010019659.7A
Other languages
English (en)
Other versions
CN111208730B (zh
Inventor
李春泉
何永华
杨峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lattice Power Jiangxi Corp
Nanchang University
Original Assignee
Lattice Power Jiangxi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lattice Power Jiangxi Corp filed Critical Lattice Power Jiangxi Corp
Priority to CN202010019659.7A priority Critical patent/CN111208730B/zh
Publication of CN111208730A publication Critical patent/CN111208730A/zh
Application granted granted Critical
Publication of CN111208730B publication Critical patent/CN111208730B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提供了一种快速终端滑模阻抗控制算法。主要包括以下步骤:步骤1,将力反馈设备简化为双连杆模型;步骤2,求解简化模型的运动学;步骤3,求解简化模型的动力学;步骤4,建立阻抗模型;步骤5,设计快速终端滑模控制器。本发明的优点在于:一、引入了终端吸引子,保证了***状态能够在有限时间内收敛到平衡点;二,保留了线性滑模控制部分,因此具有在平衡点附近快速收敛的特点。快速终端滑模阻抗控制使***状态能够快速、精准的收敛到平衡点。与滑模阻抗控制算法相比,快速终端滑模阻抗控制具有更小的位置跟踪误差。

Description

一种快速终端滑模阻抗控制算法
技术领域
本发明涉及力反馈设备与物体之间的交互,用于提高阻抗控制的抗干扰能力、动态响应速度以及跟踪精度,能够降低力反馈设备与物体接触产生的相互作用力,从而保护力反馈设备和接触物体。
背景技术
众所周知,人类的感觉主要由听觉、嗅觉、味觉、视觉和力触觉组成。力触觉又可分为力觉和触觉,其中力觉是对压力、刚度等的感知,而触觉是对纹理、温度等的感知。力触觉是我们日常生活非常倚重的感觉,例如:完成开门、书写、打球等接触性的活动都需要依赖于力触觉。Marc O Ernst在《Nature》中指出人的力触觉反馈信息可以修正视觉上的偏差。研究表明,在人机交互的实验中,完成插销入孔、组装工件等任务,与仅有图像显示相比,将视觉和力触觉反馈相结合,能够极大地提高操作的精度和效率。因此,与其他感觉相比,力触觉更加微妙、细腻和直接,在人类的感知、决策和判断中起着非常重要的作用。
力触觉的实现依赖于力触觉反馈设备(或者力反馈设备)。一个理想的力反馈设备应当具有如下特点:当操作者操作该设备与虚拟环境或者远端环境进行人机交互时,操作者在交互过程中所感觉到的力触觉与亲临现场进行真实操作所感觉到的一样。因此,如何使力反馈设备能够构建真实、准确、可靠的临场感效果,是力触觉反馈设备设计中最具有挑战性的问题。然而,考虑到通常情况下,力反馈设备未添加被动柔顺装置,设备的机械阻抗是固定且较高,这会导致接触力过大,损坏设备甚至威胁操作者的安全。因此,常使用阻抗控制算法控制力反馈设备。阻抗控制算法通过建立位置与接触力的关系,使力反馈设备在受限环境中实现位置控制的同时,能够保持预先设定接触力,从而有效地保护力反馈设备和接触物。
现有的阻抗控制算法有:Vu Minh Hung等人提出了一种新的自适应控制算法(详见:Model Reference Adaptive Control of a Haptic Feedback Device for ImprovingForce Performance[J].Science&Technology Development,2014,17(K1):102~114.),该算法将人手施加到力反馈设备上的力模拟为扰动,采用模型参考自适应控制算法改进力的跟踪性能,但该方法需要实时调整自适应率修正控制器的参数,将会降低控制算法实时性。李二超等人提出了一种模糊滑模阻抗控制算法(详见:未知环境下机器人模糊滑模阻抗控制[J].电气自动化,2010,32(4):12-13.),利用模糊控制来克服滑模控制的抖振问题,但在模糊阻抗控制中,若模糊控制器将信息简单地模糊处理,会降低控制精度,若处理较为复杂,则失去模糊控制的优势。Kim等人提出了一种基于径向基函数(RBF)神经网络算法的滑模阻抗控制方法(详见:Impedance control of robot manipulator using artificialintelligence[C].ICCAS 2010.IEEE,2010:1891-1894.),用于实时估计所需阻抗模型的惯性、阻尼、刚度等设计参数,而在神经网络阻抗控制中,若使用的网络学习能力不够,将导致对***不确定项的逼近精确不够。Garcia等人提出了一种无抖振、二阶滑模控制算法,并且与阻抗控制相结合(详见:Observer-based higher-order sliding mode impedancecontrol of bilateral teleoperation under constant unknown time delay[C].2006IEEE/RSJ International Conference on Intelligent Robots and Systems.IEEE,2006:1692-1699.),以保证在未知常数时延下的鲁棒跟踪。
综上所述可知,自适应阻抗控制算法、模糊阻抗控制算法以及神经网络阻抗控制算法分别在算法的实时性、处理信息的复杂程度以及算法精确度方面存在一定的问题。相较而言,滑模阻抗控制算法具有抗扰动能力强,结构简单,对***模型精确度要求不高等优点,更适用于力反馈设备与物体之间的交互。
发明内容
基于上述背景,本发明提出了一种快速终端滑模阻抗控制算法。将快速终端滑模控制引入阻抗控制中,保证了***状态能够在有限时间内收敛到平衡点,提高阻抗控制的抗干扰能力、动态响应速度以及跟踪精度,使***具备抗干扰能力强和快速、精准收敛的特点。与滑模阻抗控制算法相比,快速终端滑模阻抗控制具有更小的位置跟踪误差。本发明是通过以下技术方案实现的。
本发明所述的一种快速终端滑模阻抗控制算法,按以下步骤:
步骤1、将力反馈设备简化为双连杆模型;
步骤2、求解力反馈设备模型的运动学;
步骤3、求解力反馈设备模型的动力学;
步骤4、建立阻抗模型;
步骤5、设计快速终端滑模控制器。
进一步的,所述步骤1中将力反馈设备简化为双连杆模型具体如下:
力反馈设备具有N个可旋转的关节J1、J2…JN,(N<<7),关节J1控制的是设备末端在水平面的运动,即设备的左右转动。控制算法所需要补偿的重力以及末端在工作空间中的运动主要来自关节J2…JN。为提高工作效率,将力反馈设备简化为双连杆模型,并设定连杆为均匀质杆。简化后的双连杆模型关节1记作J'1,关节2记作J'2。其中,J'1由原力反馈设备的关节J2…JN-1合并而来,J'2是原力反馈设备的关节JN,并将原力反馈设备的的关节J1省去。
进一步的,所述步骤2中具体求解力反馈设备模型运动学的算式如下:
(a)正运动学求解算式:
Figure BDA0002360254300000031
式中,l1和l2分别是简化后模型关节J'1的连杆长和关节J'2的连杆长,θ1是l1与水平面间的夹角,θ2是l2和竖直平面之间的夹角,(x1,x2)是设备末端在二维平面上的位置坐标。
(b)逆运动学求解算式:
Figure BDA0002360254300000032
式中,r是设备末端到关节J'1之间的距离
Figure BDA0002360254300000033
式中,β是r与水平面的夹角
再通过余弦定理得到:
Figure BDA0002360254300000034
式中,γ是l1与r之间的夹角
考虑力反馈设备的实际工作空间,γ>0,因此θ1的计算公式为:
θ1=γ+β
通过余弦定理,得到角α的计算公式:
Figure BDA0002360254300000035
α为杆长l1和l2之间的夹角
得到θ2的计算公式:
Figure BDA0002360254300000041
定义x=[x1 x2],θ=[θ1 θ2],得雅可比矩阵公式:
Figure BDA0002360254300000042
将正运动学公式带入上式,可得:
Figure BDA0002360254300000043
雅可比矩阵的微分为:
Figure BDA0002360254300000044
进一步的,所述步骤3中具体求解力反馈设备模型动力学的算式如下:
连杆l1动能为:
Figure BDA0002360254300000045
连杆l2质心C在x1上的线速度为:
Figure BDA0002360254300000046
连杆l2质心C在x2上的线速度为:
Figure BDA0002360254300000047
可得:
Figure BDA0002360254300000048
连杆l2的动能:
Figure BDA0002360254300000049
Figure BDA0002360254300000051
***的总动能为:
Figure BDA0002360254300000052
***的总势能:
Figure BDA0002360254300000053
将***的总动能和***的总势能代入拉格朗日函数中,得到:
Figure BDA0002360254300000054
关节力矩的计算
简化模型的关节J'1的驱动力矩计算公式如下:
Figure BDA0002360254300000055
式中:
Figure BDA0002360254300000056
Figure BDA0002360254300000057
Figure BDA0002360254300000058
得到力矩τ1的计算公式:
Figure BDA0002360254300000061
简化模型的关节J'2的驱动力矩计算公式如下:
Figure BDA0002360254300000062
式中:
Figure BDA0002360254300000063
Figure BDA0002360254300000064
Figure BDA0002360254300000065
得到力矩τ2的计算公式:
Figure BDA0002360254300000066
整理力矩τ1和τ2的计算公式,最终得到力矩的表达式为:
Figure BDA0002360254300000067
进一步的,所述步骤4阻抗模型的建立具体为:
力反馈设备末端的接触力为Fe,将Fe与理想位置误差xc-xd建立阻抗关系,描述为:
Figure BDA0002360254300000071
其中,xc为末端位置的指令轨迹,xd为理想的阻抗轨迹,x(0)=xc(0),
Figure BDA0002360254300000072
Md、Bd、Kd为阻抗参数,分别是质量、阻尼和刚度系数矩阵。通过上述的阻抗关系公式计算出需要跟踪的理想阻抗轨迹,再根据动力学模型,设计力反馈设备末端的控制律Fx
进一步的,所述步骤5快速终端滑模控制器的设计具体为:
定义快速终端滑模切换面:
Figure BDA0002360254300000073
其中,xd(t)为理想轨迹,
Figure BDA0002360254300000074
Figure BDA0002360254300000075
分别为理想速度和加速度。γ1和γ2为大于零的正定常数矩阵,α和β(β>α)为正奇数。
定义中间参考变量:
Figure BDA0002360254300000076
对上式微分,可得:
Figure BDA0002360254300000077
则有:
Figure BDA0002360254300000078
将中间参考变量的微分式代入上式中,可得:
Figure BDA0002360254300000079
设计快速终端滑模控制器为:
Figure BDA00023602543000000710
其中,K>0,ε>0,tanh为双曲正切函数。
与现有技术相比,本发明的有益效果是:
(1)引入了终端吸引子,保证了***状态能够在有限时间内收敛到平衡点;
(2)保留了线性滑模控制部分,因此具有在平衡点附近快速收敛的特点。快速终端滑模阻抗控制使***状态能够快速、精准的收敛到平衡点。与滑模阻抗控制算法相比,快速终端滑模阻抗控制具有更小的位置跟踪误差。
附图说明
图1为力反馈设备两连杆简化模型分析图。图中:x1和x2分别表示二维平面中的横轴和纵轴,(x1,x2)是设备末端在二维平面上的位置坐标,l1和l2分别是关节J'1的连杆长和关节J'2的连杆长,θ1为l1与横轴间的夹角,θ2为l2与纵轴间的夹角,α为杆长l1和l2之间的夹角,r是设备末端到关节J'1之间的距离,β是r与水平面的夹角,γ是l1与r之间的夹角。
具体实施方式
本发明将通过以下实例作进一步说明。
步骤1,将力反馈设备简化为连杆模型具体为:
力反馈设备具有3个可旋转的关节J1、J2、J3,关节J1控制的是设备末端在水平面的运动,即设备的左右转动。控制算法所需要补偿的重力以及末端在工作空间中的运动主要来自关节J2、J3。为提高工作效率,将力反馈设备简化为双连杆模型,并设定连杆为均匀质杆。简化后的双连杆模型关节1记作J'1,关节2记作J'2。其中,J'1为原力反馈设备的关节J2,J'2是原力反馈设备的关节J3,并将原力反馈设备的的关节J1省去。
步骤2,求解力反馈设备模型的运动学算式如下:
(a)正运动学求解算式:
Figure BDA0002360254300000081
式中,l1和l2分别是简化后模型关节J'1的连杆长和关节J'2的连杆长,θ1是l1与水平面间的夹角,θ2是l2和竖直平面之间的夹角,(x1,x2)是设备末端在二维平面上的位置坐标。
(b)逆运动学求解算式:
Figure BDA0002360254300000082
式中,r是设备末端到关节J'1之间的距离
Figure BDA0002360254300000083
式中,β是r与水平面的夹角
再通过余弦定理得到:
Figure BDA0002360254300000091
式中,γ是l1与r之间的夹角
考虑力反馈设备的实际工作空间,γ>0,因此θ1的计算公式为:
θ1=γ+β
通过余弦定理,得到角α的计算公式:
Figure BDA0002360254300000092
α为杆长l1和l2之间的夹角
根据附图1,得到θ2的计算公式:
Figure BDA0002360254300000093
定义x=[x1 x2],θ=[θ1 θ2],得雅可比矩阵公式:
Figure BDA0002360254300000094
将正运动学公式带入上式,可得:
Figure BDA0002360254300000095
雅可比矩阵的微分为:
Figure BDA0002360254300000096
步骤3,求解力反馈设备模型的动力学算式如下:
连杆l1动能为:
Figure BDA0002360254300000097
连杆l2质心C在x1上的线速度为:
Figure BDA0002360254300000101
连杆l2质心C在x2上的线速度为:
Figure BDA0002360254300000102
可得:
Figure BDA0002360254300000103
连杆l2的动能:
Figure BDA0002360254300000104
***的总动能为:
Figure BDA0002360254300000105
***的总势能:
Figure BDA0002360254300000106
将***的总动能和***的总势能代入拉格朗日函数中,得到:
Figure BDA0002360254300000107
关节力矩的计算
简化模型的关节J'1的驱动力矩计算公式如下:
Figure BDA0002360254300000111
式中:
Figure BDA0002360254300000112
Figure BDA0002360254300000113
Figure BDA0002360254300000114
得到力矩τ1的计算公式:
Figure BDA0002360254300000115
简化模型的关节J'2的驱动力矩计算公式如下:
Figure BDA0002360254300000116
式中:
Figure BDA0002360254300000117
Figure BDA0002360254300000118
Figure BDA0002360254300000119
得到力矩τ2的计算公式:
Figure BDA00023602543000001110
整理力矩τ1和τ2的计算公式,最终得到力矩的表达式为:
Figure BDA0002360254300000121
步骤4,阻抗模型的建立具体为:
力反馈设备末端的接触力为Fe,将Fe与理想位置误差xc-xd建立阻抗关系,描述为:
Figure BDA0002360254300000122
其中,xc为末端位置的指令轨迹,xd为理想的阻抗轨迹,x(0)=xc(0),
Figure BDA0002360254300000123
Md、Bd、Kd为阻抗参数,分别是质量、阻尼和刚度系数矩阵。
通过上述的阻抗关系公式计算出需要跟踪的理想阻抗轨迹,再根据动力学模型,设计力反馈设备末端的控制律Fx
步骤5,快速终端滑模控制器的设计具体为:
定义快速终端滑模切换面:
Figure BDA0002360254300000124
其中,xd(t)为理想轨迹,
Figure BDA0002360254300000125
Figure BDA0002360254300000126
分别为理想速度和加速度。γ1和γ2为大于零的正定常数矩阵,α和β(β>α)为正奇数。
定义中间参考变量:
Figure BDA0002360254300000127
对上式微分,可得:
Figure BDA0002360254300000128
则有:
Figure BDA0002360254300000131
将中间参考变量的微分式代入上式中,可得:
Figure BDA0002360254300000132
设计快速终端滑模控制器为:
Figure BDA0002360254300000133
其中,K>0,ε>0,tanh为双曲正切函数。
以上所述仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

1.一种快速终端滑模阻抗控制算法,其特征在于:按以下步骤:
步骤1、将力反馈设备简化为双连杆模型;
步骤2、求解力反馈设备模型的运动学;
步骤3、求解力反馈设备模型的动力学;
步骤4、建立阻抗模型;
步骤5、设计快速终端滑模控制器。
2.根据权利要求1所述的一种快速终端滑模阻抗控制算法,其特征在于:所述步骤1中将力反馈设备简化为双连杆模型具体如下:
力反馈设备具有N个可旋转的关节J1、J2…JN,N<<7,关节J1控制的是设备末端在水平面的运动,控制算法所需要补偿的重力以及末端在工作空间中的运动主要来自关节J2…JN,将力反馈设备简化为双连杆模型,并设定连杆为均匀质杆,简化后的双连杆模型关节1记作J'1,关节2记作J'2;其中,J'1由原力反馈设备的关节J2…JN-1合并而来,J'2是原力反馈设备的关节JN,并将原力反馈设备的的关节J1省去。
3.根据权利要求2所述的一种快速终端滑模阻抗控制算法,其特征在于:所述步骤2中具体求解力反馈设备模型运动学的算式如下:
(a)正运动学求解算式:
Figure FDA0002360254290000011
式中,l1和l2分别是简化后模型关节J'1的连杆长和关节J'2的连杆长,θ1是l1与水平面间的夹角,θ2是l2和竖直平面之间的夹角,(x1,x2)是设备末端在二维平面上的位置坐标;
(b)逆运动学求解算式:
Figure FDA0002360254290000012
式中,r是设备末端到关节J'1之间的距离;
Figure FDA0002360254290000013
式中,β是r与水平面的夹角;
再通过余弦定理得到:
Figure FDA0002360254290000021
式中,γ是l1与r之间的夹角;
考虑力反馈设备的实际工作空间,γ>0,因此θ1的计算公式为:
θ1=γ+β
通过余弦定理,得到角α的计算公式:
Figure FDA0002360254290000022
α为杆长l1和l2之间的夹角
得到θ2的计算公式:
Figure FDA0002360254290000023
定义x=[x1 x2],θ=[θ1 θ2],得雅可比矩阵公式:
Figure FDA0002360254290000024
将正运动学公式带入上式,可得:
Figure FDA0002360254290000025
雅可比矩阵的微分为:
Figure FDA0002360254290000026
4.根据权利要求3所述的一种快速终端滑模阻抗控制算法,其特征在于:所述步骤3中具体求解力反馈设备模型动力学的算式如下:
连杆l1动能为:
Figure FDA0002360254290000027
连杆l2质心C在x1上的线速度为:
Figure FDA0002360254290000031
连杆l2质心C在x2上的线速度为:
Figure FDA0002360254290000032
可得:
Figure FDA0002360254290000033
连杆l2的动能:
Figure FDA0002360254290000034
***的总动能为:
Figure FDA0002360254290000035
***的总势能:
Figure FDA0002360254290000036
将***的总动能和***的总势能代入拉格朗日函数中,得到:
Figure FDA0002360254290000037
关节力矩的计算
简化模型的关节J'1的驱动力矩计算公式如下:
Figure FDA0002360254290000041
式中:
Figure FDA0002360254290000042
Figure FDA0002360254290000043
Figure FDA0002360254290000044
得到力矩τ1的计算公式:
Figure FDA0002360254290000045
简化模型的关节J'2的驱动力矩计算公式如下:
Figure FDA0002360254290000046
式中:
Figure FDA0002360254290000047
Figure FDA0002360254290000048
Figure FDA0002360254290000049
得到力矩τ2的计算公式:
Figure FDA00023602542900000410
整理力矩τ1和τ2的计算公式,最终得到力矩的表达式为:
Figure FDA0002360254290000051
5.根据权利要求4所述的一种快速终端滑模阻抗控制算法,其特征在于:所述步骤4阻抗模型的建立具体为:
力反馈设备末端的接触力为Fe,将Fe与理想位置误差xc-xd建立阻抗关系,描述为:
Figure FDA0002360254290000052
其中,xc为末端位置的指令轨迹,xd为理想的阻抗轨迹,x(0)=xc(0),
Figure FDA0002360254290000056
Md、Bd、Kd为阻抗参数,分别是质量、阻尼和刚度系数矩阵,通过上述的阻抗关系公式计算出需要跟踪的理想阻抗轨迹,再根据动力学模型,设计力反馈设备末端的控制律Fx
6.根据权利要求5所述的一种快速终端滑模阻抗控制算法,其特征在于:所述步骤5快速终端滑模控制器的设计具体为:
定义快速终端滑模切换面:
Figure FDA0002360254290000053
其中,xd(t)为理想轨迹,
Figure FDA0002360254290000057
Figure FDA0002360254290000058
分别为理想速度和加速度,γ1和γ2为大于零的正定常数矩阵,α和β(β>α)为正奇数;
定义中间参考变量:
Figure FDA0002360254290000054
对上式微分,可得:
Figure FDA0002360254290000055
则有:
Figure FDA0002360254290000061
将中间参考变量的微分式代入上式中,可得:
Figure FDA0002360254290000062
设计快速终端滑模控制器为:
Figure FDA0002360254290000063
其中,K>0,ε>0,tanh为双曲正切函数。
CN202010019659.7A 2020-01-08 2020-01-08 一种快速终端滑模阻抗控制算法 Active CN111208730B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010019659.7A CN111208730B (zh) 2020-01-08 2020-01-08 一种快速终端滑模阻抗控制算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010019659.7A CN111208730B (zh) 2020-01-08 2020-01-08 一种快速终端滑模阻抗控制算法

Publications (2)

Publication Number Publication Date
CN111208730A true CN111208730A (zh) 2020-05-29
CN111208730B CN111208730B (zh) 2021-06-22

Family

ID=70785027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010019659.7A Active CN111208730B (zh) 2020-01-08 2020-01-08 一种快速终端滑模阻抗控制算法

Country Status (1)

Country Link
CN (1) CN111208730B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111716334A (zh) * 2020-07-28 2020-09-29 南京拟态智能技术研究院有限公司 一种基于滑模阻抗的上肢外骨骼控制方法
CN111814269A (zh) * 2020-06-17 2020-10-23 南昌大学 一种基于res-sca算法的逆运动学实时解析解优化方法
CN115607409A (zh) * 2022-11-08 2023-01-17 哈尔滨理工大学 一种肩肘关节康复机器人轨迹跟踪的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319972A (zh) * 2015-11-27 2016-02-10 燕山大学 基于快速终端滑模的遥操作机器人固定时间控制方法
CN106983589A (zh) * 2017-04-07 2017-07-28 河北工业大学 一种基于干扰观测器的主动型膝上假肢终端滑模控制方法
CN108748162A (zh) * 2018-07-09 2018-11-06 五邑大学 一种机器人实验教学用基于最小二乘法的机械臂控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319972A (zh) * 2015-11-27 2016-02-10 燕山大学 基于快速终端滑模的遥操作机器人固定时间控制方法
CN106983589A (zh) * 2017-04-07 2017-07-28 河北工业大学 一种基于干扰观测器的主动型膝上假肢终端滑模控制方法
CN108748162A (zh) * 2018-07-09 2018-11-06 五邑大学 一种机器人实验教学用基于最小二乘法的机械臂控制方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHAO-FENG CHEN ET AL.: "Development and Hybrid Control of an Electrically Actuated Lower Limb Exoskeleton for Motion Assistance", 《IEEE ACCESS》 *
CHUNQUAN LI ET AL.: "A Vector Grouping Learning Brain Storm Optimization Algorithm for Global Optimization Problems", 《IEEE ACCESS》 *
张奇志 等: "《机器人学简明教程》", 30 April 2013, 西安电子科技大学出版社 *
张龙: "《空间机构学与机器人设计方法》", 31 December 2018, 东南大学出版社 *
沈显庆 等: "改进趋近律的机器人阻抗滑模控制", 《黑龙江科技大学学报》 *
肖雷: "基于虚拟现实的触觉交互***稳定性研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111814269A (zh) * 2020-06-17 2020-10-23 南昌大学 一种基于res-sca算法的逆运动学实时解析解优化方法
CN111814269B (zh) * 2020-06-17 2022-06-14 南昌大学 一种基于res-sca算法的逆运动学实时解析解优化方法
CN111716334A (zh) * 2020-07-28 2020-09-29 南京拟态智能技术研究院有限公司 一种基于滑模阻抗的上肢外骨骼控制方法
CN115607409A (zh) * 2022-11-08 2023-01-17 哈尔滨理工大学 一种肩肘关节康复机器人轨迹跟踪的控制方法

Also Published As

Publication number Publication date
CN111208730B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN108241339B (zh) 仿人机械臂的运动求解和构型控制方法
CN111208730B (zh) 一种快速终端滑模阻抗控制算法
US11845186B2 (en) Inverse kinematics solving method for redundant robot and redundant robot and computer readable storage medium using the same
Wilson et al. Relative end-effector control using cartesian position based visual servoing
Ott et al. A humanoid two-arm system for dexterous manipulation
CN105242533B (zh) 一种融合多信息的变导纳遥操作控制方法
CN109483534B (zh) 一种物体抓取方法、装置和***
CN109993073B (zh) 一种基于Leap Motion的复杂动态手势识别方法
Siradjuddin et al. Image Based Visual Servoing of a 7 DOF robot manipulator using a distributed fuzzy proportional controller
Han et al. Trajectory optimization and force control with modified dynamic movement primitives under curved surface constraints
CN114131616B (zh) 一种应用于机械臂操控的三维虚拟力场视觉增强方法
Li et al. Learning complex assembly skills from kinect based human robot interaction
Gäbert et al. Generation of human-like arm motions using sampling-based motion planning
Munguia-Galeano et al. Affordance-based human–robot interaction with reinforcement learning
García-Rodríguez et al. In-hand manipulation of a circular dynamic object by soft fingertips without angle measurement
Mirrazavi Salehian et al. A dynamical system approach for catching softly a flying object: Theory and experiment
Perez-Vidal et al. Visual control of robots with delayed images
CN109685828B (zh) 基于目标姿态深度学习追踪采集方法、学习***及存储介质
Feth et al. Control-theoretic model of haptic human-human interaction in a pursuit tracking task
Wu et al. Depth estimation of objects with known geometric model for IBVS using an eye-in-hand camera
Fang et al. Learning from wearable-based teleoperation demonstration
Papageorgiou et al. Learning by demonstration for constrained tasks
Gomes et al. Deep Reinforcement learning applied to a robotic pick-and-place application
Zhang et al. Inverse kinematics solution for six-DOF serial robots based on BP neural network
Chen et al. Adaptive Stiffness Visual Servoing for Unmanned Aerial Manipulators With Prescribed Performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant