CN111111705B - A kind of method for synthesizing transition metal sulfide hydrogen evolution catalyst from low temperature molten salt - Google Patents
A kind of method for synthesizing transition metal sulfide hydrogen evolution catalyst from low temperature molten salt Download PDFInfo
- Publication number
- CN111111705B CN111111705B CN202010098520.6A CN202010098520A CN111111705B CN 111111705 B CN111111705 B CN 111111705B CN 202010098520 A CN202010098520 A CN 202010098520A CN 111111705 B CN111111705 B CN 111111705B
- Authority
- CN
- China
- Prior art keywords
- transition metal
- metal sulfide
- hydrogen evolution
- thiocyanate
- molten salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052723 transition metal Inorganic materials 0.000 title claims abstract description 65
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 48
- 239000001257 hydrogen Substances 0.000 title claims abstract description 48
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 239000003054 catalyst Substances 0.000 title claims abstract description 44
- 150000003624 transition metals Chemical class 0.000 title claims abstract description 42
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 25
- 150000003839 salts Chemical class 0.000 title claims abstract description 19
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 30
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 23
- -1 transition metal sulfide Chemical class 0.000 claims abstract description 23
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 claims abstract description 20
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000002243 precursor Substances 0.000 claims abstract description 17
- 238000002156 mixing Methods 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 7
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 claims description 5
- 235000018660 ammonium molybdate Nutrition 0.000 claims description 5
- 239000011609 ammonium molybdate Substances 0.000 claims description 5
- 229940010552 ammonium molybdate Drugs 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 3
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 3
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 claims description 3
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 claims description 2
- GKKCIDNWFBPDBW-UHFFFAOYSA-M potassium cyanate Chemical group [K]OC#N GKKCIDNWFBPDBW-UHFFFAOYSA-M 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 abstract description 13
- 239000002994 raw material Substances 0.000 abstract description 13
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 12
- 238000010438 heat treatment Methods 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 229910052717 sulfur Inorganic materials 0.000 abstract description 11
- 239000011593 sulfur Substances 0.000 abstract description 11
- 230000009286 beneficial effect Effects 0.000 abstract description 6
- 239000012429 reaction media Substances 0.000 abstract description 4
- 238000009776 industrial production Methods 0.000 abstract description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 2
- 239000010931 gold Substances 0.000 abstract description 2
- 229910052737 gold Inorganic materials 0.000 abstract description 2
- 230000007704 transition Effects 0.000 abstract description 2
- 238000005406 washing Methods 0.000 abstract description 2
- 230000003197 catalytic effect Effects 0.000 description 13
- 239000002131 composite material Substances 0.000 description 6
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 4
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 4
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical compound [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 description 4
- 229940116357 potassium thiocyanate Drugs 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- INPLXZPZQSLHBR-UHFFFAOYSA-N cobalt(2+);sulfide Chemical compound [S-2].[Co+2] INPLXZPZQSLHBR-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000840 electrochemical analysis Methods 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229940078494 nickel acetate Drugs 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229940011182 cobalt acetate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 238000003541 multi-stage reaction Methods 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- 229910021381 transition metal chloride Inorganic materials 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/047—Sulfides with chromium, molybdenum, tungsten or polonium
- B01J27/051—Molybdenum
- B01J27/0515—Molybdenum with iron group metals or platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/047—Sulfides with chromium, molybdenum, tungsten or polonium
- B01J27/049—Sulfides with chromium, molybdenum, tungsten or polonium with iron group metals or platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/047—Sulfides with chromium, molybdenum, tungsten or polonium
- B01J27/051—Molybdenum
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
Abstract
本发明涉及一种低温熔融盐合成过渡金属硫化物析氢催化剂的方法,利用低温熔盐一步硫化过渡金属源,制备过渡金属硫化物析氢催化剂。将硫氰酸盐与过渡金源均匀混合得到前躯体,之后装入容器,在马弗炉中加热反应,结束后经水洗即可得到过渡金属硫化物。未反应的硫氰酸盐重结晶回收利用,降低生产成本。本发明所涉及的原料价格低廉,合成温度低,无需高压、惰性气氛等苛刻条件,设备需求简单。硫氰酸盐既作为熔融盐充当反应介质,又为硫化物的形成提供硫源,因此在材料合成中无需外加硫源。本发明显著精简了过渡金属硫化物析氢催化剂的制备工艺流程,提升了过渡金属硫化物材料的制备效率,有利于工业化生产与应用。
The invention relates to a method for synthesizing a transition metal sulfide hydrogen evolution catalyst with a low temperature molten salt. The precursor is obtained by uniformly mixing the thiocyanate and the transition gold source, then putting it into a container, heating and reacting in a muffle furnace, and washing with water after the end to obtain the transition metal sulfide. The unreacted thiocyanate is recrystallized and recycled to reduce the production cost. The raw materials involved in the invention are cheap, the synthesis temperature is low, no harsh conditions such as high pressure and inert atmosphere are required, and the equipment requirements are simple. Thiocyanate not only acts as a molten salt as a reaction medium, but also provides a sulfur source for the formation of sulfide, so there is no need for an external sulfur source in the material synthesis. The invention significantly simplifies the preparation process of the transition metal sulfide hydrogen evolution catalyst, improves the preparation efficiency of the transition metal sulfide material, and is beneficial to industrial production and application.
Description
技术领域technical field
本发明属于催化剂材料领域,涉及一种过低温熔融盐合成过渡金属硫化物析氢催化剂的方法。The invention belongs to the field of catalyst materials, and relates to a method for synthesizing a transition metal sulfide hydrogen evolution catalyst from an ultra-low temperature molten salt.
背景技术Background technique
随着全球经济的迅速发展,人类对能源的需求与日俱增。储量有限的化石燃料是目前主要的能源支柱,对可持续发展造成了巨大的能源危机。同时,过度依赖化石能源也带来了严重的环境问题。以清洁能源取代传统化石能源具有重大的应用潜力。氢气是一种高效能源载体,其燃烧产物只有水,具有极高的热值,不会对环境造成污染。因此,绿色环保的氢能源备受关注。氢气的生产是氢能规模化运用的基础。目前工业上主要依赖化石燃料生产氢气,是一种非可持续的制氢手段,且加剧了化石燃料的消耗和环境污染。电解水是通过消耗可再生的电能和丰富的水资源制备氢气,其具有电力运输便捷,设备需求低,不受地理条件限制等优点,是一种极具发展潜力的制氢方法。在电解水制氢中,为了降低电能的损耗,需引入高效的催化剂提高制氢效率,降低氢气生产成本。以铂为代表的贵金属材料具有优异的电化学析氢催化性能,但其价格昂贵,难以大规模应用。随后发展了一系列非贵金属材料作为析氢催化剂。其中,过渡金属的硫化物,如硫化钼,硫化钴,硫化镍等材料,具有价格低廉、稳定性好、催化活性高的特点,是最具应用前景的析氢催化剂。With the rapid development of the global economy, human demand for energy is increasing day by day. Fossil fuels with limited reserves are currently the main energy pillar, causing a huge energy crisis for sustainable development. At the same time, over-reliance on fossil energy also brings serious environmental problems. Replacing traditional fossil energy with clean energy has great application potential. Hydrogen is an efficient energy carrier, and its combustion product is only water, which has a very high calorific value and will not pollute the environment. Therefore, green and environmentally friendly hydrogen energy has attracted much attention. The production of hydrogen is the basis for the large-scale application of hydrogen energy. At present, the industry mainly relies on fossil fuels to produce hydrogen, which is an unsustainable means of hydrogen production, and aggravates the consumption of fossil fuels and environmental pollution. Water electrolysis is the production of hydrogen by consuming renewable electricity and abundant water resources. It has the advantages of convenient transportation of electricity, low equipment requirements, and is not restricted by geographical conditions. It is a method of hydrogen production with great development potential. In hydrogen production by electrolysis of water, in order to reduce the loss of electric energy, it is necessary to introduce high-efficiency catalysts to improve the efficiency of hydrogen production and reduce the cost of hydrogen production. The noble metal materials represented by platinum have excellent electrochemical hydrogen evolution catalytic performance, but they are expensive and difficult to apply on a large scale. A series of non-precious metal materials were subsequently developed as hydrogen evolution catalysts. Among them, transition metal sulfides, such as molybdenum sulfide, cobalt sulfide, nickel sulfide and other materials, have the characteristics of low price, good stability and high catalytic activity, and are the most promising hydrogen evolution catalysts.
过渡金属硫化物的合成方法很多,但所合成的材料无法满足析氢催化剂的要求,主要表现在材料的宏量制备困难和催化活性偏低,这主要受限于材料合成方法。通过水热法可以合成过渡金属硫化物,如专利1“吴则星,宋敏等,过渡金属硫化物纳米球的制备及应用[P],申请号201910208038.0”将过渡金属盐和硫源混合在水和乙醇中,经水热反应制得过渡金属硫化物析氢催化剂。但该方法涉及高压过程,存在安全隐患,且产量低,无法满足大规模应用需求。化学气相沉积法也可用于制备过渡金属硫化物析氢催化剂。如专利2“张艳锋,郇亚欢等,制备垂直过渡金属硫化物纳米片阵列的方法及电催化析氢催化剂[P],申请号201810117506.9”将单质硫和过渡金属的氯化物分别加热至不同温度,在基底上制得垂直的过渡金属硫化物析氢催化剂。但该方法产量较低,且需在高温下进行,导致催化剂缺陷位点少,催化活性低。基于高温固相反应可以大规模制备过渡金属硫化物,该方法的缺点在于能耗高,而且所合成过渡金属硫化物催化活性低。There are many synthesis methods of transition metal sulfides, but the synthesized materials cannot meet the requirements of hydrogen evolution catalysts, which are mainly manifested in the difficulty of macro-scale preparation of materials and low catalytic activity, which are mainly limited by material synthesis methods. Transition metal sulfides can be synthesized by hydrothermal method, such as Patent 1 "Wu Zexing, Song Min, etc., Preparation and Application of Transition Metal Sulfide Nanospheres [P], Application No. 201910208038.0" Mix transition metal salt and sulfur source in water and In ethanol, a transition metal sulfide hydrogen evolution catalyst was prepared by hydrothermal reaction. However, this method involves a high-pressure process, has potential safety hazards, and has a low yield, which cannot meet the needs of large-scale applications. Chemical vapor deposition can also be used to prepare transition metal sulfide hydrogen evolution catalysts. For example,
发明内容SUMMARY OF THE INVENTION
要解决的技术问题technical problem to be solved
为了避免现有技术的不足之处,本发明提出一种低温熔融盐合成过渡金属硫化物析氢催化剂的方法,利用低温熔盐一步硫化过渡金属源,获得过渡金属硫化物析氢催化剂。本发明利用低熔点的硫氰酸盐作为熔融盐,在熔融盐中添加过渡金属源,无需额外添加硫源即可制得过渡金属硫化物析氢催化剂。本发明旨在制备高性能的过渡金属硫化物析氢催化剂,提高催化活性、简化了制备工艺、降低了生产成本,以实现量化生产。本发明在合成过渡金属硫化物析氢催化剂领域具有重要应用价值。In order to avoid the deficiencies of the prior art, the present invention proposes a method for synthesizing a transition metal sulfide hydrogen evolution catalyst from a low temperature molten salt, which utilizes a low temperature molten salt to sulfide a transition metal source in one step to obtain a transition metal sulfide hydrogen evolution catalyst. The present invention utilizes thiocyanate with low melting point as molten salt, adds transition metal source in molten salt, and can prepare transition metal sulfide hydrogen evolution catalyst without additional sulfur source. The invention aims to prepare a high-performance transition metal sulfide hydrogen evolution catalyst, improve the catalytic activity, simplify the preparation process, and reduce the production cost, so as to realize quantitative production. The invention has important application value in the field of synthesizing transition metal sulfide hydrogen evolution catalyst.
技术方案Technical solutions
一种低温熔融盐合成过渡金属硫化物析氢催化剂的方法,其特征在于步骤如下:A method for synthesizing transition metal sulfide hydrogen evolution catalyst from low temperature molten salt is characterized in that the steps are as follows:
步骤1、混合粉料:将硫氰酸盐与过渡金属源混合得到前驱体;所述过渡金属源与硫氰酸盐的质量比为1~40:200;Step 1. Mixing powder: mixing thiocyanate and transition metal source to obtain a precursor; the mass ratio of the transition metal source and thiocyanate is 1-40:200;
步骤2、过渡金属硫化物材料的合成:将前驱体置于容器中,容器放入到马弗炉中进行熔融反应;反应条件:大气环境下以1~20℃/min的速率将马弗炉升温到175~500℃,反应0.5~24h;
步骤3:将反应后的产物用去离子水清洗过滤后干燥,得到过渡金属硫化物析氢催化剂的熔融盐。Step 3: The reacted product is washed with deionized water, filtered, and dried to obtain a molten salt of the transition metal sulfide hydrogen evolution catalyst.
所述硫氰酸盐为氰酸钾、硫氰酸钠或硫氰酸铵。The thiocyanate is potassium cyanate, sodium thiocyanate or ammonium thiocyanate.
所述过渡金属源取自钼酸钠、钼酸铵、钨酸钠、硝酸钴、醋酸钴、硫酸钴、硝酸镍、硫酸镍、氯化镍、醋酸镍、硝酸铁、氧化钼、氧化镍、镍网中的一种或多种。Described transition metal source is taken from sodium molybdate, ammonium molybdate, sodium tungstate, cobalt nitrate, cobalt acetate, cobalt sulfate, nickel nitrate, nickel sulfate, nickel chloride, nickel acetate, ferric nitrate, molybdenum oxide, nickel oxide, One or more of nickel mesh.
有益效果beneficial effect
本发明提出的一种低温熔融盐合成过渡金属硫化物析氢催化剂的方法,利用低温熔盐一步硫化过渡金属源,制备过渡金属硫化物析氢催化剂。将硫氰酸盐与过渡金源均匀混合得到前躯体,之后装入容器,在马弗炉中加热反应,结束后经水洗即可得到过渡金属硫化物。未反应的硫氰酸盐重结晶回收利用,降低生产成本。本发明所涉及的原料价格低廉,合成温度低,无需高压、惰性气氛等苛刻条件,设备需求简单。硫氰酸盐既作为熔融盐充当反应介质,又为硫化物的形成提供硫源,因此在材料合成中无需外加硫源。本发明显著精简了过渡金属硫化物析氢催化剂的制备工艺流程,提升了过渡金属硫化物材料的制备效率,有利于工业化生产与应用。A method for synthesizing a transition metal sulfide hydrogen evolution catalyst from a low temperature molten salt proposed by the present invention utilizes a low temperature molten salt to sulfide a transition metal source in one step to prepare a transition metal sulfide hydrogen evolution catalyst. The precursor is obtained by uniformly mixing the thiocyanate and the transition gold source, then putting it into a container, heating and reacting in a muffle furnace, and washing with water after the end to obtain the transition metal sulfide. The unreacted thiocyanate is recrystallized and recycled to reduce the production cost. The raw materials involved in the invention are cheap, the synthesis temperature is low, no harsh conditions such as high pressure and inert atmosphere are required, and the equipment requirements are simple. Thiocyanate not only acts as a molten salt as a reaction medium, but also provides a sulfur source for the formation of sulfide, so there is no need for an external sulfur source in the material synthesis. The invention significantly simplifies the preparation process of the transition metal sulfide hydrogen evolution catalyst, improves the preparation efficiency of the transition metal sulfide material, and is beneficial to industrial production and application.
本发明的技术方案关键在于采用硫氰酸盐和过渡金属源为原料,在低温条件下一步合成过渡金属硫化物析氢催化剂。其中硫氰酸盐不仅作为熔盐提供稳定的反应介质,同时又为硫化物的形成提供了硫源。所得到的产物经过简单的水洗,即可得到所需要的催化剂。The key of the technical solution of the present invention is to use thiocyanate and transition metal source as raw materials, and synthesize the transition metal sulfide hydrogen evolution catalyst in the next step under low temperature conditions. Among them, thiocyanate not only provides a stable reaction medium as molten salt, but also provides a sulfur source for the formation of sulfide. The obtained product can be simply washed with water to obtain the desired catalyst.
对于现有技术本发明带来的有益效果:For the beneficial effects brought by the present invention in the prior art:
本发明的技术方案以硫氰酸盐和过渡金属源为原料,搅拌混合后经低温熔融反应处理,再经过水洗即可得到过渡金属硫化物析氢催化剂。与现有的过渡金属硫化物合成技术相比,本发明具有以下优势:1)原料广泛:本发明以硫氰酸盐和过渡金属源为前驱体制备过渡金属硫化物析氢催化剂,具有原料来源广,制备成本低廉的特点;2)催化活性高:本发明提供的方法可以在低温条件下合成过渡金属硫化物析氢催化剂,除能耗低外,还有助于催化剂微观结构和表面缺陷的构建,保证了催化活性;3)设备需求低:硫氰酸盐可以在常压,空气气氛条件下合成过渡金属硫化物,不涉及高温高压、惰性气氛等苛刻条件,设备要求低,便于规模化生产;4)工艺流程简洁:硫氰酸盐既作为熔融盐充当反应介质,又为硫化物的形成提供了硫源,因此在材料合成中无需外加硫源,简减了过渡金属硫化物析氢催化剂制备的工艺流程,无需采用硫代乙酰胺、硫脲、硫化钠、巯基乙醇等污染性强的硫源。本发明显著精简了过渡金属硫化物析氢催化剂的制备工艺流程,提升了现有的过渡金属硫化物的制备效率,有利于工业化生产与应用。本发明在过渡金属硫化物的合成及高性能过渡金属硫化物析氢催化剂的制备方面具有重要的应用价值。The technical scheme of the present invention uses thiocyanate and transition metal source as raw materials, stirs and mixes them, undergoes low temperature melting reaction treatment, and then washes with water to obtain a transition metal sulfide hydrogen evolution catalyst. Compared with the existing transition metal sulfide synthesis technology, the present invention has the following advantages: 1) wide range of raw materials: the present invention uses thiocyanate and transition metal source as precursors to prepare a transition metal sulfide hydrogen evolution catalyst, which has a wide range of raw material sources. 2) high catalytic activity: the method provided by the present invention can synthesize transition metal sulfide hydrogen evolution catalyst under low temperature conditions, in addition to low energy consumption, it is also helpful for the construction of catalyst microstructure and surface defects, The catalytic activity is guaranteed; 3) The equipment requirements are low: thiocyanate can synthesize transition metal sulfides under normal pressure and air atmosphere conditions, and does not involve harsh conditions such as high temperature and high pressure, inert atmosphere, and the equipment requirements are low, which is convenient for large-scale production; 4) The process flow is concise: thiocyanate not only acts as a reaction medium as a molten salt, but also provides a sulfur source for the formation of sulfides, so there is no need to add a sulfur source in the material synthesis, which simplifies the preparation of transition metal sulfide hydrogen evolution catalysts. The technological process does not require the use of highly polluting sulfur sources such as thioacetamide, thiourea, sodium sulfide, and mercaptoethanol. The invention significantly simplifies the preparation process of the transition metal sulfide hydrogen evolution catalyst, improves the preparation efficiency of the existing transition metal sulfide, and is beneficial to industrial production and application. The invention has important application value in the synthesis of transition metal sulfide and the preparation of high-performance transition metal sulfide hydrogen evolution catalyst.
附图说明Description of drawings
图1为实施例一所制硫化铁材料的SEM图;Fig. 1 is the SEM image of the iron sulfide material prepared in Example 1;
图2为实施例一所制硫化铁材料的物相分析XRD图。FIG. 2 is a phase analysis XRD pattern of the iron sulfide material prepared in Example 1. FIG.
图3为实施例二所制硫化镍材料的SEM图;Fig. 3 is the SEM image of the nickel sulfide material prepared in Example 2;
图4为实施例二所制硫化镍材料的物相分析XRD图。Fig. 4 is the phase analysis XRD pattern of the nickel sulfide material prepared in Example 2.
图5为实施例三所制硫化钼材料的SEM图;Fig. 5 is the SEM image of the molybdenum sulfide material prepared in Example 3;
图6为实施例三所制硫化钼材料的电化学测试图。FIG. 6 is an electrochemical test diagram of the molybdenum sulfide material prepared in Example 3. FIG.
图7为实施例四所制硫化钼材料的电化学测试图。FIG. 7 is an electrochemical test diagram of the molybdenum sulfide material prepared in Example 4. FIG.
图8为实施例五所制硫化钼与硫化钴复合材料的SEM图;Fig. 8 is the SEM image of the molybdenum sulfide and cobalt sulfide composite material prepared in Example 5;
图9为实施例五所制硫化钼与硫化钴复合材料的电化学测试图。9 is an electrochemical test diagram of the molybdenum sulfide and cobalt sulfide composite material prepared in Example 5.
具体实施方式Detailed ways
现结合实施例、附图对本发明作进一步描述:The present invention will now be further described in conjunction with the embodiments and accompanying drawings:
实施例一Example 1
本实施例是一种过渡金属硫化物析氢催化剂的熔融盐合成法,具体过程是:The present embodiment is a molten salt synthesis method of a transition metal sulfide hydrogen evolution catalyst, and the specific process is:
步骤1:混合粉料:称取硫氰酸钾20g,加入硝酸铁1g,置于100mL的烧杯中,用玻璃棒搅拌使原料混合均匀,得到前驱体。Step 1: Mixing powders: Weigh 20 g of potassium thiocyanate, add 1 g of ferric nitrate, put it in a 100 mL beaker, stir with a glass rod to mix the raw materials uniformly, and obtain a precursor.
步骤2:过渡金属硫化物材料的合成,具体过程是:Step 2: Synthesis of transition metal sulfide materials, the specific process is:
a.将步骤1中得到的装有前驱体的烧杯放入到马弗炉中加热反应,大气环境下以5℃/min的速率将马弗炉升温到250℃并保温2h;a. Put the beaker containing the precursor obtained in step 1 into a muffle furnace for heating and reaction, and heat the muffle furnace to 250 °C at a rate of 5 °C/min under the atmospheric environment and keep it for 2 hours;
b.将反应后的产物用去离子水清洗过滤后干燥,得到FeS2。b. The reacted product is washed with deionized water, filtered, and dried to obtain FeS 2 .
本实例中得到的FeS2为片状和颗粒状混合物,如图1所示,通过XRD分析可知,产物为FeS2(图2)。该实施方案在大气条件下进行,无需惰性气氛保护和高压条件,设备需求低。本实施例证明成功合成了硫化铁材料。The FeS 2 obtained in this example is a mixture of flakes and granules, as shown in Figure 1, and the XRD analysis shows that the product is FeS 2 (Figure 2). This embodiment operates under atmospheric conditions without inert atmosphere protection and high pressure conditions, with low equipment requirements. This example demonstrates the successful synthesis of iron sulfide material.
实施例二
步骤1:混合粉料:称取硫氰酸钠20g,加入醋酸镍4g,置于100mL的烧杯中,用玻璃棒搅拌使原料混合均匀,得到前驱体。Step 1: Mixing powder materials: Weigh 20 g of sodium thiocyanate, add 4 g of nickel acetate, place in a 100 mL beaker, stir with a glass rod to mix the raw materials uniformly, and obtain a precursor.
步骤2:过渡金属硫化物材料的合成,具体过程是:Step 2: Synthesis of transition metal sulfide materials, the specific process is:
a.将步骤1中得到的装有前驱体的烧杯放入到马弗炉中加热反应;大气环境下以20℃/min的速率将热处理炉升温到300℃并保温10h;a. Put the beaker containing the precursor obtained in step 1 into a muffle furnace for heating reaction; under the atmospheric environment, the heat treatment furnace is heated to 300 °C at a rate of 20 °C/min and kept for 10 h;
b.将反应后的产物用去离子水清洗过滤后干燥,得到产物。b. The reacted product is washed with deionized water, filtered, and dried to obtain the product.
本实例所得到的产物主要为六边形片状结构,同时有小颗粒存在(如图3)。经过XRD分析可知产物主要由NiS和Ni3S4(如图4)。该实施方案里没有额外加入硫源,减少了原料种类,因此反应剩余物成分简单容易处理,减少了后续处理成本以及对环境的潜在污染。The product obtained in this example is mainly a hexagonal sheet-like structure, and there are small particles at the same time (as shown in Figure 3). The XRD analysis shows that the products are mainly composed of NiS and Ni 3 S 4 (as shown in Figure 4). In this embodiment, no additional sulfur source is added, so the types of raw materials are reduced, so the components of the reaction residue are simple and easy to handle, and the cost of subsequent processing and the potential pollution to the environment are reduced.
实施例三Embodiment 3
步骤1:混合粉料:称取硫氰酸钾20g,加入钼酸铵2g,置于100mL的烧杯中,加入去离子水至原料刚好完全溶解,在烘箱中90℃干燥12h,得到前驱体。Step 1: Mixing powders: Weigh 20 g of potassium thiocyanate, add 2 g of ammonium molybdate, put it in a 100 mL beaker, add deionized water until the raw materials are just completely dissolved, and dry in an oven at 90°C for 12 hours to obtain the precursor.
步骤2:过渡金属硫化物材料的合成,具体过程是:Step 2: Synthesis of transition metal sulfide materials, the specific process is:
a.将步骤1中得到的装有前驱体的烧杯放入到马弗炉中进行加热反应;大气环境下以1℃/min的速率将热处理炉升温到200℃并保温10h;a. Put the beaker containing the precursor obtained in step 1 into the muffle furnace for heating reaction; under the atmospheric environment, the heat treatment furnace is heated to 200°C at a rate of 1°C/min and kept for 10h;
b.将反应后的产物用去离子水清洗过滤后干燥,得到MoS2产物。b. The reacted product is washed with deionized water, filtered, and dried to obtain a MoS 2 product.
如图5所示为制备的MoS2材料为球形,表面为花瓣状。该催化剂具有良好的析氢催化活性,10mA/cm2的电流密度时过电位为200mV,优于目前报道的大多数MoS2催化剂的催化活性(如图6)。As shown in Figure 5, the prepared MoS 2 material is spherical and the surface is petal-shaped. The catalyst has good hydrogen evolution catalytic activity with an overpotential of 200 mV at a current density of 10 mA/cm, which is superior to the catalytic activity of most MoS catalysts reported so far (Fig. 6 ).
实施例四Embodiment 4
步骤1:混合粉料:称取硫氰酸钾20g,加入钼酸铵2g,置于100mL的烧杯中,加入去离子水至原料刚好完全溶解,在烘箱中90℃干燥12h,得到前驱体。Step 1: Mixing powders: Weigh 20 g of potassium thiocyanate, add 2 g of ammonium molybdate, put it in a 100 mL beaker, add deionized water until the raw materials are just completely dissolved, and dry in an oven at 90°C for 12 hours to obtain the precursor.
步骤2:过渡金属硫化物材料的合成,具体过程是:Step 2: Synthesis of transition metal sulfide materials, the specific process is:
a.将步骤1中得到的装有前驱体的烧杯放入到马弗炉中加热反应,大气环境下以1℃/min的速率将热处理炉升温到350℃并保温10h;a. Put the beaker containing the precursor obtained in step 1 into a muffle furnace for heating and reaction, and heat the heat treatment furnace to 350°C at a rate of 1°C/min under the atmospheric environment and keep the temperature for 10h;
b.将反应后的产物用去离子水清洗过滤后干燥,得到MoS2产物。b. The reacted product is washed with deionized water, filtered, and dried to obtain a MoS 2 product.
与实例三相比,所合成MoS2析氢催化剂的催化活性明显降低,10mA/cm2的电流密度时的过电位为305mV(如图7),这是升高了合成温度导致的。实施列四说明本发明在低温条件下合成过渡金属硫化物有利于提高材料的析氢催化活性。Compared with Example 3, the catalytic activity of the synthesized MoS 2 hydrogen evolution catalyst was significantly reduced, and the overpotential at a current density of 10 mA/cm 2 was 305 mV (as shown in Figure 7), which was caused by increasing the synthesis temperature. Example 4 illustrates that the synthesis of transition metal sulfides in the present invention under low temperature conditions is beneficial to improve the catalytic activity of the material for hydrogen evolution.
实施例五Embodiment 5
步骤1:混合粉料:称取硫氰酸钾80g,加入硝酸钴4g,钼酸铵1g,置于100mL的烧杯中,用玻璃棒搅拌使原料混合均匀,得到前驱体。Step 1: Mixing powders: Weigh 80 g of potassium thiocyanate, add 4 g of cobalt nitrate and 1 g of ammonium molybdate, place in a 100 mL beaker, stir with a glass rod to mix the raw materials uniformly, and obtain a precursor.
步骤2:过渡金属硫化物材料的合成,具体过程是:Step 2: Synthesis of transition metal sulfide materials, the specific process is:
a.将步骤1中得到的装有前驱体的烧杯放入到马弗炉中加热反应;大气环境下以5℃/min的速率将热处理炉升温到300℃并保温5h;a. Put the beaker containing the precursor obtained in step 1 into the muffle furnace for heating reaction; under the atmospheric environment, the heat treatment furnace is heated to 300 °C at a rate of 5 °C/min and kept for 5 h;
b.将反应后的产物用去离子水清洗过滤后干燥,得到MoS2和CoS2的复合物。b. The reacted product is washed with deionized water, filtered, and dried to obtain a composite of MoS 2 and CoS 2 .
本实施例得到的MoS2和CoS2复合物,产物主要呈现球状,与实例三中的纯相MoS2相比,表面花瓣不够明显,同时该催化剂具有更好高的电催化析氢活性(如图8)。10mA/cm2的电流密度时的过电位为144mV(如图9)。该实施方案与现有复合催化剂制备相比,材料合成不需要多步反应,直接将多种过渡金属原料混合在硫氰酸盐熔融盐中反应即可合成高效的复合催化剂,极大地简化了制备流程,同时改善催化剂的催化活性。The MoS 2 and CoS 2 composite obtained in this example is mainly spherical. Compared with the pure MoS 2 in Example 3, the surface petals are not obvious enough. At the same time, the catalyst has better electrocatalytic hydrogen evolution activity (as shown in Fig. 8). The overpotential at a current density of 10 mA/cm 2 was 144 mV (see Figure 9). Compared with the preparation of existing composite catalysts, this embodiment does not require multi-step reactions for material synthesis, and a high-efficiency composite catalyst can be synthesized by directly mixing various transition metal raw materials in thiocyanate molten salt for reaction, which greatly simplifies the preparation. process, while improving the catalytic activity of the catalyst.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010098520.6A CN111111705B (en) | 2020-02-18 | 2020-02-18 | A kind of method for synthesizing transition metal sulfide hydrogen evolution catalyst from low temperature molten salt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010098520.6A CN111111705B (en) | 2020-02-18 | 2020-02-18 | A kind of method for synthesizing transition metal sulfide hydrogen evolution catalyst from low temperature molten salt |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111111705A CN111111705A (en) | 2020-05-08 |
CN111111705B true CN111111705B (en) | 2022-09-13 |
Family
ID=70491307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010098520.6A Active CN111111705B (en) | 2020-02-18 | 2020-02-18 | A kind of method for synthesizing transition metal sulfide hydrogen evolution catalyst from low temperature molten salt |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111111705B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021144810A1 (en) * | 2020-01-15 | 2021-07-22 | Council Of Scientific And Industrial Research | A highly active and durable non-noble metal-sulphide based her catalyst and the preparation thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4491639A (en) * | 1982-09-30 | 1985-01-01 | Gas Research Institute | Methods of making high activity transition metal catalysts |
CN106622301A (en) * | 2016-12-24 | 2017-05-10 | 青岛科技大学 | A kind of MoS2 nanosphere bifunctional oxygen catalyst with hierarchical structure and its preparation method and application |
CN108217728A (en) * | 2016-12-09 | 2018-06-29 | 中国科学院大连化学物理研究所 | A kind of MoS2Nano-particle morphology controllable preparation method |
CN109908922A (en) * | 2019-03-15 | 2019-06-21 | 皖西学院 | Transition metal chalcogenide homojunction and preparation method and application thereof |
CN110028107A (en) * | 2019-03-19 | 2019-07-19 | 青岛科技大学 | The preparation and application of transient metal sulfide nanosphere |
CN110697777A (en) * | 2019-10-09 | 2020-01-17 | 西北工业大学 | Preparation method of tin molybdenum disulfide with hollow structure |
CN110790262A (en) * | 2019-10-31 | 2020-02-14 | 西北工业大学 | Preparation method of nitrogen-sulfur double-doped graphene anode material prepared by low temperature molten salt method |
-
2020
- 2020-02-18 CN CN202010098520.6A patent/CN111111705B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4491639A (en) * | 1982-09-30 | 1985-01-01 | Gas Research Institute | Methods of making high activity transition metal catalysts |
CN108217728A (en) * | 2016-12-09 | 2018-06-29 | 中国科学院大连化学物理研究所 | A kind of MoS2Nano-particle morphology controllable preparation method |
CN106622301A (en) * | 2016-12-24 | 2017-05-10 | 青岛科技大学 | A kind of MoS2 nanosphere bifunctional oxygen catalyst with hierarchical structure and its preparation method and application |
CN109908922A (en) * | 2019-03-15 | 2019-06-21 | 皖西学院 | Transition metal chalcogenide homojunction and preparation method and application thereof |
CN110028107A (en) * | 2019-03-19 | 2019-07-19 | 青岛科技大学 | The preparation and application of transient metal sulfide nanosphere |
CN110697777A (en) * | 2019-10-09 | 2020-01-17 | 西北工业大学 | Preparation method of tin molybdenum disulfide with hollow structure |
CN110790262A (en) * | 2019-10-31 | 2020-02-14 | 西北工业大学 | Preparation method of nitrogen-sulfur double-doped graphene anode material prepared by low temperature molten salt method |
Non-Patent Citations (4)
Title |
---|
Low-temperature molten salt synthesis and characterization of Cu2ZnSnS4 ultrafine powders;Mohamed Benchikhi et al.;《Optik》;20171231;568-572 * |
MoS_2基复合材料的制备进展及其应用研究;高培玉等;《化工新型材料》;20150215(第02期);209-211 * |
Synthesis ofCuInS2 nanometric powder by reaction in molten KSCN;Mohamed Benchikhi et al.;《MaterialsLetters》;20140826;433页左栏第1-2段 * |
水热法制备不同形貌纳米MoS_2研究进展;何江山等;《中国钼业》;20121231(第06期);42-45 * |
Also Published As
Publication number | Publication date |
---|---|
CN111111705A (en) | 2020-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104399494B (en) | The coated cobalt sulfide material of a kind of carbon, preparation method and the application in water-splitting product hydrogen thereof | |
CN110127655B (en) | Method for preparing biomass carbon-supported cobalt phosphide electrode material by one-step calcination method | |
CN106622296B (en) | MoS2/CoS2The low overpotential elctro-catalyst of compound cracking aquatic products hydrogen and its vulcanization preparation method | |
CN108940328B (en) | Nanosheet-nanorod coupled three-dimensional composite material Ni-Co modified molybdenum carbide electrocatalytic hydrogen production catalyst and preparation method thereof | |
CN106492846B (en) | It is a kind of efficiently to crack low overpotential elctro-catalyst of aquatic products hydrogen and preparation method thereof | |
CN107164779A (en) | It is a kind of to be carried on nickel molybdenum base bimetallic carbide of nickel foam and its preparation method and application | |
CN109628951B (en) | Nickel sulfide hydrogen evolution electrocatalyst and preparation method and application thereof | |
CN109621981B (en) | A metal oxide-sulfide composite oxygen evolution electrocatalyst and its preparation method and application | |
CN107142488A (en) | A kind of porous multiple casing nickel phosphide tiny balloon and its preparation method and application | |
CN106111177A (en) | The nitrogen functional carbon material of a kind of carrying transition metal chalcogenide and preparation thereof and application | |
CN113416975A (en) | Method for preparing biomass carbon-loaded molybdenum carbide electrode material by one-step calcination method | |
CN111545231A (en) | Preparation method of porous carbon loaded tungsten carbide composite material | |
CN112542592B (en) | A kind of heteroatom doped cobalt-molybdenum binary metal carbide nanocomposite material and its preparation method and application | |
CN111545238A (en) | Co9S8-MoS2Load g-C3N4Electrocatalytic hydrogen production catalyst and preparation method thereof | |
CN107519905B (en) | Vanadium carbide nano-sieve electrocatalytic material capable of being used in wide pH range and preparation method thereof | |
CN108043405B (en) | Preparation method of cobalt-carbon series nano composite materials with different valence states | |
CN110215928A (en) | A kind of preparation method of sulfur doping phosphatization Ni nanopowders and its application in electrolysis water | |
CN112725826B (en) | A one-dimensional Ni-doped copper-selenium/molybdenum-selenium composite nanoarray@foamed copper material, preparation method and application thereof | |
CN111359638B (en) | Photocatalytic carbon dioxide reduction catalyst and preparation method and application thereof | |
CN111111705B (en) | A kind of method for synthesizing transition metal sulfide hydrogen evolution catalyst from low temperature molten salt | |
CN111036307B (en) | A kind of preparation method of composite high-efficiency oxygen evolution catalyst | |
CN109046394B (en) | A hollow tubular CoSe2 nanomaterial and its preparation method and application | |
CN107486221A (en) | A kind of copper sulfide photochemical catalyst and preparation method thereof | |
CN114657596A (en) | Electro-catalytic nitrate radical reduction catalyst Fe-CoS2Preparation method of/CC | |
CN107185556B (en) | Preparation method of high-efficiency photocatalyst based on non-noble metal transition element sulfide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |