CN110743584A - Preparation and application of a WO3 modified BiPO4 photocatalyst - Google Patents
Preparation and application of a WO3 modified BiPO4 photocatalyst Download PDFInfo
- Publication number
- CN110743584A CN110743584A CN201910972397.3A CN201910972397A CN110743584A CN 110743584 A CN110743584 A CN 110743584A CN 201910972397 A CN201910972397 A CN 201910972397A CN 110743584 A CN110743584 A CN 110743584A
- Authority
- CN
- China
- Prior art keywords
- solution
- bipo
- modified
- photocatalyst
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- 239000011941 photocatalyst Substances 0.000 title claims description 24
- 230000001699 photocatalysis Effects 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000003756 stirring Methods 0.000 claims description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 239000008367 deionised water Substances 0.000 claims description 23
- 229910021641 deionized water Inorganic materials 0.000 claims description 23
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 claims description 23
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 14
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 claims description 13
- 229940012189 methyl orange Drugs 0.000 claims description 13
- 238000000967 suction filtration Methods 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 9
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 claims description 9
- 238000002474 experimental method Methods 0.000 claims description 7
- 229910000403 monosodium phosphate Inorganic materials 0.000 claims description 7
- 235000019799 monosodium phosphate Nutrition 0.000 claims description 7
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 238000005303 weighing Methods 0.000 claims description 5
- 238000003912 environmental pollution Methods 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052593 corundum Inorganic materials 0.000 claims description 3
- 239000001048 orange dye Substances 0.000 claims description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims 3
- PPNKDDZCLDMRHS-UHFFFAOYSA-N dinitrooxybismuthanyl nitrate Chemical compound [Bi+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PPNKDDZCLDMRHS-UHFFFAOYSA-N 0.000 claims 2
- 230000000593 degrading effect Effects 0.000 claims 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 claims 1
- 229910000397 disodium phosphate Inorganic materials 0.000 claims 1
- 238000000227 grinding Methods 0.000 claims 1
- 238000009210 therapy by ultrasound Methods 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 17
- 239000000463 material Substances 0.000 abstract description 9
- 239000004065 semiconductor Substances 0.000 abstract description 6
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 238000009776 industrial production Methods 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 4
- 150000001621 bismuth Chemical class 0.000 abstract description 2
- 229910052797 bismuth Inorganic materials 0.000 abstract description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 abstract description 2
- 229910021645 metal ion Inorganic materials 0.000 abstract description 2
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 2
- 150000004706 metal oxides Chemical class 0.000 abstract description 2
- 239000002086 nanomaterial Substances 0.000 abstract description 2
- 239000002135 nanosheet Substances 0.000 abstract description 2
- 239000002244 precipitate Substances 0.000 abstract description 2
- 230000035484 reaction time Effects 0.000 abstract description 2
- 238000001308 synthesis method Methods 0.000 abstract description 2
- 239000002699 waste material Substances 0.000 abstract description 2
- 239000011734 sodium Substances 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000013032 photocatalytic reaction Methods 0.000 description 5
- SFOQXWSZZPWNCL-UHFFFAOYSA-K bismuth;phosphate Chemical compound [Bi+3].[O-]P([O-])([O-])=O SFOQXWSZZPWNCL-UHFFFAOYSA-K 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- IKNAJTLCCWPIQD-UHFFFAOYSA-K cerium(3+);lanthanum(3+);neodymium(3+);oxygen(2-);phosphate Chemical compound [O-2].[La+3].[Ce+3].[Nd+3].[O-]P([O-])([O-])=O IKNAJTLCCWPIQD-UHFFFAOYSA-K 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052590 monazite Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 229940043267 rhodamine b Drugs 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/40—Organic compounds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
Abstract
本发明属于半导体光催化改性复合材料技术领域,尤其涉及一种WO3掺杂改性铋系光催化材料制备方法和应用,采用常温条件下超声振动等常用实验手段制备出WO3掺杂改性铋系光催化材料,反应时间较短,避免了高压设备带来的危害性,提高了实验过程的安全性能,降低了废液排放的有害性,并且制备的样品尺度均匀,具有较薄的纳米片层。本发明实现了常温常压制备,合成方法简单;本发明可以使多种金属离子同时沉淀,所制备的片层状纳米材料使得光催化性能提高50%;本发明制备得到的WO3改性BiPO4纳米金属氧化物纯度较高,无明显杂质,纯度可达99%以上;制备工艺简单、周期短、成本低,可以达到工业化生产的目的,同时可以在常温下制备,节约能源消耗。The invention belongs to the technical field of semiconductor photocatalytic modified composite materials, and in particular relates to a preparation method and application of a WO3 - doped modified bismuth - based photocatalytic material. The bismuth-based photocatalytic material has a short reaction time, avoids the hazards caused by high-voltage equipment, improves the safety performance of the experimental process, reduces the harmfulness of waste liquid discharge, and the prepared samples are uniform in size and have a thin nanosheets. The invention realizes the preparation at normal temperature and pressure, and the synthesis method is simple; the invention can simultaneously precipitate various metal ions, and the prepared lamellar nanomaterial can improve the photocatalytic performance by 50%; the WO 3 modified BiPO prepared by the invention The 4 nanometer metal oxide has high purity, no obvious impurities, and the purity can reach more than 99%; the preparation process is simple, the cycle is short, and the cost is low, which can achieve the purpose of industrial production, and can be prepared at room temperature, saving energy consumption.
Description
技术领域technical field
本发明属于半导体光催化改性复合材料技术领域,尤其涉及一种WO3掺杂改性铋系光催化材料制备方法和应用,具体为降解水体中甲基橙染料,用于解决环境污染和能源危机等方面。The invention belongs to the technical field of semiconductor photocatalytic modified composite materials, and in particular relates to a preparation method and application of a WO3 - doped modified bismuth-based photocatalytic material, in particular to the degradation of methyl orange dye in water, which is used to solve environmental pollution and energy crisis, etc.
背景技术Background technique
半导体光催化技术是上世纪兴起的一种高级的氧化技术。所谓光催化反应,其本质就是将太阳能高效的转化为化学能,这种半导体光催化技术在当前这个具有能源紧缺和环境污染等严重问题的时代具有重要意义。Semiconductor photocatalysis technology is an advanced oxidation technology that emerged in the last century. The essence of the so-called photocatalytic reaction is to convert solar energy into chemical energy efficiently. This semiconductor photocatalytic technology is of great significance in the current era of serious problems such as energy shortage and environmental pollution.
BiPO4是一种新型非金属含氧盐半导体光催化剂,2010年,潘成思等人首次报道了BiPO4在紫外光下的光催化活性BiPO4一般来说有三种不同的晶体结构,为单斜相、单斜相独居石和六方相,不同晶体结构的BiPO4的光催化性能差异很大。单斜相独居石BiPO4已经成为备受关注的新型光催化剂,潘成思等人曾用水热法制备了单斜相独居石BiPO4纳米棒,而六方相BiPO4人们一般是关注其发光性能。当物体中存在电子-空穴对时,而荧光就是由电子和空穴的复合产生的,所以一般的结论是荧光性能越好,光催化性能越差,因此六方相BiPO4由于其较弱的光催化性能在光催化方面被研究的很少。六方相晶体结构的磷酸铋中,PO4四面体的扭曲程度最小,所以产生的偶极矩最小,这就不利于电子-空穴的分离,不利于其进行光催化反应。BiPO 4 is a new type of non-metallic oxygen-containing salt semiconductor photocatalyst. In 2010, Pan Chengsi et al. reported the photocatalytic activity of BiPO 4 under ultraviolet light for the first time. BiPO 4 generally has three different crystal structures and is a monoclinic phase. , monoclinic monazite and hexagonal phases, the photocatalytic properties of BiPO 4 with different crystal structures are very different. Monoclinic monazite BiPO 4 has become a new type of photocatalyst that has attracted much attention. Pan Chengsi et al. have prepared monoclinic monazite BiPO 4 nanorods by hydrothermal method, while hexagonal BiPO 4 is generally concerned about its luminescent properties. When there are electron-hole pairs in the object, and fluorescence is generated by the recombination of electrons and holes, so the general conclusion is that the better the fluorescence performance, the worse the photocatalytic performance, so the hexagonal BiPO 4 due to its weaker The photocatalytic performance has been rarely studied in photocatalysis. Among the bismuth phosphate with hexagonal crystal structure, the PO 4 tetrahedron has the smallest degree of distortion, so the generated dipole moment is the smallest, which is not conducive to the separation of electrons and holes, and is not conducive to its photocatalytic reaction.
BiPO4是一种新型非金属含氧盐半导体光催化剂,六方相BiPO4一般来说光催化性能不是很好。本专利通过复合的方式对六方相BiPO4进行能带调控,将WO3与BiPO4进行复合,试图提高六方相BiPO4的光催化性能。BiPO 4 is a new type of non-metallic oxygen-containing salt semiconductor photocatalyst, and the photocatalytic performance of hexagonal BiPO 4 is generally not very good. In this patent, the energy band of hexagonal BiPO 4 is regulated by a composite method, and WO 3 is composited with BiPO 4 in an attempt to improve the photocatalytic performance of hexagonal BiPO 4 .
现有技术中存在一些问题:如陕西科技大学谈国强等人公开的发明专利:一种钨酸铋/磷酸铋异质结光催化剂及其制备方法和应用,该方法与本专利有着本质上的不同,对比例1中采用高压釜中加热180℃,从工业生产的角度来看,危险性及能耗均较高。此外还需在微波条件300℃进行反应0.5-1h,增大了工业生产的能耗和难度。There are some problems in the prior art: such as the invention patent disclosed by Tan Guoqiang et al. from Shaanxi University of Science and Technology: a bismuth tungstate/bismuth phosphate heterojunction photocatalyst and its preparation method and application, the method is essentially the same as this patent. In the comparative example 1, the autoclave was heated at 180°C. From the point of view of industrial production, the risk and energy consumption were high. In addition, the reaction needs to be carried out at 300°C under microwave conditions for 0.5-1 h, which increases the energy consumption and difficulty of industrial production.
又如河南师范大学孙建辉等人公开发明专利:一种铋掺杂氧化锡/磷酸铋复合光催化剂的制备方法。将Bi(NO3)3·5H2O溶解稀硝酸溶液中得到澄清透明溶液A,将Na2SnO3·4H2O溶于去离子水得到溶液B,在搅拌条件下将溶液B滴加到溶液A中得到溶液C,将Na2HPO4·12H2O溶于去离子水中得到溶液D,再在搅拌条件下将溶液D滴加到溶液C中,补加去离子水使得混合体系的总体积为30mL,将溶液装入50mL的高压反应釜中,置于180℃恒温烘箱中水热反应24h,待高压反应釜冷却至室温后将反应液离心,洗涤后置于60℃的恒温干燥箱中干燥12h制得铋掺杂氧化锡/磷酸铋复合光催化剂。该方法采用高温条件180℃条件长时间加热,不利于工业化进程。Another example is Henan Normal University Sun Jianhui and others published an invention patent: a preparation method of a bismuth-doped tin oxide/bismuth phosphate composite photocatalyst. Dissolve Bi(NO 3 ) 3 .5H 2 O in dilute nitric acid solution to obtain clear and transparent solution A, dissolve Na 2 SnO 3 .4H 2 O in deionized water to obtain solution B, and add solution B dropwise to the solution under stirring conditions. Solution C was obtained in solution A, Na 2 HPO 4 ·12H 2 O was dissolved in deionized water to obtain solution D, then solution D was added dropwise to solution C under stirring conditions, and deionized water was added to make the total mixture of the mixed system. The volume is 30mL, the solution is put into a 50mL autoclave, and placed in a constant temperature oven at 180°C for hydrothermal reaction for 24h. After the autoclave is cooled to room temperature, the reaction solution is centrifuged, washed and placed in a constant temperature drying oven at 60°C The bismuth-doped tin oxide/bismuth phosphate composite photocatalyst was prepared by drying in medium for 12 h. The method adopts high temperature conditions of 180°C for long-term heating, which is not conducive to the industrialization process.
甲基橙是水溶性的染料化合物,在工业上常用于纸张等的印染和着色,有时也用于制造墨水和为生物、细菌组织染色等方面,现实生活中经常使用,用量大并且排放的废水多。Methyl orange is a water-soluble dye compound. It is commonly used in the printing, dyeing and coloring of paper, etc. in industry. It is also used in the manufacture of ink and dyeing biological and bacterial tissues. It is often used in real life. many.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明提供了一种WO3改性BiPO4光催化剂的制备及其应用。该方法工艺简单、避免使用刺激性、难降解的原材料,不同与现有BiPO4制备改性用到的高压、高热方法,采用常温条件下超声振动等常用实验手段,反应时间较短,避免了高压设备带来的危害性,提高了实验过程的安全性能,降低了废液排放的有害性,并且制备的样品尺度均匀,具有较薄的纳米片层。In order to solve the above technical problems, the present invention provides the preparation and application of a WO 3 modified BiPO 4 photocatalyst. The method is simple in process, avoids the use of irritating and refractory raw materials, and is different from the high-pressure and high-heat methods used in the preparation and modification of BiPO 4. Common experimental methods such as ultrasonic vibration under normal temperature conditions are used, and the reaction time is short, avoiding the need for The hazards brought by high-voltage equipment improve the safety performance of the experimental process, reduce the harmfulness of waste liquid discharge, and the prepared samples are uniform in size and have thinner nanosheets.
具体技术方案如下:The specific technical solutions are as follows:
一种WO3改性BiPO4光催化剂的制备及其应用,具体包括如下步骤:The preparation and application of a WO 3 modified BiPO 4 photocatalyst specifically comprises the following steps:
(1)称取一定量的三氧化钨溶于200ml去离子水中,用磁力搅拌器在常温下充分搅拌至其完全溶解形成溶液A;(1) Weigh a certain amount of tungsten trioxide and dissolve it in 200ml of deionized water, fully stir with a magnetic stirrer at room temperature until it is completely dissolved to form solution A;
(2)称取一定量的磷酸二氢钠溶于50ml去离子水中,用磁力搅拌器在常温下充分搅拌至其完全溶解形成溶液B;(2) take by weighing a certain amount of sodium dihydrogen phosphate and dissolve in 50ml of deionized water, fully stir with a magnetic stirrer at normal temperature until it is completely dissolved to form solution B;
(3)称取一定量的硝酸铋溶于50ml乙二醇中,用磁力搅拌器在常温下充分搅拌至其完全溶解形成溶液C;(3) take by weighing a certain amount of bismuth nitrate and be dissolved in 50ml of ethylene glycol, fully stir until it is completely dissolved to form solution C with a magnetic stirrer at normal temperature;
(4)将溶液A、溶液B缓慢滴入溶液C中,加入一定量纳米Al2O3形成溶液D,然后将溶液D置于磁力搅拌器上在常温下搅拌2h,然后将溶液D进行超声30min;(4) Slowly drop solution A and solution B into solution C, add a certain amount of nano-Al 2 O 3 to form solution D, then place solution D on a magnetic stirrer and stir at room temperature for 2 hours, and then ultrasonically sonicate solution D 30min;
(5)将溶液D进行抽滤,在抽滤完成后对滤纸上的固体进行洗涤,先用去离子水洗涤2-3次,然后再用酒精洗涤2-3次;(5) carry out suction filtration with solution D, wash the solid on the filter paper after the suction filtration is completed, first wash 2-3 times with deionized water, and then wash with alcohol 2-3 times;
(6)将带有样品的滤纸放入干燥箱,在60-80℃烘干1-3h,然后将烘干后的固体研磨即可得到本实验所需的WO3改性BiPO4的光催化剂。(6) Put the filter paper with the sample into the drying box, dry it at 60-80 °C for 1-3 h, and then grind the dried solid to obtain the WO 3 modified BiPO 4 photocatalyst required in this experiment .
所述磁力搅拌器的搅拌转速为500r/min-800r/min。The stirring speed of the magnetic stirrer is 500r/min-800r/min.
所述WO3:Na2HPO4·12H2O:Bi(NO3)3·5H2O物质的量之比为x:1:1,其中0<x≤1;The ratio of the amount of the WO 3 : Na 2 HPO 4 ·12H 2 O:Bi(NO 3 ) 3 ·5H 2 O substance is x:1:1, wherein 0<x≤1;
所述纳米Al2O3物质的量为WO3物质的量的0.2-0.5倍;The amount of the nano-Al 2 O 3 substance is 0.2-0.5 times the amount of the WO 3 substance;
优选地,x=0.6时表现为最优的光催化性能。Preferably, x=0.6 exhibits the best photocatalytic performance.
一种WO3改性BiPO4光催化剂的应用,所述WO3改性BiPO4光催化剂可应用于降解水体中甲基橙染料,用于解决环境污染。An application of a WO 3 -modified BiPO 4 photocatalyst, the WO 3 -modified BiPO 4 photocatalyst can be applied to degrade methyl orange dye in a water body to solve environmental pollution.
与现有技术相比,本发明具有如下有益技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:
本发明实现了常温常压制备,合成方法简单;本发明可以使多种金属离子同时沉淀,所制备的棒状纳米材料使得光催化性能提高50%;本发明制备得到的WO3改性BiPO4纳米金属氧化物纯度较高,无明显杂质,纯度可达99%以上;制备工艺简单、周期短、成本低,可以达到工业化生产的目的,同时可以在常温下制备,节约能源消耗。The invention realizes the preparation at normal temperature and pressure, and the synthesis method is simple; the invention can simultaneously precipitate a variety of metal ions, and the prepared rod-shaped nanomaterial can improve the photocatalytic performance by 50%; the WO 3 modified BiPO 4 nanometer prepared by the invention The metal oxide has high purity, no obvious impurities, and the purity can reach more than 99%; the preparation process is simple, the cycle is short, and the cost is low, which can achieve the purpose of industrial production, and can be prepared at normal temperature, saving energy consumption.
附图说明Description of drawings
图1实施例1制备的复合光催化材料的扫描电镜图;The scanning electron microscope image of the composite photocatalytic material prepared by Fig. 1
图2实施例1制备的复合光催化材料对于甲基橙的光催化降解图;The photocatalytic degradation diagram of the composite photocatalytic material prepared by Fig. 2 Example 1 for methyl orange;
图3实施例2制备的复合光催化材料的扫描电镜图;The scanning electron microscope image of the composite photocatalytic material prepared by Fig. 3 embodiment 2;
图4实施例2制备的复合光催化材料对于甲基橙的光催化测试光谱图;The photocatalytic test spectrum of the composite photocatalytic material prepared in Fig. 4 embodiment 2 for methyl orange;
图5实施例1-4制备BiPO4/WO3对于甲基橙光催化反应一级反应动力学拟合图。Figure 5 Fitting diagram of the first-order reaction kinetics of the photocatalytic reaction of methyl orange for the preparation of BiPO 4 /WO 3 in Examples 1-4.
具体实施方式Detailed ways
下面结合具体实施例和附图对本发明进行详细说明,但本发明的保护范围不受具体实施例和附图所限。The present invention will be described in detail below with reference to the specific embodiments and the accompanying drawings, but the protection scope of the present invention is not limited by the specific embodiments and the accompanying drawings.
一种WO3改性BiPO4光催化剂的制备,该方法包括以下步骤。所述WO3与Bi(NO3)3物质的量之比为1:1。The preparation of a WO 3 modified BiPO 4 photocatalyst comprises the following steps. The ratio of the amount of WO 3 to Bi(NO 3 ) 3 is 1:1.
1、称取1mmol的三氧化钨(WO3)溶于200ml去离子水中,磁力搅拌30min,搅拌转速为700r/min,形成溶液A。1. Dissolve 1 mmol of tungsten trioxide (WO 3 ) in 200 ml of deionized water, stir magnetically for 30 min, and stir at a speed of 700 r/min to form solution A.
2、称取1mmol的磷酸二氢钠(Na2HPO4·12H2O)溶于50ml去离子水中,磁力搅拌30min,搅拌转速为700r/min,形成溶液B。2. Weigh 1 mmol of sodium dihydrogen phosphate (Na 2 HPO 4 ·12H 2 O) and dissolve it in 50 ml of deionized water, stir magnetically for 30 min at a stirring speed of 700 r/min to form solution B.
3、称取1mmol的硝酸铋(Bi(NO3)3·5H2O)溶于50ml乙二醇中,磁力搅拌30min,搅拌转速为700r/min,形成溶液C。3. Dissolve 1 mmol of bismuth nitrate (Bi(NO 3 ) 3 ·5H 2 O) in 50 ml of ethylene glycol, stir magnetically for 30 min at a stirring speed of 700 r/min to form solution C.
4、将溶液A、溶液B缓慢滴入溶液C中,加入0.2mmol纳米Al2O3形成溶液D,然后将溶液D置于磁力搅拌器上,磁力搅拌120min,搅拌转速为700r/min,然后将溶液D进行超声30min。4. Slowly drop solution A and solution B into solution C, add 0.2 mmol nano-Al 2 O 3 to form solution D, then place solution D on a magnetic stirrer, stir magnetically for 120 min, and stir at a rotational speed of 700 r/min, then Solution D was sonicated for 30 min.
5、将溶液D进行抽滤,在抽滤完成后对滤纸上的固体进行洗涤,先用去离子水洗涤2次,然后再用酒精洗涤2次。5. Perform suction filtration on solution D, and after the suction filtration is completed, wash the solid on the filter paper, first with deionized water twice, and then with alcohol twice.
6、将带有样品的滤纸放入干燥箱,在60℃烘干3h,然后将烘干后的固体研磨即可得到本实验所需的BiPO4/WO3样品。6. Put the filter paper with the sample into the drying box, dry it at 60°C for 3 hours, and then grind the dried solid to obtain the BiPO 4 /WO 3 sample required for this experiment.
样品的SEM如图1所示,从图1中可以看出,复合物其主要表现为BiPO4呈现棍棒状,WO3呈现层片状,层片状的WO3均匀的附着在棍棒状的BiPO4表面,这表示复合很成功,比表面积较大。将实施例1制备的BiPO4/WO3复合材料在可见光照射下对于甲基橙的光催化性能测试结果,表现为甲基橙浓度C/C0随时间变化的情况,见图2所示。从图2中可以看出,1:1复合后的BiPO4/WO3材料相比BiPO4单体和WO3单体表现出光催化降解活性。The SEM of the sample is shown in Figure 1. From Figure 1, it can be seen that the composite mainly shows that BiPO 4 is stick-shaped, WO 3 is lamellar, and the lamellar WO 3 is uniformly attached to the stick-shaped BiPO. 4 surface, which means that the compounding is successful and the specific surface area is large. The photocatalytic performance test results of the BiPO 4 /WO 3 composite prepared in Example 1 for methyl orange under visible light irradiation are shown as the change of methyl orange concentration C/C 0 with time, as shown in Figure 2. It can be seen from Figure 2 that the BiPO 4 /WO 3 material after 1:1 composite exhibits photocatalytic degradation activity compared with BiPO 4 monomer and WO 3 monomer.
将实施例1制备的Bi2O2CO3/WO3复合材料对于罗丹明B(RhB)的光催化测试光谱图,从图中可以很直接地观察到对于样品光催化性能的提升作用。The photocatalytic test spectrum of the Bi 2 O 2 CO 3 /WO 3 composite prepared in Example 1 for Rhodamine B (RhB) can directly observe the improvement of the photocatalytic performance of the sample.
实施例2。Example 2.
一种WO3改性BiPO4光催化剂的制备,该方法包括以下步骤。所述WO3与Bi(NO3)3物质的量之比为0.6:1。The preparation of a WO 3 modified BiPO 4 photocatalyst comprises the following steps. The ratio of the amount of WO 3 to Bi(NO 3 ) 3 is 0.6:1.
1、称取0.6mmol的三氧化钨(WO3)溶于200ml去离子水中,磁力搅拌30min,搅拌转速为800r/min,形成溶液A。1. Dissolve 0.6 mmol of tungsten trioxide (WO 3 ) in 200 ml of deionized water, stir magnetically for 30 min, and stir at a speed of 800 r/min to form solution A.
2、称取1mmol的磷酸二氢钠(Na2HPO4·12H2O)溶于50ml去离子水中,磁力搅拌30min,搅拌转速为800r/min,形成溶液B。2. Weigh 1 mmol of sodium dihydrogen phosphate (Na 2 HPO 4 ·12H 2 O) and dissolve it in 50 ml of deionized water, stir magnetically for 30 min at a stirring speed of 800 r/min to form solution B.
3、称取1mmol的硝酸铋(Bi(NO3)3·5H2O)溶于50ml乙二醇中,磁力搅拌30min,搅拌转速为800r/min,形成溶液C。3. Dissolve 1 mmol of bismuth nitrate (Bi(NO 3 ) 3 ·5H 2 O) in 50 ml of ethylene glycol, stir magnetically for 30 min, and stir at 800 r/min to form solution C.
4、将溶液A、溶液B缓慢滴入溶液C中,加入0.3mmol纳米Al2O3形成溶液D,然后将溶液D置于磁力搅拌器上,磁力搅拌120min,搅拌转速为800r/min,然后将溶液D进行超声30min。4. Slowly drop solution A and solution B into solution C, add 0.3 mmol nano-Al 2 O 3 to form solution D, then place solution D on a magnetic stirrer, stir magnetically for 120 min, and stir at a rotational speed of 800 r/min, then Solution D was sonicated for 30 min.
5、将溶液D进行抽滤,在抽滤完成后对滤纸上的固体进行洗涤,先用去离子水洗涤2次,然后再用酒精洗涤2次。5. Perform suction filtration on solution D, and after the suction filtration is completed, wash the solid on the filter paper, first with deionized water twice, and then with alcohol twice.
6、将带有样品的滤纸放入干燥箱,在80℃烘干2h,然后将烘干后的固体研磨即可得到本实验所需的BiPO4/WO3样品。6. Put the filter paper with the sample into the drying box, dry it at 80°C for 2 hours, and then grind the dried solid to obtain the BiPO 4 /WO 3 sample required for this experiment.
样品的SEM如图3所示,从图3中可以看出,复合物其主要表现为BiPO4呈现棍棒状,WO3呈现层片状,由于制备过程中纳米Al2O3的加入,抑制了WO3的团聚,使得分离后的WO3片层无法通过静电相互作用重新团聚,所以BiPO4晶粒在生长时发生了变化。从图中可以看出样品在放大20K倍的情况下两颗粒粒径已经达到纳米级,层片状的WO3的厚度大约为50nm,棍棒状的BiPO4直径大约为100nm,该方法制备的BiPO4/WO3复合物微观形貌完整,粒度均匀。The SEM of the sample is shown in Fig. 3. It can be seen from Fig. 3 that the composite mainly exhibits a stick-like shape of BiPO 4 and a lamellar shape of WO 3. Due to the addition of nano-Al 2 O 3 during the preparation process, it is inhibited. The agglomeration of WO 3 made the separated WO 3 sheets unable to re-agglomerate through electrostatic interaction, so the
将实施例2制备的BiPO4/WO3复合材料在可见光照射下对于甲基橙的光催化性能测试结果,表现为甲基橙浓度C/C0随时间变化的情况,见图3所示。从图3中可以看出,0.6:1复合后的BiPO4/WO3材料相比BiPO4单体和WO3单体表现出较强光催化降解活性,降解效率可达70%。The photocatalytic performance test results of the BiPO 4 /WO 3 composite prepared in Example 2 for methyl orange under visible light irradiation are shown as the change of methyl orange concentration C/C 0 with time, as shown in Figure 3. It can be seen from Figure 3 that the BiPO 4 /WO 3 material after 0.6:1 composite exhibits stronger photocatalytic degradation activity than BiPO 4 monomer and WO 3 monomer, and the degradation efficiency can reach 70%.
实施例3。Example 3.
一种WO3改性BiPO4光催化剂的制备,该方法包括以下步骤。所述WO3与Bi(NO3)3物质的量之比为0.8:1。The preparation of a WO 3 modified BiPO 4 photocatalyst comprises the following steps. The ratio of the amount of WO 3 to Bi(NO 3 ) 3 is 0.8:1.
1、称取0.8mmol的三氧化钨(WO3)溶于200ml去离子水中,磁力搅拌30min,搅拌转速为800r/min,形成溶液A。1. Dissolve 0.8 mmol of tungsten trioxide (WO 3 ) in 200 ml of deionized water, stir magnetically for 30 min, and stir at a speed of 800 r/min to form solution A.
2、称取1mmol的磷酸二氢钠(Na2HPO4·12H2O)溶于50ml去离子水中,磁力搅拌30min,搅拌转速为800r/min,形成溶液B。2. Weigh 1 mmol of sodium dihydrogen phosphate (Na 2 HPO 4 ·12H 2 O) and dissolve it in 50 ml of deionized water, stir magnetically for 30 min at a stirring speed of 800 r/min to form solution B.
3、称取1mmol的硝酸铋(Bi(NO3)3·5H2O)溶于50ml乙二醇中,磁力搅拌30min,搅拌转速为800r/min,形成溶液C。3. Dissolve 1 mmol of bismuth nitrate (Bi(NO 3 ) 3 ·5H 2 O) in 50 ml of ethylene glycol, stir magnetically for 30 min, and stir at 800 r/min to form solution C.
4、将溶液A、溶液B缓慢滴入溶液C中,加入0.32mmol纳米Al2O3形成溶液D,然后将溶液D置于磁力搅拌器上,磁力搅拌120min,搅拌转速为800r/min,然后将溶液D进行超声30min。4. Slowly drop solution A and solution B into solution C, add 0.32 mmol nano-Al2O3 to form solution D, then place solution D on a magnetic stirrer, stir magnetically for 120 min, and stir at a rotational speed of 800 r/min, then add solution D to Ultrasound was performed for 30 min.
5、将溶液D进行抽滤,在抽滤完成后对滤纸上的固体进行洗涤,先用去离子水洗涤3次,然后再用酒精洗涤3次。5. Perform suction filtration on solution D, and after the suction filtration is completed, wash the solid on the filter paper, first with deionized water for 3 times, and then with alcohol for 3 times.
6、将带有样品的滤纸放入干燥箱,在80℃烘干3h,然后将烘干后的固体研磨即可得到本实验所需的样品。6. Put the filter paper with the sample into the drying box, dry it at 80 ℃ for 3 hours, and then grind the dried solid to obtain the sample required for this experiment.
实施例4。Example 4.
一种WO3改性BiPO4光催化剂的制备,该方法包括以下步骤。所述WO3与Bi(NO3)3物质的量之比为0.4:1。The preparation of a WO 3 modified BiPO 4 photocatalyst comprises the following steps. The ratio of the amount of WO 3 to Bi(NO 3 ) 3 is 0.4:1.
1、称取0.4mmol的三氧化钨(WO3)溶于200ml去离子水中,磁力搅拌30min,搅拌转速为500r/min,形成溶液A。1. Dissolve 0.4 mmol of tungsten trioxide (WO 3 ) in 200 ml of deionized water, stir magnetically for 30 min, and stir at a speed of 500 r/min to form solution A.
2、称取1mmol的磷酸二氢钠(Na2HPO4·12H2O)溶于50ml去离子水中,磁力搅拌30min,搅拌转速为500r/min,形成溶液B。2. Weigh 1 mmol of sodium dihydrogen phosphate (Na 2 HPO 4 ·12H 2 O) and dissolve it in 50 ml of deionized water, stir magnetically for 30 min at a stirring speed of 500 r/min to form solution B.
3、称取1mmol的硝酸铋(Bi(NO3)3·5H2O)溶于50ml乙二醇中,磁力搅拌30min,搅拌转速为500r/min,形成溶液C。3. Dissolve 1 mmol of bismuth nitrate (Bi(NO 3 ) 3 ·5H 2 O) in 50 ml of ethylene glycol, stir magnetically for 30 min at a stirring speed of 500 r/min to form solution C.
4、将溶液A、溶液B缓慢滴入溶液C中,加入0.2mmol纳米Al2O3形成溶液D,然后将溶液D置于磁力搅拌器上,磁力搅拌120min,搅拌转速为500r/min,然后将溶液D进行超声30min。4. Slowly drop solution A and solution B into solution C, add 0.2 mmol nano-Al 2 O 3 to form solution D, then place solution D on a magnetic stirrer, stir magnetically for 120 min, and stir at a rotational speed of 500 r/min, then Solution D was sonicated for 30 min.
5、将溶液D进行抽滤,在抽滤完成后对滤纸上的固体进行洗涤,先用去离子水洗涤2次,然后再用酒精洗涤2次。5. Perform suction filtration on solution D, and after the suction filtration is completed, wash the solid on the filter paper, first with deionized water twice, and then with alcohol twice.
6、将带有样品的滤纸放入干燥箱,在70℃烘干1h,然后将烘干后的固体研磨即可得到本实验所需的样品。6. Put the filter paper with the sample into the drying box, dry it at 70°C for 1 hour, and then grind the dried solid to obtain the sample required for this experiment.
为了更好的研究BiPO4/WO3对于甲基橙的光化学反应,本专利将测试所得数据进行了一级反应动力学拟合,图5为实施例1、实施例2、实施例3、实施例4制备BiPO4/WO3对于甲基橙光催化反应一级反应动力学拟合图。所有图线拟合较为良好,误差均在可接受的范围内,证明光催化反应确实为一级反应。In order to better study the photochemical reaction of BiPO 4 /WO 3 to methyl orange, this patent performs first-order reaction kinetics fitting on the data obtained from the test. Figure 5 shows Example 1, Example 2, Example 3, and implementation Example 4 Preparation of BiPO 4 /WO 3 for the first-order kinetics fitting diagram of methyl orange photocatalytic reaction. All the graphs fit well, and the errors are within an acceptable range, proving that the photocatalytic reaction is indeed a first-order reaction.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910972397.3A CN110743584B (en) | 2019-10-14 | 2019-10-14 | WO (WO)3Modified BiPO4Preparation method and application of photocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910972397.3A CN110743584B (en) | 2019-10-14 | 2019-10-14 | WO (WO)3Modified BiPO4Preparation method and application of photocatalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110743584A true CN110743584A (en) | 2020-02-04 |
CN110743584B CN110743584B (en) | 2022-03-29 |
Family
ID=69278222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910972397.3A Active CN110743584B (en) | 2019-10-14 | 2019-10-14 | WO (WO)3Modified BiPO4Preparation method and application of photocatalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110743584B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114772570A (en) * | 2022-04-12 | 2022-07-22 | 中国石油大学(北京) | Small size bismuth phosphate and preparation method thereof, photocatalyst and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2899929A1 (en) * | 2010-09-07 | 2011-02-03 | Cristal Usa Inc. | Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof |
CN103896338A (en) * | 2014-03-24 | 2014-07-02 | 上海大学 | Method for preparing tungsten trioxide with regular hexagonal flaky morphology by using template method and application thereof |
CN105397102A (en) * | 2015-12-30 | 2016-03-16 | 河南科技大学 | Preparation method aluminum oxide coating tungsten powder |
CN105854912A (en) * | 2016-04-18 | 2016-08-17 | 河南师范大学 | A kind of BiPO4-WO3 composite photocatalyst and preparation method thereof |
CN107597155A (en) * | 2017-09-27 | 2018-01-19 | 大连民族大学 | A kind of one pot process has visible light-responded photochemical catalyst BiPO4/WO3The preparation method of nanometer sheet |
-
2019
- 2019-10-14 CN CN201910972397.3A patent/CN110743584B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2899929A1 (en) * | 2010-09-07 | 2011-02-03 | Cristal Usa Inc. | Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof |
CN103896338A (en) * | 2014-03-24 | 2014-07-02 | 上海大学 | Method for preparing tungsten trioxide with regular hexagonal flaky morphology by using template method and application thereof |
CN105397102A (en) * | 2015-12-30 | 2016-03-16 | 河南科技大学 | Preparation method aluminum oxide coating tungsten powder |
CN105854912A (en) * | 2016-04-18 | 2016-08-17 | 河南师范大学 | A kind of BiPO4-WO3 composite photocatalyst and preparation method thereof |
CN107597155A (en) * | 2017-09-27 | 2018-01-19 | 大连民族大学 | A kind of one pot process has visible light-responded photochemical catalyst BiPO4/WO3The preparation method of nanometer sheet |
Non-Patent Citations (1)
Title |
---|
XUANWEN LIU ET AL.: ""Adsorption and visible-light-driven photocatalytic properties of Ag3PO4/WO3 composites: A discussion of the mechanism"", 《CHEMICAL ENGINEERING JOURNAL》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114772570A (en) * | 2022-04-12 | 2022-07-22 | 中国石油大学(北京) | Small size bismuth phosphate and preparation method thereof, photocatalyst and application thereof |
CN114772570B (en) * | 2022-04-12 | 2023-11-17 | 中国石油大学(北京) | Small size bismuth phosphate and its preparation method and photocatalyst and its application |
Also Published As
Publication number | Publication date |
---|---|
CN110743584B (en) | 2022-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103480399B (en) | Micronano-structured and silver phosphate based composite visible light catalytic material and preparing method thereof | |
CN104148047B (en) | Macro preparation method for carbon doped zinc oxide-based visible-light catalyst | |
CN108262054A (en) | A kind of preparation method of silver vanadate/nitride porous carbon heterojunction composite photocatalyst | |
CN105797753A (en) | A kind of MoS2/TiO2 two-dimensional composite nano photocatalyst and its preparation method and application | |
CN105772039B (en) | A kind of (001) crystal face fluorine boron codope TiO with Lacking oxygen2The Preparation method and use of nanometer sheet | |
Zhou et al. | Fabrication of Ag 3 PO 4/GO/NiFe 2 O 4 composites with highly efficient and stable visible-light-driven photocatalytic degradation of rhodamine B | |
CN109277106A (en) | Ag/Ag3PO4Diatomite composite visible light photocatalyst and preparation method thereof | |
CN106994360A (en) | A kind of preparation method of Z configurations visible light catalytic decomposition water composite | |
CN107899592A (en) | A kind of magnetic recyclable sheet NiFe2O4The preparation method and application of/BiOI composite nano materials | |
CN106311220A (en) | A kind of Bi2MoO6/TiO2/RGO composite photocatalyst and preparation method thereof | |
CN104607216B (en) | One-step synthesis method of phosphorus-aluminum co-doped conductive zinc oxide nanocatalyst | |
CN104014355A (en) | Preparation method of visible-light catalyst | |
Zhang et al. | Fabrication of a visible-light In 2 S 3/BiPO 4 heterojunction with enhanced photocatalytic activity | |
CN115155629B (en) | Bi/BiPO 4 Preparation method and application of BiOCl nano-sheet composite material | |
CN111974419A (en) | A new method for preparing molybdenum disulfide/tungsten trioxide composite photocatalyst | |
CN106219606B (en) | A kind of nanometer of flower ball-shaped Ag3VO4Preparation method | |
CN114433066B (en) | Nano bismuth-oxide-based material and preparation method and application thereof | |
CN108543536A (en) | A kind of pucherite-calcium ferrite composite photo-catalyst, preparation method and applications | |
CN106955699B (en) | A kind of high-efficiency solar energy nitrogen fixation photocatalytic material and preparation method thereof | |
CN110743584A (en) | Preparation and application of a WO3 modified BiPO4 photocatalyst | |
CN107597093B (en) | A kind of nano-particles self assemble Chinese herbaceous peony shape La3+Adulterate ZnO and its preparation method and application | |
CN114377702A (en) | A kind of high-efficiency sewage treatment agent and its preparation method and application | |
CN111389421B (en) | Preparation method and application of two-dimensional layered bismuth oxychloride and titanium niobate composite photocatalytic material | |
CN105032394A (en) | Pucherite visible-light-driven photocatalyst, preparing method and application | |
CN116713477A (en) | Preparation method and application method of nano silver powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |