CN110588395B - 一种车载充电机控制电路、方法、充电机及电动汽车 - Google Patents

一种车载充电机控制电路、方法、充电机及电动汽车 Download PDF

Info

Publication number
CN110588395B
CN110588395B CN201910865819.7A CN201910865819A CN110588395B CN 110588395 B CN110588395 B CN 110588395B CN 201910865819 A CN201910865819 A CN 201910865819A CN 110588395 B CN110588395 B CN 110588395B
Authority
CN
China
Prior art keywords
conversion module
bridge llc
llc resonant
voltage
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910865819.7A
Other languages
English (en)
Other versions
CN110588395A (zh
Inventor
孔凡勇
赵洪振
李漫漫
于为珍
韩东
孙迎宾
马义勇
李宏伟
薛燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Jinxiang Power Supply Co of State Grid Shandong Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Jinxiang Power Supply Co of State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Jinxiang Power Supply Co of State Grid Shandong Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201910865819.7A priority Critical patent/CN110588395B/zh
Publication of CN110588395A publication Critical patent/CN110588395A/zh
Application granted granted Critical
Publication of CN110588395B publication Critical patent/CN110588395B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开提供了一种车载充电机控制电路、方法、充电机及电动汽车,包括滤波与整流模块、功率因数校正模块、半桥LLC谐振变换模块和主控模块,滤波与整流模块用于将输入的交流电信号滤除电磁干扰信号后转换为直流电信号;半桥LLC谐振变换模块用于使得开关管工作在零电压状态以实现充电机充电时的零电压开通;主控模块用于实时采集半桥LLC谐振变换模块的谐振电流过零点和半桥LLC谐振变换模块中点电压的电压过零点,通过比较两过零点的电位差,实现对半桥LLC谐振变换模的谐振网络输入阻抗的检测以保证半桥LLC谐振变换模块工作在感性区,无论是负载变化或是输入电压变化都能保证充电机工作在零电压工作区,进而降低充电机充电时的谐波污染。

Description

一种车载充电机控制电路、方法、充电机及电动汽车
技术领域
本公开涉及电动汽车技术领域,特别涉及一种车载充电机控制电路、方法、充电机及电动汽车。
背景技术
本部分的陈述仅仅是提供了与本公开相关的背景技术,并不必然构成现有技术。
面对新能源的加入,电网的安全、可靠性能受到了重大的考验,对于新能源加入电网的安全可靠性提出了严格要求,尤其是电动汽车车载充电机在对电动汽车进行充电时,容易产生较大的谐波污染,因此,一般在车载充电机中利用谐振变换器实现零电压启动和零电流关断,但是一般的谐振变换器均存在高输入电压时,关断电流过大的现象,以及宽输入电压时会存在导通损耗和开关损耗过高的问题,这些局限性限制了开关频率和变换器效率的进一步提高。
本公开发明人在研究中发现,半桥LLC谐振变换器可以在全负载范围和宽输入电压范围内实现ZVS,非常适合作为车载充电器的功率拓扑,但是,(1)目前常见的LLC谐振变换器多采用模拟控制,可拓展性差,通用性不佳;(2)目前的LLC谐振变换器无法保证无论是负载变化或是输入电压变化都能使得充电机工作在零电压工作区,实现新能源电动汽车在电网高效率充电的同时降低谐波污染;(3)目前的LLC谐振变换器无法进行实时的调节以保证半桥LLC谐振变换模块工作在感性区。
发明内容
为了解决现有技术的不足,本公开提供了一种车载充电机控制电路、方法、充电机及电动汽车,无论是负载变化或是输入电压变化都能使得充电机工作在零电压工作区,实现新能源电动汽车在电网高效率充电的同时降低谐波污染。
为了实现上述目的,本公开采用如下技术方案:
第一方面,本公开提供了一种电动汽车用车载充电机控制电路;
一种电动汽车用车载充电机控制电路,包括滤波与整流模块、功率因数校正模块、半桥LLC谐振变换模块和主控模块,所述滤波与整流模块用于将输入的交流电信号滤除电磁干扰信号后转换为直流电信号;
所述功率因数校正模块用于去除直流电信号中的谐波分量并通过半桥LLC谐振变换模块输出直流电压信号到负载,所述半桥LLC谐振变换模块用于使得开关管工作在零电压状态以实现充电机充电时的零电压开通;
所述主控模块用于实时采集半桥LLC谐振变换模块的输出电压,并根据采集到的输出电压数据输出PWM控制信号到半桥LLC谐振变换模,通过控制半桥LLC谐振变换模中开关管的导通与关断稳定半桥LLC谐振变换模的输出电压;
所述主控模块用于实时采集半桥LLC谐振变换模块的谐振电流过零点和半桥LLC谐振变换模块中点电压的电压过零点,通过比较两过零点的相位,实现对半桥LLC谐振变换模的谐振网络输入阻抗的检测,通过动态控制半桥LLC谐振变换模中开关管的导通与关断以保证半桥LLC谐振变换模块工作在感性区;
所述主控模块还用于实时采集电池的各项参数,并根据采集到的参数进行半桥LLC谐振变换模块的控制以实现保护充电、恒流充电、恒压充电和涓流充电的转换。
作为可能的一些实现方式,所述半桥LLC谐振变换模块包括半桥结构、谐振网络、变压器、整流和滤波电路,在变压器原边,包括第一开关管、第二开关管、谐振电感、励磁电感和谐振电容;
所述第一开关管和第二开关管分别包括第一寄生电容和第二寄生电容,变压器副边绕组采用中心抽头方式,整流和滤波电路包括第一二极管、第二二极管和第一滤波电容。
作为可能的一些实现方式,所述变压器的匝数比n的确定方式为:
Figure BDA0002201239160000031
其中,Vin_nom是谐振网络额定输入电压,Vo是半桥LLC谐振变换模块输出电压,Vd是整流管导通管压降。
作为进一步的限定,由变压器变比n确定半桥LLC谐振变换模块最大直流增益Gmax和最小直流增益Gmin,分别为:
Figure BDA0002201239160000032
Figure BDA0002201239160000033
作为更进一步的限定,半桥LLC谐振变换模块的归一化频率fn=f/fr,当fn=1时,半桥LLC谐振变换模块的工作频率f等于谐振频率fr,此时半桥LLC谐振变换模块的直流增益为1且不受负载影响,半桥LLC谐振变换模块原边开关管实现ZVS,副边整流管二极管实现ZCS,半桥LLC谐振变换模块工作在最优状态;
通过直流增益最大值Gmax确定半桥LLC谐振变换模块的最小工作频率fmin
Figure BDA0002201239160000041
通过直流增益最小值Gmin确定半桥LLC谐振变换模块的最大工作频率fmax
Figure BDA0002201239160000042
进一的,半桥LLC谐振变换模块的工作频率f的范围为:fmin<f<fmax
其中,k为电感系数比,所述电感系数比k的取值为1/3。
作为更进一步的限定,半桥LLC谐振变换模块工作于感性范围内所能取到的最大品质因数为:
Figure BDA0002201239160000043
为保证半桥LLC谐振变换模块在全负载范围内都可以工作于感性区,半桥LLC谐振变换模块的品质因数Q低于Qmax
进一步的,Q=(90%~95%)Qmax
作为更进一步的限定,谐振电感的取值为:
Figure BDA0002201239160000044
谐振电容的取值为:
Figure BDA0002201239160000045
励磁电感的取值为:
Figure BDA0002201239160000046
其中,Rac为等效负载电阻值。
第二方面,本公开提供了一种电动汽车用车载充电机的控制方法,利用本公开所述的控制电路,步骤如下:
电池连接到充电机后,检测待充电电池的电压,判断是否需要进行一段时间的保护充电以激活反应物质;
实时采集电池和半桥LLC谐振变换模块的各项参数,根据采集到的参数进行半桥LLC谐振变换模块的控制以实现恒流充电、恒压充电和涓流充电的转换;
进一步的,实时采集半桥LLC谐振变换模块的输出电压,并根据采集到的输出电压数据输出PWM控制信号到半桥LLC谐振变换模,通过控制半桥LLC谐振变换模中开关管的导通与关断稳定半桥LLC谐振变换模的输出电压;
进一步的,实时采集半桥LLC谐振变换模块的谐振电流过零点和半桥LLC谐振变换模块中点电压的电压过零点,通过比较两过零点的相位,实现对半桥LLC谐振变换模的谐振网络输入阻抗的检测,根据检测结果向半桥LLC谐振变换模块发出PWM控制信号以保证半桥LLC谐振变换模块中点电压的电压过零点相位超前于半桥LLC谐振变换模块的谐振电流过零点的相位以实现半桥LLC谐振变换模块工作在感性区。
第三方面,本公开提供了一种电动汽车用车载充电机,包括本公开所述的电动汽车用车载充电机控制电路。
第四方面,本公开提供了一种电动汽车,包括本公开所述的电动汽车用车载充电机控制电路;
第五方面,本公开提供了一种电动汽车,包括本公开所述的电动汽车用车载充电机。
与现有技术相比,本公开的有益效果是:
本公开所述的内容通过主控模块保证LLC谐振变换器无法进行实时的调节以保证半桥LLC谐振变换模块工作在感性区,进而使得无论是负载变化或是输入电压变化都能使得充电机工作在零电压工作区,实现新能源电动汽车在电网高效率充电的同时降低谐波污染。
本公开所述的内容通过设置主控模块,采集LLC谐振变换器和待充电电池的各项参数,实现对变换器的实时动态控制,能够实时的保证变换器的输出电压的稳定,解决了现有的LLC谐振变换器采用模拟控制时可拓展性差和通用性不佳的问题。
本公开所述的内容通过对LLC谐振变换模块的各个参数的有效设定和选择,保证了无论是负载变化或是输入电压变化都能使得充电机工作在零电压工作区,从而保证无论何种情况都能实现零电压启动和零电流关断。
附图说明
图1为本公开实施例1所述的车载充电机控制电路的结构示意图。
图2为本公开实施例1所述的LLC谐振变换模块结构示意图。
图3为本公开实施例1所述的在Q=0.5时LLC谐振变换模块在不同k值下的直流增益。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例1:
如图1所示,本公开实施例1提供了一种电动汽车用车载充电机控制电路,包括滤波与整流模块、功率因数校正模块、半桥LLC谐振变换模块和主控模块,所述滤波与整流模块用于将输入的交流电信号滤除电磁干扰信号后转换为直流电信号;
所述功率因数校正模块用于去除直流电信号中的谐波分量并通过半桥LLC谐振变换模块输出直流电压信号到负载,所述半桥LLC谐振变换模块用于使得开关管工作在零电压状态以实现充电机充电时的零电压开通;
所述主控模块用于实时采集半桥LLC谐振变换模块的输出电压,并根据采集到的输出电压数据输出PWM控制信号到半桥LLC谐振变换模,通过控制半桥LLC谐振变换模中开关管的导通与关断稳定半桥LLC谐振变换模的输出电压;
所述主控模块用于实时采集半桥LLC谐振变换模块的谐振电流过零点和半桥LLC谐振变换模块中点电压的电压过零点,通过比较两过零点的相位,实现对半桥LLC谐振变换模的谐振网络输入阻抗的检测,动态控制半桥LLC谐振变换模中开关管的导通与关断以保证半桥LLC谐振变换模块工作在感性区;
所述主控模块还用于实时采集电池的各项参数,并根据采集到的参数进行半桥LLC谐振变换模块的控制以实现保护充电、恒流充电、恒压充电和涓流充电的转换。
如图2所示,所述半桥LLC谐振变换模块包括半桥结构、谐振网络、变压器、整流和滤波电路,在变压器原边,包括第一开关管、第二开关管、谐振电感、励磁电感和谐振电容;
所述第一开关管和第二开关管分别包括第一寄生电容和第二寄生电容,变压器副边绕组采用中心抽头方式,整流和滤波电路包括第一二极管、第二二极管和第一滤波电容。
作为可能的一些实现方式,所述变压器的匝数比n的确定方式为:
Figure BDA0002201239160000081
其中,Vin_nom是谐振网络额定输入电压,Vo是半桥LLC谐振变换模块输出电压,Vd是整流管导通管压降。
作为进一步的限定,由变压器变比n确定半桥LLC谐振变换模块最大直流增益Gmax和最小直流增益Gmin,分别为:
Figure BDA0002201239160000082
Figure BDA0002201239160000083
半桥LLC谐振变换模块的归一化频率fn=f/fr,当fn=1时,半桥LLC谐振变换模块的工作频率f等于谐振频率fr,此时半桥LLC谐振变换模块的直流增益为1且不受负载影响,半桥LLC谐振变换模块原边开关管实现ZVS,副边整流管二极管实现ZCS,半桥LLC谐振变换模块工作在最优状态;
通过直流增益最大值Gmax确定半桥LLC谐振变换模块的最小工作频率fmin
Figure BDA0002201239160000084
通过直流增益最小值Gmin确定半桥LLC谐振变换模块的最大工作频率fmax
Figure BDA0002201239160000091
进一的,半桥LLC谐振变换模块的工作频率f的范围为:fmin<f<fmax
其中,k为电感系数比;当品质因数Q值不变,电感系数比k不同时,变换器直流增益随频率变化的特性,如图3所示,当k值变大时,变换器增益曲线变陡,变换器直流增益最大值变大,获得相同增益的频率变化范围越窄,这意味着变换器调节能力增强,但同样也意味着调节精度难以保证。在这种情况下,假设谐振电感Lr确定,励磁电感Lm的值变小。当励磁电感Lm不参与谐振时,Lm被输出电压箱位,谐振电感中的电流im=nV0/Lm会增大,励磁电感Lm上的损耗增加,变换器整体效率会因之降低。而且,当k值增大时,对磁性元件的磁集成工艺要求更高。反之,当k值变小时,变换器直流增益最大值变小,变换器增益曲线变缓,获得相同增益的频率变化范围越宽,变换器的调节能力下降。当输入电压较低时,变换器电压增益方面的要求可能无法满足。综上分析,k值的选取不宜过大,但也不能选择太小,在本实施例的设计中,k值选取为1/3。
由品质因数Q的定义可知,通过品质因数Q可以反映变换器所接负载的变化,负载越重,品质因数越大,所以对品质因数Q选取的讨论,就是对负载变化的情况下变换器工作状态的讨论。当电感系数比k确定时,相同频率时品质因数Q越大,直流增益越低,变换器工作于感性区有一个最大品质因数Qmax,当品质因数大于此值时,变换器就工作于容性区,在该工作区域内,开关管无法实现ZVS;
根据以上分析,要使变换器在全负载范围内实现ZVS,就要保证变换器满足实际需要的最大增益时的品质因数Q小于Qmax,根据变换器最低电压输入和满载时的最大增益Gmax求得变换器最大增益落在容性区和感性区分界线上的最小归一化频率:
Figure BDA0002201239160000101
半桥LLC谐振变换模块工作于感性范围内所能取到的最大品质因数为:
Figure BDA0002201239160000102
为保证半桥LLC谐振变换模块在全负载范围内都可以工作于感性区,半桥LLC谐振变换模块的品质因数Q低于Qmax
进一步的,Q=(90%~95%)Qmax
谐振电感的取值为:
Figure BDA0002201239160000103
谐振电容的取值为:
Figure BDA0002201239160000104
励磁电感的取值为:
Figure BDA0002201239160000105
其中,Rac为等效负载电阻值。
本实施例所述的内容通过对LLC谐振变换器的各个参数的有效设定和选择,保证了无论是负载变化或是输入电压变化都能使得充电机工作在零电压工作区,从而保证无论何种情况都能实现零电压启动和零电流关断。
实施例2:
本公开实施例2提供了一种电动汽车用车载充电机的控制方法,利用本公开实施例1所述的控制电路,步骤如下:
电池连接到充电机后,检测待充电电池的电压,判断是否需要进行一段时间的保护充电以激活反应物质;
实时采集电池和半桥LLC谐振变换模块的各项参数,根据采集到的参数进行半桥LLC谐振变换模块的控制以实现恒流充电、恒压充电和涓流充电的转换;
进一步的,实时采集半桥LLC谐振变换模块的输出电压,并根据采集到的输出电压数据输出PWM控制信号到半桥LLC谐振变换模,通过控制半桥LLC谐振变换模中开关管的导通与关断稳定半桥LLC谐振变换模的输出电压;
进一步的,实时采集半桥LLC谐振变换模块的谐振电流过零点和半桥LLC谐振变换模块中点电压的电压过零点,通过比较两过零点的相位,实现对半桥LLC谐振变换模的谐振网络输入阻抗的检测,根据检测结果向半桥LLC谐振变换模块发出PWM控制信号以保证半桥LLC谐振变换模块中点电压的电压过零点相位超前于半桥LLC谐振变换模块的谐振电流过零点的相位以实现半桥LLC谐振变换模块工作在感性区。
实施例3:
本公开实施例3提供了一种电动汽车用车载充电机,包括本公开所述的电动汽车用车载充电机控制电路。
实施例4:
本公开实施例4提供了一种电动汽车,包括本公开所述的电动汽车用车载充电机控制电路;
实施例5:
本公开实施例5提供了一种电动汽车,包括本公开所述的电动汽车用车载充电机。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

1.一种电动汽车用车载充电机控制电路,其特征在于,包括滤波与整流模块、功率因数校正模块、半桥LLC谐振变换模块和主控模块,所述滤波与整流模块用于将输入的交流电信号滤除电磁干扰信号后转换为直流电信号;
所述功率因数校正模块用于去除直流电信号中的谐波分量并通过半桥LLC谐振变换模块输出直流电压信号到负载,所述半桥LLC谐振变换模块用于使得开关管工作在零电压状态以实现充电机充电时的零电压开通;
所述主控模块用于实时采集半桥LLC谐振变换模块的输出电压,并根据采集到的输出电压数据输出PWM控制信号到半桥LLC谐振变换模块,通过控制半桥LLC谐振变换模块中开关管的导通与关断稳定半桥LLC谐振变换模块的输出电压;
所述主控模块用于实时采集半桥LLC谐振变换模块的谐振电流过零点和半桥LLC谐振变换模块中点电压的电压过零点,通过比较两过零点的相位,实现对半桥LLC谐振变换模块的谐振网络输入阻抗的检测以保证半桥LLC谐振变换模块工作在感性区;
所述主控模块还用于实时采集电池的各项参数,并根据采集到的参数进行半桥LLC谐振变换模块的控制以实现保护充电、恒流充电、恒压充电和涓流充电的转换;
半桥LLC谐振变换模块的归一化频率fn=f/fr,当fn=1时,半桥LLC谐振变换模块的工作频率f等于谐振频率fr,此时半桥LLC谐振变换模块的直流增益为1且不受负载影响,半桥LLC谐振变换模块原边开关管实现ZVS,副边整流管二极管实现ZCS,半桥LLC谐振变换模块工作在最优状态;
通过直流增益最大值Gmax确定半桥LLC谐振变换模块的最小工作频率fmin
Figure FDA0002677940220000011
通过直流增益最小值Gmin确定半桥LLC谐振变换模块的最大工作频率fmax
Figure FDA0002677940220000012
进一步的,半桥LLC谐振变换模块的工作频率f的范围为:fmin<f<fmax
其中,k为电感系数比。
2.如权利要求1所述的电动汽车用车载充电机控制电路,其特征在于,所述半桥LLC谐振变换模块包括半桥结构、谐振网络、变压器、整流和滤波电路,在变压器原边,包括第一开关管、第二开关管、谐振电感、励磁电感和谐振电容;
所述第一开关管和第二开关管分别包括第一寄生电容和第二寄生电容,变压器副边绕组采用中心抽头方式,整流和滤波电路包括第一二极管、第二二极管和第一滤波电容。
3.如权利要求2所述的电动汽车用车载充电机控制电路,其特征在于,所述变压器的匝数比n的确定方式为:
Figure FDA0002677940220000021
其中,Vin_nom是谐振网络额定输入电压,Vo是半桥LLC谐振变换模块输出电压,Vd是整流管导通管压降。
4.如权利要求3所述的电动汽车用车载充电机控制电路,其特征在于,由变压器的匝数比n确定半桥LLC谐振变换模块最大直流增益Gmax和最小直流增益Gmin,分别为:
Figure FDA0002677940220000022
Figure FDA0002677940220000025
5.如权利要求4所述的电动汽车用车载充电机控制电路,其特征在于,所述电感系数比k的取值为1/3。
6.如权利要求5所述的电动汽车用车载充电机控制电路,其特征在于,半桥LLC谐振变换模块工作于感性范围内所能取到的最大品质因数为:
Figure FDA0002677940220000023
为保证半桥LLC谐振变换模块在全负载范围内都可以工作于感性区,半桥LLC谐振变换模块的品质因数Q低于Qmax
进一步的,Q=(90%~95%)Qmax
7.如权利要求5所述的电动汽车用车载充电机控制电路,其特征在于,
谐振电感的取值为:
Figure FDA0002677940220000024
谐振电容的取值为:
Figure FDA0002677940220000031
励磁电感的取值为:
Figure FDA0002677940220000032
其中,Rac为等效负载电阻值。
8.一种电动汽车用车载充电机的控制方法,其特征在于,利用权利要求1-7任一项所述的控制电路,步骤如下:
电池连接到充电机后,检测待充电电池的电压,判断是否需要进行一段时间的保护充电以激活反应物质;
实时采集电池和半桥LLC谐振变换模块的各项参数,并根据采集到的参数进行半桥LLC谐振变换模块的控制以实现保护充电、恒流充电、恒压充电和涓流充电的转换;
进一步的,实时采集半桥LLC谐振变换模块的输出电压,并根据采集到的输出电压数据输出PWM控制信号到半桥LLC谐振变换模块,通过控制半桥LLC谐振变换模块中开关管的导通与关断稳定半桥LLC谐振变换模块的输出电压;
进一步的,实时采集半桥LLC谐振变换模块的谐振电流过零点和半桥LLC谐振变换模块中点电压的电压过零点,通过比较两过零点的相位,实现对半桥LLC谐振变换模块的谐振网络输入阻抗的检测,根据检测结果向半桥LLC谐振变换模块发出PWM控制信号以保证半桥LLC谐振变换模块中点电压的电压过零点相位超前于半桥LLC谐振变换模块的谐振电流过零点的相位以实现半桥LLC谐振变换模块工作在感性区。
9.一种电动汽车用车载充电机,其特征在于,包括权利要求1-7任一项所述的电动汽车用车载充电机控制电路。
10.一种电动汽车,包括权利要求1-7任一项所述的电动汽车用车载充电机控制电路;
或,包括权利要求9所述的电动汽车用车载充电机。
CN201910865819.7A 2019-09-09 2019-09-09 一种车载充电机控制电路、方法、充电机及电动汽车 Active CN110588395B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910865819.7A CN110588395B (zh) 2019-09-09 2019-09-09 一种车载充电机控制电路、方法、充电机及电动汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910865819.7A CN110588395B (zh) 2019-09-09 2019-09-09 一种车载充电机控制电路、方法、充电机及电动汽车

Publications (2)

Publication Number Publication Date
CN110588395A CN110588395A (zh) 2019-12-20
CN110588395B true CN110588395B (zh) 2021-01-12

Family

ID=68859217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910865819.7A Active CN110588395B (zh) 2019-09-09 2019-09-09 一种车载充电机控制电路、方法、充电机及电动汽车

Country Status (1)

Country Link
CN (1) CN110588395B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112572193B (zh) * 2019-09-29 2022-07-15 比亚迪股份有限公司 车载充电***及具有其的车辆
CN111409482B (zh) * 2020-03-30 2023-01-31 上海电气集团股份有限公司 车载充电机和电机控制器的集成电路、电动汽车
CN112350299A (zh) * 2020-10-23 2021-02-09 苏州浪潮智能科技有限公司 一种电子设备及其供电单元
CN112467993B (zh) * 2020-11-30 2022-01-11 北京鼎汉技术集团股份有限公司 直流电源纹波控制方法、装置、***、计算机设备、介质
CN113452254B (zh) * 2021-05-27 2023-03-31 华为数字能源技术有限公司 谐振变换***和控制方法
CN113991815A (zh) * 2021-10-29 2022-01-28 哈尔滨理工大学 多端口分散式电动汽车充电组群的充电***及方法
CN114701373B (zh) * 2022-06-07 2022-09-02 合肥有感科技有限责任公司 无线充电控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010000010A1 (en) * 2008-07-02 2010-01-07 Setec Pty Ltd Resonant power converter
CN204887510U (zh) * 2015-06-25 2015-12-16 九阳股份有限公司 一种电磁线盘的加热控制电路及包含该电路的电磁炉
CN205753505U (zh) * 2016-05-11 2016-11-30 谢方清 一种谐振软开关充电装置
CN106452090A (zh) * 2016-11-28 2017-02-22 福州大学 一种半桥llc谐振变换器的闭环控制***及控制方法
CN207705877U (zh) * 2018-01-25 2018-08-07 辽宁工业大学 一种高效率电动汽车车载充电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288230B1 (ko) * 2011-12-23 2013-07-24 명지대학교 산학협력단 전기 차량용 배터리 충전 장치
CN206155207U (zh) * 2016-10-25 2017-05-10 深圳欣锐科技股份有限公司 一种车载充电机和直流变换器集成控制器电路
US20180191168A1 (en) * 2017-01-04 2018-07-05 National Instruments Corporation Parallel Interleaved Multiphase LLC Current Sharing Control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010000010A1 (en) * 2008-07-02 2010-01-07 Setec Pty Ltd Resonant power converter
CN204887510U (zh) * 2015-06-25 2015-12-16 九阳股份有限公司 一种电磁线盘的加热控制电路及包含该电路的电磁炉
CN205753505U (zh) * 2016-05-11 2016-11-30 谢方清 一种谐振软开关充电装置
CN106452090A (zh) * 2016-11-28 2017-02-22 福州大学 一种半桥llc谐振变换器的闭环控制***及控制方法
CN207705877U (zh) * 2018-01-25 2018-08-07 辽宁工业大学 一种高效率电动汽车车载充电机

Also Published As

Publication number Publication date
CN110588395A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
CN110588395B (zh) 一种车载充电机控制电路、方法、充电机及电动汽车
CN110936827B (zh) 无线充电***、无线充电控制方法及汽车无线充电装置
JP4232845B1 (ja) 直流変換装置
CN104158400A (zh) 一种模块化高压供电电路
KR101288230B1 (ko) 전기 차량용 배터리 충전 장치
EP3050201B1 (en) Electric vehicle battery charger comprising a pfc circuit
CN108964469B (zh) 一种并串联结构的全桥双llc谐振变换器
CN104467443A (zh) 基于llc拓扑的超宽输出电压范围充电机及控制方法
JPH10248265A (ja) 力率改善回路
KR102453825B1 (ko) 직류-직류 컨버터
Chen et al. LCLC resonant converter for hold up mode operation
WO2024124950A1 (zh) 适用于宽范围输出的电源电路、装置、***及控制方法
CN110149052B (zh) 一种用于电池充电的谐振电路拓扑结构
JP2002191174A (ja) 電源装置
CN111600366B (zh) 车辆充电机软启动方法
CN212033990U (zh) 一种单相lc串联限流电路
CN212033991U (zh) 一种三相lc串联限流电路
CN111262448B (zh) 全桥llc直流充电装置及其设计方法
US11557956B2 (en) Power conversion device and method for converting power from a power supply
Cao et al. Design optimization of LLC converter for battery charger with wide output voltage range
CN114503393A (zh) 一种充电机电路
CN112994264A (zh) 无线电能传输***
Reddy et al. Modified full bridge dual inductive coupling resonant converter for electric vehicle battery charging applications
Sandeep et al. Soft-Switching Bridge-less Ćuk Converter based EV Charger for 2/3-Wheeler
CN110768389A (zh) 一种无线充电***及其频率跟踪控制方法、装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant