CN110586181A - 室温固相研磨法制备的HCOOBiO光催化剂及其方法 - Google Patents

室温固相研磨法制备的HCOOBiO光催化剂及其方法 Download PDF

Info

Publication number
CN110586181A
CN110586181A CN201810606090.7A CN201810606090A CN110586181A CN 110586181 A CN110586181 A CN 110586181A CN 201810606090 A CN201810606090 A CN 201810606090A CN 110586181 A CN110586181 A CN 110586181A
Authority
CN
China
Prior art keywords
hcoobio
grinding
bismuth
oxyformate
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810606090.7A
Other languages
English (en)
Inventor
韩巧凤
苏圣恒
刘伟琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201810606090.7A priority Critical patent/CN110586181A/zh
Publication of CN110586181A publication Critical patent/CN110586181A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种室温研磨制备的HCOOBiO光催化剂及其方法,其步骤为:将五水硝酸铋与甲酸钠固体粉末置于研钵中,常温下研磨,反应结束洗涤后即得圆片状在可见光下具有光催化性能的甲酸氧铋纳米晶;将所述甲酸氧铋纳米晶直接加入碘化钾继续研磨,反应结束后洗涤即得改性的甲酸氧铋。未掺杂的甲酸氧铋具有很好的结晶度,掺杂后的甲酸氧铋在降解模拟污染物罗丹明B时具有很好效果,表明其在环境污染治理方面具有良好的应用前景。

Description

室温固相研磨法制备的HCOOBiO光催化剂及其方法
技术领域
本发明涉及一种室温研磨制备的HCOOBiO光催化剂及其方法,属于无机纳米材料制备领域。
背景技术
随着环境污染问题的日益严重,研究光催化剂降解治理环境污染成为愈来愈火热的课题。近年来,Bi基半导体光催化剂受到更多的关注,如BiVO4,Bi2WO6等,Bi的氧化物具有[Bi2O2]2+层状结构,使其可自组装成不同形貌。其中BiOX(X=Cl,Br,I),Bi2O3,Bi2O2CO3等被较多报道,然而,关于甲酸氧铋(HCOOBiO)的合成研究相对不足。由于[Bi2O2]2+是由双层的羧基离子组成的沸石层状结构,因此类似于由[Bi2O2]2+组成的HCOOBiO结构也为层状结构,类似于Sillen系材料,并且已发现其在光催化降解染料方面具有较好的性能。
甲酸氧铋具有良好的紫外光催化性能,Zhang等人采用以硝酸铋为原料,DMF作为反应物,水作为溶剂,在120℃下水热制得细棒状HCOOBiO;Xiong等人以甲酸钠及硝酸铋为原料,分别以甘露醇、EG、DEG、TEG为溶剂在150℃下水热制得HCOOBiO,所制得HCOOBiO均为纳米片组装形成的花状结构。
而花状及其他形貌的甲酸氧铋只在紫外光下有光催化效果,为了提高其光催化响应范围,我们采用研磨法合成了花状甲酸氧铋,使其在可见光范围内(390-780nm)也有响应。
发明内容
本发明的目的在于提供一种独特形貌的HCOOBiO光催化剂及其制备方法。
本发明的另一目的是提供一种基于HCOOBiO的可见光催化组合物及其制备方法。
实现本发明目的的技术解决方案为:一种独特形貌的HCOOBiO光催化剂,所述HCOOBiO为圆片状。
优选的,所述的HCOOBiO在可见光下具有光催化性能。
优选的,所述的HCOOBiO通过研磨法制备。
利用固相研磨法制备上述具有独特形貌的HCOOBiO光催化剂的方法,包括以下步骤:
步骤一:将Bi(NO3)3·5H2O与HCOONa置于研钵中研磨;
步骤二:反应结束后洗涤、干燥即得圆片状HCOOBiO。
优选的,Bi(NO3)3·5H2O与HCOONa的摩尔比为1:2至1:10,更优选为1:5
优选的,研磨时间为不少于30min。
一种可见光催化组合物,将圆片状的HCOOBiO与KI通过研磨法制得。
上述可见光催化组合物的制备方法,包括如下步骤:
步骤一:将Bi(NO3)3·5H2O与HCOONa置于研钵中研磨;
步骤二:加入KI继续研磨;
步骤三:反应结束后洗涤、干燥即得光催化组合物。
优选的,步骤一和步骤二中的研磨时间均不少于30min。
优选的,Bi(NO3)3·5H2O与HCOONa与KI三者的摩尔比为1:5:0.2。
上述HCOOBiO光催化剂或可见光催化组合物在降解废水中的有机污染物中的应用,优选的,有机污染物为罗丹明B。
与现有技术相比,本发明有以下显著优点:
1、方法简单,实验周期短,节约时间。无需加入任何模板剂,仅使用五水硝酸铋及甲酸钠两种原料得到了HCOOBiO纳米晶。
2、所制得的HCOOBiO纳米晶为圆片状。
3、该纳米晶经KI掺杂改性后对罗丹明B(Rh B)表现出优异的可见光催化降解性能,有望在工业废水治理领域具有良好的应用。
附图说明
图1为本发明制备圆片状HCOOBiO的流程示意图。
图2为本发明所得HCOOBiO的透射电镜图片。
图3为现有技术所述的细棒状HCOOBiO透射电镜图片。
图4为本发明所得HCOOBiO掺杂0.2mmol KI的样品透射电镜图片。
图5为本发明所得HCOOBiO及其掺杂不同含量KI后的样品对10mg/L罗丹明B的降解率图。
图6为实施例1(Bi(NO3)3·5H2O与HCOONa摩尔比为1:5,研磨时间为1小时)所得样品XRD谱图。
图7为实施例2(Bi(NO3)3·5H2O与HCOONa摩尔比为1:5,研磨0.5小时后加入0.2mmolKI继续研磨0.5小时)所得样品XRD谱图。
图8为对比例1(Bi(NO3)3·5H2O与HCOONa摩尔比为1:5,研磨时间为0.5小时)所得样品XRD谱图。
图9为对比例2(Bi(NO3)3·5H2O与HCOONa摩尔比为1:10,研磨时间为1小时)所得样品XRD谱图。
图10为对比例6(Bi(NO3)3·5H2O与HCOONa摩尔比为1:5,研磨0.5小时后加入1mmolKI继续研磨0.5小时)所得样品XRD谱图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
结合图1,本发明利用研磨法制备具有独特形貌的改性HCOOBiO催化剂的方法,
其特征包括以下步骤:
步骤一:将Bi(NO3)3·5H2O与HCOONa置于研钵中研磨;
步骤二:研磨一定时间后直接加入KI继续研磨;
步骤三:反应结束后洗涤即得改性HCOOBiO。
下面结合实施例、对比例和附图对本发明做进一步详细的说明:
实施例1:
步骤一:将1mmol Bi(NO3)3·5H2O与5mmol HCOONa置于研钵中研磨1h;
步骤二:反应结束后洗涤即得圆片状HCOOBiO。
所得产物透射电镜图片如图2所示,为圆片状,有团聚现象。图4显示其对罗丹明B的降解效果,可以看出有效果但不理想。图8为其XRD谱图,谱图显示产物结晶度较好,但存在少量杂质,经对比杂质为碱式硝酸铋。做为对比,图3为文献中报道的细棒状HCOOBiO透射电镜图片,其只在紫外光下有响应。
实施例2:
步骤一:将1mmol Bi(NO3)3·5H2O与5mmol HCOONa置于研钵中研磨;
步骤二:研磨0.5h后直接加入0.2mmol KI继续研磨0.5h;
步骤三:反应结束后洗涤即得改性HCOOBiO。
所得产物透射电镜如图4所示,还是圆片状,但颗粒体积变小,团聚加重。图5显示其对罗丹明B的降解效果,可看出效果较未掺杂的样品明显增强,两个小时内对罗丹明B的降解率达98%。图9为其XRD谱图,谱图显示掺杂后结晶度下降,但杂质消失。
对比例1:
步骤一:将1mmol Bi(NO3)3·5H2O与5mmol HCOONa置于研钵中研磨0.5h;
步骤二:反应结束后洗涤即得圆片状HCOOBiO。
所得产物XRD谱图如图6所示,可以看出结晶度下降,而杂质依旧存在。
对比例2:
步骤一:将1mmol Bi(NO3)3·5H2O与10mmol HCOONa置于研钵中研磨1h;
步骤二:反应结束后洗涤即得圆片状HCOOBiO。
所得产物XRD谱图如图7所示,谱图显示结晶度更差,杂质也消除。
对比例3:
步骤一:将1mmol Bi(NO3)3·5H2O与5mmol HCOONa置于研钵中研磨;
步骤二:研磨0.5h后直接加入0.1mmol KI继续研磨0.5h;
步骤三:反应结束后洗涤即得改性HCOOBiO。
所得产物对罗丹明B的降解效果如图5所示,效果比实施例1明显要好,但差于实施例2。
对比例4:
步骤一:将1mmol Bi(NO3)3·5H2O与5mmol HCOONa置于研钵中研磨;
步骤二:研磨0.5h后直接加入0.3mmol KI继续研磨0.5h;
步骤三:反应结束后洗涤即得改性HCOOBiO。
所得产物对罗丹明B的降解效果如图5所示,效果与实施例2接近。
对比例5:
步骤一:将1mmol Bi(NO3)3·5H2O与5mmol HCOONa置于研钵中研磨;
步骤二:研磨0.5h后直接加入0.5mmol KI继续研磨0.5h;
步骤三:反应结束后洗涤即得改性HCOOBiO。
所得产物对罗丹明B的降解效果如图5所示,效果与实施例2接近。
对比例6:
步骤一:将1mmol Bi(NO3)3·5H2O与5mmol HCOONa置于研钵中研磨;
步骤二:研磨0.5h后直接加入1.0mmol KI继续研磨0.5h;
步骤三:反应结束后洗涤即得改性HCOOBiO。
所得产物对罗丹明B的降解效果如图5所示,效果与实施例2差不多,不过前期效果好于实施例2。其XRD谱图如图10所示,经对比,所得产物完全变成BiOI。

Claims (10)

1.一种独特形貌的HCOOBiO光催化剂,其特征在于,所述HCOOBiO为圆片状。
2.如权利要求1所述的HCOOBiO光催化剂,其特征在于,所述的HCOOBiO在可见光下具有光催化性能。
3.如权利要求1所述的HCOOBiO光催化剂,其特征在于,所述的HCOOBiO通过研磨法制备。
4.利用固相研磨法制备如权利要求1所述的独特形貌的HCOOBiO光催化剂的方法,包括以下步骤:
步骤一:将Bi(NO3)3·5H2O与HCOONa置于研钵中研磨;
步骤二:反应结束后洗涤、干燥即得圆片状HCOOBiO。
5.如权利要求4所述的方法,其特征在于,Bi(NO3)3·5H2O与HCOONa的摩尔比为1:2至1:10,更优选为1:5。
6.如权利要求4所述的方法,其特征在于,研磨时间为不少于30min。
7.一种可见光催化组合物,其特征在于,将如权利要求1-3任一所述的HCOOBiO与KI按摩尔比1:0.2混合后通过研磨法制得所述组合物。
8.如权利要求7所述的可见光催化组合物的制备方法,包括如下步骤:
步骤一:将Bi(NO3)3·5H2O与HCOONa置于研钵中研磨;
步骤二:加入KI继续研磨;
步骤三:反应结束后洗涤、干燥即得光催化组合物。
9.如权利要求8所述的方法,其特征在于,步骤一和步骤二中的研磨时间均不少于30min;Bi(NO3)3·5H2O与HCOONa与KI三者的摩尔比为1:5:0.2。
10.如权利要求1-3任一所述的HCOOBiO光催化剂或如权利要求7所述的可见光催化组合物在降解废水中的有机污染物中的应用,优选的,有机污染物为罗丹明B。
CN201810606090.7A 2018-06-13 2018-06-13 室温固相研磨法制备的HCOOBiO光催化剂及其方法 Pending CN110586181A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810606090.7A CN110586181A (zh) 2018-06-13 2018-06-13 室温固相研磨法制备的HCOOBiO光催化剂及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810606090.7A CN110586181A (zh) 2018-06-13 2018-06-13 室温固相研磨法制备的HCOOBiO光催化剂及其方法

Publications (1)

Publication Number Publication Date
CN110586181A true CN110586181A (zh) 2019-12-20

Family

ID=68849062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810606090.7A Pending CN110586181A (zh) 2018-06-13 2018-06-13 室温固相研磨法制备的HCOOBiO光催化剂及其方法

Country Status (1)

Country Link
CN (1) CN110586181A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112121857A (zh) * 2020-10-14 2020-12-25 扬州工业职业技术学院 石墨烯和I-复合改性的BiOCOOH材料、其制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060027688A1 (en) * 2004-08-09 2006-02-09 Kim Jin D Grinding method and product
CN103101974A (zh) * 2011-11-09 2013-05-15 上海纳米技术及应用国家工程研究中心有限公司 一种氯氧化铋粉体及其制备方法
CN104307540A (zh) * 2014-07-25 2015-01-28 复旦大学 一种BiOClxIy复合光催化剂及其制备方法
CN105236480A (zh) * 2014-07-03 2016-01-13 南京理工大学 一种独特形貌的HCOOBiO纳米晶及其制备方法
CN106423286A (zh) * 2016-09-14 2017-02-22 江南大学 一种BiOCOOH‑Bi2O2CO3复合光催化剂及其制备方法
CN107952480A (zh) * 2017-12-05 2018-04-24 江南大学 一种Bi/BiOCOOH复合光催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060027688A1 (en) * 2004-08-09 2006-02-09 Kim Jin D Grinding method and product
CN103101974A (zh) * 2011-11-09 2013-05-15 上海纳米技术及应用国家工程研究中心有限公司 一种氯氧化铋粉体及其制备方法
CN105236480A (zh) * 2014-07-03 2016-01-13 南京理工大学 一种独特形貌的HCOOBiO纳米晶及其制备方法
CN104307540A (zh) * 2014-07-25 2015-01-28 复旦大学 一种BiOClxIy复合光催化剂及其制备方法
CN106423286A (zh) * 2016-09-14 2017-02-22 江南大学 一种BiOCOOH‑Bi2O2CO3复合光催化剂及其制备方法
CN107952480A (zh) * 2017-12-05 2018-04-24 江南大学 一种Bi/BiOCOOH复合光催化剂及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112121857A (zh) * 2020-10-14 2020-12-25 扬州工业职业技术学院 石墨烯和I-复合改性的BiOCOOH材料、其制备方法及应用

Similar Documents

Publication Publication Date Title
Zhu et al. Hierarchical ZnO decorated with CeO2 nanoparticles as the direct Z-scheme heterojunction for enhanced photocatalytic activity
Labib Preparation, characterization and photocatalytic properties of doped and undoped Bi2O3
Jiang et al. Novel ternary BiOI/g-C3N4/CeO2 catalysts for enhanced photocatalytic degradation of tetracycline under visible-light radiation via double charge transfer process
Priya et al. Adsorptional photocatalytic mineralization of oxytetracycline and ampicillin antibiotics using Bi2O3/BiOCl supported on graphene sand composite and chitosan
Li et al. Fluorine doped anatase TiO2 with exposed reactive (001) facets supported on porous diatomite for enhanced visible-light photocatalytic activity
Li et al. Surfactant-assisted synthesis of CeO 2 nanoparticles and their application in wastewater treatment
Zhao et al. Cu/Cu2O/CuO loaded on the carbon layer derived from novel precursors with amazing catalytic performance
EP2519348B1 (en) Method of production of photocatalytic powder comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
Wu et al. Solvothermal fabrication of La-WO3/SrTiO3 heterojunction with high photocatalytic performance under visible light irradiation
Shao et al. Hierarchical mesoporous phosphorus and nitrogen doped titania materials: synthesis, characterization and visible-light photocatalytic activity
Zhang et al. Facile preparation of an Ag/AgVO 3/BiOCl composite and its enhanced photocatalytic behavior for methylene blue degradation
Mousavi-Kamazani et al. Solvent-free synthesis of Cu-Cu2O nanocomposites via green thermal decomposition route using novel precursor and investigation of its photocatalytic activity
Li et al. Solvothermal synthesis and visible light-driven photocatalytic degradation for tetracycline of Fe-doped SrTiO 3
Li et al. Surface doping for photocatalytic purposes: relations between particle size, surface modifications, and photoactivity of SnO2: Zn2+ nanocrystals
Lei et al. Microstructure and photocatalytic properties of polyimide/heterostructured NiO–Fe 2 O 3–ZnO nanocomposite films via an ion-exchange technique
Yu et al. Facile synthesis of α/β-Bi2O3 hetero-phase junction by a solvothermal method for enhanced photocatalytic activities
Yin et al. Simultaneous N-doping of reduced graphene oxide and TiO 2 in the composite for visible light photodegradation of methylene blue with enhanced performance
Zhang et al. Microwave-hydrothermal synthesis of beta-bismuth (III) oxide nanopowders and their enhanced photocatalytic properties
Tryba et al. Preparation and characterization of rutile-type TiO 2 doped with Cu
Liang et al. Enhanced photocatalytic performance of Nd3+-doped TiO2 nanosphere under visible light
Yang et al. 2D/2D BiOBr/(001)-TiO2 heterojunction toward enhanced photocatalytic degradation activity of Rhodamine B
Wei et al. A stable and efficient La-doped MIL-53 (Al)/ZnO photocatalyst for sulfamethazine degradation
Chao et al. Synergistic effects of morphology control and calcination on the activity of flower-like Bi2WO6-Bi2O3 photocatalysts prepared by an ionic liquid-assisted solvothermal method
Liu et al. Biomass assisted synthesis of 3D hierarchical structure BiOX (X Cl, Br)-(CMC) with enhanced photocatalytic activity
Yang et al. In situ synthesis of bifunctional TiO 2–Cs x WO 3 composite particles with transparent heat shielding and photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191220

RJ01 Rejection of invention patent application after publication