CN110323303B - 一种Ga2O3-CuSCN核壳异质结日盲紫外探测器及其制备方法 - Google Patents

一种Ga2O3-CuSCN核壳异质结日盲紫外探测器及其制备方法 Download PDF

Info

Publication number
CN110323303B
CN110323303B CN201910612898.0A CN201910612898A CN110323303B CN 110323303 B CN110323303 B CN 110323303B CN 201910612898 A CN201910612898 A CN 201910612898A CN 110323303 B CN110323303 B CN 110323303B
Authority
CN
China
Prior art keywords
cuscn
single crystal
core
shell
heterojunction solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910612898.0A
Other languages
English (en)
Other versions
CN110323303A (zh
Inventor
李山
唐为华
李培刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Gallium And Semiconductor Co ltd
Original Assignee
Beijing Jiazu Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiazu Technology Co ltd filed Critical Beijing Jiazu Technology Co ltd
Priority to CN201910612898.0A priority Critical patent/CN110323303B/zh
Publication of CN110323303A publication Critical patent/CN110323303A/zh
Application granted granted Critical
Publication of CN110323303B publication Critical patent/CN110323303B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种Ga2O3‑CuSCN核壳异质结日盲紫外探测器,包括作为n型核芯材料的Ga2O3单晶、作为p型壳层材料的CuSCN薄膜、与n型核芯材料欧姆接触的第一电极以及与p型壳层材料欧姆接触的第二电极。本发明还公开了Ga2O3‑CuSCN核壳异质结日盲紫外探测器的制备方法。本核壳结构日盲紫外探测器的制备工艺简单,器件性能优异,可探测超微弱日盲紫外光信号,并能实现自供电工作,适用于高敏感高精度的紫外光探测***。

Description

一种Ga2O3-CuSCN核壳异质结日盲紫外探测器及其制备方法
技术领域
本发明涉及一种日盲紫外探测器及其制备方法,尤其涉及一种基于 Ga2O3-CuSCN核壳异质结的日盲紫外探测器及其制备方法,属于半导体光电子器件领域。
背景技术
光电探测是成像技术、深紫外天文学、环境监测、安全通信、生物化学分析、国防预警和火警探测等领域的基础,因其应用广泛,最近几十年受到重大关注和稳定的发展。光探测器的工作原理是将捕获的光信号转变成电信号,从而实现探测。根据其响应的光信号波段,光探测器可分为紫外探测器、可见光探测器和红外探测器等。紫外探测器又可以细分为对应 UVA(315~400nm)、UVB(280~315nm)、UVC(200~280nm)和EUV (10~200nm)波段的探测器。其中UVC波段即称为日盲波段,其原因是地球表面因为臭氧层的吸收,几乎不存在200~280nm波段的紫外光。正是这种背景光在地球上的缺失,所以,日盲紫外探测器的光信号探测灵敏度极高,准确率极高,使日盲紫外探测器成为安全通信、军事制导等领域的高端技术。
光电探测的光信号响应基于半导体材料的禁带宽度。Ga2O3材料的禁带宽度在4.2~5.3eV,几乎可以实现日盲波段的全覆盖,是一种优异的日盲探测器核心材料。但基于单纯Ga2O3的金属-半导体-金属(MSM)结构的探测器件,存在灵敏度低、响应速度慢等缺点,且一般需要在外部供电的情况下才能工作。近年来,新型异质结器件由于在其界面处存在的内建电场可以实现电子空穴对的有效分离和载流子的高效率传输而受到广泛的关注,在探测器件性能提升方面贡献卓越。因此,发展基于Ga2O3异质结的日盲探测器必然会给Ga2O3材料的应用带来新的增长极。
发明内容
针对现有Ga2O3探测器性能技术的不足,本发明的目的在于提供一种 Ga2O3-CuSCN核壳异质结日盲紫外探测器,通过在Ga2O3单晶线上包裹一层CuSCN薄膜,有效提升了探测器的光电性能,实现了超微弱紫外光信号的探测和器件的自供电工作。
本发明的另一个目的在于提出了一种Ga2O3-CuSCN核壳异质结日盲紫外探测器的制备方法。
实现本发明上述目的的技术方案为:
一种Ga2O3-CuSCN核壳异质结日盲紫外探测器,包括作为n型核芯材料的Ga2O3单晶、作为p型壳层材料的CuSCN薄膜、与n型核芯材料欧姆接触的第一电极以及与p型壳层材料欧姆接触的第二电极。
其中,所述的作为n型核芯材料的Ga2O3单晶的厚度为5nm~50μm、宽度为50nm~500μm、长度为3mm~5cm。
优选地,所述的作为n型核芯材料的Ga2O3单晶的厚度为100nm~10 μm,宽度为200nm~200μm,长度为5mm~2cm。
其中,所述的作为p型壳层材料的CuSCN薄膜厚度为5nm~5μm。
优选地,所述的作为p型壳层材料的CuSCN薄膜厚度为10~500nm。
其中,与n型核芯材料欧姆接触的第一电极为铝、铜、银、铂、钛、镓、铟和金中的一种或多种组合。
其中,第一电极的厚度为10~200nm。
优选地,与n型核芯材料欧姆接触的第一电极为铟。
优选地,与n型核芯材料欧姆接触的第一电极为钛金的组合。
优选地,与n型核芯材料欧姆接触的第一电极为铟镓合金。
其中,与p型壳层材料欧姆接触的第二电极为铝、铜、银、铂、钛、镓、铟和金中的一种或多种组合。
其中,第二电极的厚度为10~200nm。
优选地,与p型壳层材料欧姆接触的第二电极为铟。
优选地,与p型壳层材料欧姆接触的第二电极为钛金组合。
优选地,与p型壳层材料欧姆接触的第二电极为铟镓合金。
本发明第二方面提出一种Ga2O3-CuSCN核壳异质结日盲紫外探测器的制备方法,包括以下步骤:在Ga2O3单晶表面生成CuSCN薄膜,以使 Ga2O3单晶和CuSCN薄膜形成异质结;分别在Ga2O3单晶和CuSCN薄膜上形成电极。
优选地,在Ga2O3单晶表面生成CuSCN薄膜的步骤包括:在Ga2O3单晶的表面附着CuSCN溶液;将附着有CuSCN溶液的Ga2O3单晶烘干,以在Ga2O3单晶表面生成CuSCN薄膜。
优选地,所述Ga2O3单晶为线状,即Ga2O3单晶线;在Ga2O3单晶线的表面附着CuSCN溶液时,所述CuSCN溶液附着于所述Ga2O3单晶线的部分长度上。
优选地,所述Ga2O3单晶线为从掺杂或者未掺杂的Ga2O3单晶上剥离的单晶线,或为化学方法合成的掺杂或者未掺杂的Ga2O3单晶线。
优选地,所述CuSCN溶液的溶质为CuSCN,溶剂为二丙基硫醚或二乙基硫醚。
优选地,所述制备方法包括以下步骤:
(1)制备Ga2O3单晶线;
(2)制备CuSCN的溶液;
(3)将Ga2O3单晶线的一部分(浸入部分长度大于单晶线整体长度的 1/5,小于单晶线整体长度的4/5)浸入CuSCN溶液中,保持5~30s;
(4)将浸有CuSCN的单晶线用清水冲洗5~30s;
(5)将清洗后附着CuSCN的Ga2O3单晶线加热烘干,加热温度为 100~250℃,加热时间为5~40min;
(6)制备与n型核芯材料欧姆接触的第一电极;
(7)制备与p型壳层材料欧姆接触的第二电极;
(8)将制备有电极的器件进行退火处理,形成良好的欧姆接触。
其中,所述的Ga2O3单晶线,为化学合成的掺杂或未掺杂的单晶线,或者从掺杂或者未掺杂Ga2O3单晶上剥离的单晶线。
优选地,所述的Ga2O3单晶线为从掺杂或未掺杂的Ga2O3单晶上剥离的单晶线。
其中,所述的CuSCN的溶液,溶质为CuSCN,溶剂为二丙基硫醚或二乙基硫醚,溶液浓度为5~100mg/ml。
优选地,所述的溶剂为二乙基硫醚。
优选地,CuSCN的二乙基硫醚溶液浓度为5~30mg/ml。
其中,所述的将Ga2O3单晶线的一半浸入CuSCN溶液中,优选地,保持时间为5~10s。
其中,所述的将清洗后附着CuSCN的Ga2O3单晶线加热烘干,优选地,加热温度为150~200℃,加热时间为10~20min。
其中,所述的与n型核芯材料欧姆接触的第一电极和与p型壳层材料欧姆接触的第二电极的制备方法,为热蒸镀、磁控溅射和热熔法中的一种或几种组合。
优选地,所述的第一电极和第二电极的制备方法为热蒸镀。
本发明的有益效果在于:
(1)提供了一种Ga2O3-CuSCN核壳异质结日盲紫外探测器,器件的核芯材料为n型Ga2O3单晶,器件的壳层材料为p型CuSCN薄膜,形成的核壳结构为pn结,其在Ga2O3和CuSCN界面处形成了一个内建电场,可以有效分离和传输光辐照下产生的电子空穴对,从而有效提高了Ga2O3- CuSCN核壳异质结日盲紫外探测器的灵敏度和响应速度,并实现了超微弱紫外光信号的探测和器件的自供电工作。
(2)本发明使用的溶液浸润方法,操作简单,不需要高真空高温设备,成本低廉,适用于工业化生产和科研探索。
附图说明
图1是用本发明方法制备的Ga2O3-CuSCN核壳异质结日盲紫外探测器结构示意图,01为核芯材料Ga2O3,02为壳层材料CuSCN,03为蓝宝石衬底材料,04为与核芯材料欧姆接触的第一电极,05为与壳层材料欧姆接触的第二电极;
图2是Ga2O3-CuSCN核壳异质结日盲紫外探测器的光谱选择曲线;
图3是Ga2O3-CuSCN核壳异质结日盲紫外探测器的极微弱紫外光辐照时的时间-电流曲线,测试条件为:外置偏压1V,光强分别为1.5/2.5/3.5/4.5/5.5μW/cm2的极微弱254nm紫外光辐照。
图4是Ga2O3-CuSCN核壳异质结日盲紫外探测器在0V偏压下的时间-电流曲线,测试条件为:外置偏压0V,光强分别为200/400/600/800/1000 μW/cm2的254nm紫外光辐照。
图5是Ga2O3-CuSCN核壳异质结日盲紫外探测器的时间-电流曲线,测试条件为:外置偏压1V,光强1mW/cm2的254nm紫外光辐照,同时,根据测得的响应曲线进行了响应时间的拟合计算。
图6是用单纯Ga2O3单晶线和金属铟制备的MSM对比器件1的时间 -电流曲线,测试条件为:外置偏压1V,光强1mW/cm2的254nm紫外光辐照,同时,根据测得的响应曲线进行了响应时间的拟合计算。
图7是用单纯CuSCN薄膜与金属铟制备的MSM对比器件2的时间- 电流曲线,测试条件为:外置偏压1V,光强1mW/cm2的254nm紫外光辐照,同时,根据测得的响应曲线进行了响应时间的拟合计算。
具体实施方式
为了解决现有技术的问题,本发明提出的是一种Ga2O3-CuSCN核壳异质结日盲紫外探测器,包括作为n型核芯材料的Ga2O3单晶、作为p型壳层材料的CuSCN薄膜。此外,还包括与n型核芯材料欧姆接触的第一电极以及与p型壳层材料欧姆接触的第二电极。器件的核芯材料为n型 Ga2O3单晶,器件的壳层材料为p型CuSCN薄膜,形成的核壳结构为pn 结,其在Ga2O3和CuSCN界面处形成了一个内建电场,可以有效分离和传输光辐照下产生的电子空穴对,从而有效提高了Ga2O3-CuSCN核壳异质结日盲紫外探测器的灵敏度和响应速度,并实现了超微弱紫外光信号的探测和器件的自供电工作。
为了制备上述Ga2O3-CuSCN核壳异质结日盲紫外探测器,本发明还提出了该日盲紫外探测器的制备方法,即:在Ga2O3单晶表面生成CuSCN 薄膜,以使Ga2O3单晶和CuSCN薄膜形成异质结;然后,分别在Ga2O3单晶和CuSCN薄膜上形成电极。
并且,作为优选的实施方式,本发明在Ga2O3单晶表面生成CuSCN薄膜时,首先在Ga2O3单晶的表面附着CuSCN溶液;然后将附着有CuSCN 溶液的Ga2O3单晶烘干。
经实验验证,更加优选的是,所述Ga2O3单晶为线状,即Ga2O3单晶线;在Ga2O3单晶线的表面附着CuSCN溶液时,所述CuSCN溶液附着于所述Ga2O3单晶线的部分长度上,这样,可以使得部分Ga2O3单晶线裸露,部分Ga2O3单晶线表面裹附一层CuSCN薄膜,由此,可以分别在裸露的 Ga2O3单晶线部分形成第一电极,在裹附层CuSCN薄膜部分形成第二电极。
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
通过机械剥离方法,从未掺杂的β-Ga2O3单晶片上获得β-Ga2O3单晶线01,β-Ga2O3单晶线的厚度2μm,宽度为100μm,长度为1.2cm。
配制CuSCN的二丙基硫醚溶液,溶液浓度为10mg/ml,溶液需要在磁力搅拌平台搅拌溶解24h,并静置12h。
将β-Ga2O3单晶线清洗后烘干,将β-Ga2O3单晶线的一半浸入CuSCN 的二丙基硫醚液滴中,保持5s时间,取出后放置5min,然后在去离子水中清洗,再在加热平台上烘干,加热温度为150℃,加热时间为10min,获得壳层CuSCN薄膜02。
将形成良好接触的Ga2O3-CuSCN异质结微米线转移到蓝宝石衬底03 上,在核芯材料Ga2O3单晶线01端压上金属铟电极作为第一电极04,在壳层材料CuSCN薄膜02端压上金属铟电极作为第二电极05,并在热平台上130℃加热3min,使电极接触充分。所制备的Ga2O3-CuSCN核壳异质结日盲紫外探测器结构示意图如图1所示。
所制备的Ga2O3-CuSCN核壳异质结日盲紫外探测器的光谱选择曲线如图2所示,光谱选择曲线通过装有氙灯的单色仪和半导体分析仪测得,不同波段的电流经过归一化处理。从光谱曲线可以得到,所制备的Ga2O3- CuSCN核壳异质结探测器的主要响应波段为200~275nm,为日盲波段,所制备的探测器为日盲紫外探测器。
所制备的Ga2O3-CuSCN核壳异质结日盲紫外探测器可探测极微弱的紫外光信号,如图3所示,即使是在光强1.5μW/cm2的254nm光辐照下,也可以稳定响应,针对1μW/cm2的光强波动也可以灵敏反应出来,表现出超灵敏的探测能力。
所制备的Ga2O3-CuSCN核壳异质结日盲紫外探测器在0V偏压下的工作曲线如图4所示,即在无外加电压的情况下,所制备的探测器也可以对不同光强的光产生响应,且工作稳定,说明制备的探测器可以自供电工作。
所制备的Ga2O3-CuSCN核壳异质结日盲紫外探测器在1V偏压,1 mW/cm2光强的254nm紫外光辐照下测得的时间-电流曲线如图5所示,光照下的稳定电流为2nA左右,根据测得的响应曲线进行了响应时间的拟合计算,得到的上升响应时间为0.19s,下降响应时间为0.16s。
在其他实施例中,将Ga2O3单晶线的一部分浸入CuSCN溶液,浸入部分长度可以大于单晶线整体长度的1/5,小于单晶线整体长度的4/5。
在其他实施例中,Ga2O3单晶线浸入CuSCN溶液中可以保持5~30s。
在其他实施例中,可以将浸有CuSCN的单晶线用清水冲洗5~30s。
在其他实施例中,将清洗后附着CuSCN的Ga2O3单晶线加热烘干,加热温度可以为100~250℃,加热时间可以为5~40min。
为了呈现出本发明的有益效果,特进行如下对比实施例。
对比实施例1
通过机械剥离方法,从未掺杂的β-Ga2O3单晶片上获得β-Ga2O3单晶线,β-Ga2O3单晶线的厚度2μm,宽度为100μm,长度为1.2cm。
将β-Ga2O3单晶线清洗后烘干,分别在两端压上金属铟电极,并在热平台上130℃加热3min,使电极接触充分。
所制备的In-Ga2O3-In(MSM结构)光电探测器在在1V偏压,1mW/cm2光强的254nm紫外光辐照下测得的时间-电流曲线如图6所示,光照下的稳定电流为8pA左右,根据测得的响应曲线进行了响应时间的拟合计算,得到的上升响应时间为2.42s,下降响应时间为2.20s。
对比实施例1中的对比器件1,相较于实施例1中的Ga2O3-CuSCN核壳异质结日盲紫外探测器,其响应电流小,响应速度低,从而对比出本发明制备的Ga2O3-CuSCN核壳异质结日盲紫外探测器性能更优,更具有应用前景。
对比实施例2
配制CuSCN的二丙基硫醚溶液,溶液浓度为10mg/ml,溶液需要在磁力搅拌平台溶解24h,并静置12h。
在蓝宝石衬底上旋涂所配置的CuSCN的二丙基硫醚溶液,旋转速度为2500转每分钟,旋涂时间为50s,然后在热平台上加热烘干,加热温度为150℃,加热时间为10min。
在CuSCN薄膜的表面压上两个金属铟电极,并在热平台上130℃加热3min,使电极接触充分。
所制备的In-CuSCN-In(MSM结构)光电探测器在在1V偏压,1 mW/cm2光强的254nm紫外光辐照下测得的时间-电流曲线如图7所示,光照下的稳定电流为12pA左右,根据测得的响应曲线进行了响应时间的拟合计算,得到的上升响应时间为2.96s,下降响应时间为17.97s。
对比实施例2中的对比器件2,相较于实施例1中的Ga2O3-CuSCN核壳异质结日盲紫外探测器,其响应电流小,响应速度低,从而对比出本发明制备的Ga2O3-CuSCN核壳异质结日盲紫外探测器性能更优,更具有应用前景。
以上具体地示出和描述了本发明的示例性实施例。应可理解的是,本发明不限于这里描述的详细结构和方法;相反,本发明意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。
此外,本说明书附图所示出的结构、比例、大小等,均仅用以配合说明书所公开的内容,以供本领域技术人员了解与阅读,并非用以限定本公开可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本公开所能产生的技术效果及所能实现的目的下,均应仍落在本公开所公开的技术内容得能涵盖的范围内。
同时,本说明书中所引用的如“上”、“第一”、“第二”及“一”等的用语,也仅为便于叙述的明了,而非用以限定本公开可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当也视为本发明可实施的范畴。

Claims (8)

1.一种Ga2O3-CuSCN核壳异质结日盲紫外探测器,其特征在于,包括作为n型核芯材料的Ga2O3单晶、作为p型壳层材料的CuSCN薄膜、与n型核芯材料欧姆接触的第一电极以及与p型壳层材料欧姆接触的第二电极;其中,作为n型核芯材料的Ga2O3单晶的厚度为5nm~50μm、宽度为50nm~500μm、长度为3mm~5cm;作为p型壳层材料的CuSCN薄膜厚度为5nm~5μm。
2.根据权利要求1所述的Ga2O3-CuSCN核壳异质结日盲紫外探测器,其特征在于,与n型核芯材料欧姆接触的第一电极为铝、铜、银、铂、钛、镓、铟和金中的一种或多种组合。
3.根据权利要求1所述的Ga2O3-CuSCN核壳异质结日盲紫外探测器,其特征在于,与p型壳层材料欧姆接触的第二电极为铝、铜、银、铂、钛、镓、铟和金中的一种或多种组合。
4.一种Ga2O3-CuSCN核壳异质结日盲紫外探测器的制备方法,其特征在于,包括以下步骤:
在Ga2O3单晶表面生成CuSCN薄膜,以使Ga2O3单晶和CuSCN薄膜形成异质结,该Ga2O3单晶的厚度为5nm~50μm、宽度为50nm~500μm、长度为3mm~5cm;该CuSCN薄膜厚度为5nm~5μm;
分别在Ga2O3单晶和CuSCN薄膜上形成电极。
5.根据权利要求4所述的Ga2O3-CuSCN核壳异质结日盲紫外探测器的制备方法,其特征在于,在Ga2O3单晶表面生成CuSCN薄膜的步骤包括:
在Ga2O3单晶的表面附着CuSCN溶液;
将附着有CuSCN溶液的Ga2O3单晶烘干,以在Ga2O3单晶表面生成CuSCN薄膜。
6.根据权利要求5所述的Ga2O3-CuSCN核壳异质结日盲紫外探测器的制备方法,其特征在于,所述Ga2O3单晶为线状,即Ga2O3单晶线;在Ga2O3单晶线的表面附着CuSCN溶液时,所述CuSCN溶液附着于所述Ga2O3单晶线的部分长度上。
7.根据权利要求6所述的Ga2O3-CuSCN核壳异质结日盲紫外探测器的制备方法,其特征在于,所述Ga2O3单晶线为从掺杂或者未掺杂的Ga2O3单晶上剥离的单晶线,或为化学方法合成的掺杂或者未掺杂的Ga2O3单晶线。
8.根据权利要求5所述的Ga2O3-CuSCN核壳异质结日盲紫外探测器的制备方法,其特征在于,所述CuSCN溶液的溶质为CuSCN,溶剂为二丙基硫醚或二乙基硫醚。
CN201910612898.0A 2019-07-09 2019-07-09 一种Ga2O3-CuSCN核壳异质结日盲紫外探测器及其制备方法 Active CN110323303B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910612898.0A CN110323303B (zh) 2019-07-09 2019-07-09 一种Ga2O3-CuSCN核壳异质结日盲紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910612898.0A CN110323303B (zh) 2019-07-09 2019-07-09 一种Ga2O3-CuSCN核壳异质结日盲紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110323303A CN110323303A (zh) 2019-10-11
CN110323303B true CN110323303B (zh) 2021-05-11

Family

ID=68121505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910612898.0A Active CN110323303B (zh) 2019-07-09 2019-07-09 一种Ga2O3-CuSCN核壳异质结日盲紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110323303B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932104A (zh) * 2016-05-23 2016-09-07 中国科学院长春光学精密机械与物理研究所 一种氧化镓日盲紫外探测器及其制备方法
CN106796991A (zh) * 2014-10-14 2017-05-31 积水化学工业株式会社 太阳能电池
CN109461790A (zh) * 2018-09-26 2019-03-12 北京镓族科技有限公司 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101381317B1 (ko) * 2012-01-26 2014-04-04 인하대학교 산학협력단 코어-쉘 구조의 산화갈륨-산화아연 나노로드, 이의 제조방법 및 이를 이용한 가스센서
CN106206952B (zh) * 2012-09-18 2019-09-06 牛津大学科技创新有限公司 光电器件
CN104362197B (zh) * 2014-10-23 2016-09-14 上海工程技术大学 一种立体采光式全固态太阳能电池及其制备方法
CN106549079A (zh) * 2016-09-30 2017-03-29 大连民族大学 一种紫外光探测器及其制备方法
CN108265275B (zh) * 2018-01-22 2020-02-18 东南大学 一种ZnO-Ga2O3核壳纳米线的制备方法
CN109888109B (zh) * 2019-03-13 2021-02-09 电子科技大学 量子点修饰的双体异质结有机太阳能电池及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106796991A (zh) * 2014-10-14 2017-05-31 积水化学工业株式会社 太阳能电池
CN105932104A (zh) * 2016-05-23 2016-09-07 中国科学院长春光学精密机械与物理研究所 一种氧化镓日盲紫外探测器及其制备方法
CN109461790A (zh) * 2018-09-26 2019-03-12 北京镓族科技有限公司 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法

Also Published As

Publication number Publication date
CN110323303A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
Li et al. Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites
Zou et al. Enhanced UV‐C detection of perovskite photodetector arrays via inorganic CsPbBr3 quantum dot down‐conversion layer
CN107507876B (zh) 一种β-Ga2O3基日盲紫外光电探测器阵列及其制备方法
Hao et al. Air‐stable self‐powered photodetectors based on lead‐free CsBi3I10/SnO2 heterojunction for weak light detection
Kumar et al. High performance, flexible and room temperature grown amorphous Ga2O3 solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes
CN108281509B (zh) 氧化物半导体基光电探测器及提高其性能的方法
JP4980238B2 (ja) 光電導デバイス
CN109698278B (zh) 一种有机无机复合结构自驱动日盲紫外探测器及制备方法
Liu et al. Polycrystalline perovskite CH3NH3PbCl3/amorphous Ga2O3 hybrid structure for high-speed, low-dark current and self-powered UVA photodetector
CN109244246B (zh) 一种基于拓扑绝缘体硒化铋电极的宽波段光电探测器
Pang et al. Self-powered behavior based on the light-induced self-poling effect in perovskite-based transport layer-free photodetectors
CN109449225A (zh) 二硒化钯薄膜/n-型硅异质结光电探测器及其制备方法
Hao et al. Applications of Lead‐Free Cs2AgBiBr6 Single Crystals in Photodetectors and Self‐Powered Photodetectors by Symmetric/Asymmetric Electrodes
CN109256471A (zh) 一种无铅全无机钙钛矿铯铋碘薄膜/n-型硅异质结光电探测器及其制备方法
CN112652722A (zh) 自供电双功能光电探测器及其制备方法
Lu et al. Large‐Scale, Uniform‐Patterned CsCu2I3 Films for Flexible Solar‐Blind Photodetectors Array with Ultraweak Light Sensing
Yan et al. Reconfigurable self-powered imaging photodetectors by reassembling and disassembling ZnO/perovskite heterojunctions
Yin et al. Multifunctional optoelectronic device based on CuO/ZnO heterojunction structure
Ozel et al. Estimation of maximum photoresponsivity of n‐SnO2/p‐Si heterojunction‐based UV photodetectors
CN103915525A (zh) 一种提高光电转化性能的红外焦平面探测器
Li et al. High-performance ultraviolet photodetector based on p-PEDOT: PSS film/p-ZnO: Sb microwire/n-Si double heterojunction
CN113066931B (zh) spiro-MeOTAD/Ga2O3/Si p-i-n型日盲紫外探测器及其制备方法
Zhang et al. High-photosensitive ultraviolet photodetector based on an n-ZnO microwire/p-InGaN heterojunction
CN110323303B (zh) 一种Ga2O3-CuSCN核壳异质结日盲紫外探测器及其制备方法
Yun et al. High-performance self-powered color filter-free blue photodetector based on wide-bandgap halide perovskites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210823

Address after: Room 2707, building 1, Bixing garden, Xili, Luozhuang, Haidian District, Beijing 100088

Patentee after: Tang Weihua

Address before: 101399 North of the Second Floor West Side of No. 2 Building, No. 1 Shunqiang Road, Renhe Town, Shunyi District, Beijing

Patentee before: BEIJING JIAZU TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221114

Address after: Room 01-325, Floor 3, Building 13, Yard 53, Yanqi Street, Yanqi Economic Development Zone, Huairou District, Beijing 101400

Patentee after: Beijing gallium and Semiconductor Co.,Ltd.

Address before: Room 2707, building 1, Bixing garden, Xili, Luozhuang, Haidian District, Beijing 100088

Patentee before: Tang Weihua