CN110038641B - 钒酸铋/铬卟啉/石墨烯量子点二维复合z型光催化材料、制备方法及应用 - Google Patents

钒酸铋/铬卟啉/石墨烯量子点二维复合z型光催化材料、制备方法及应用 Download PDF

Info

Publication number
CN110038641B
CN110038641B CN201910339558.5A CN201910339558A CN110038641B CN 110038641 B CN110038641 B CN 110038641B CN 201910339558 A CN201910339558 A CN 201910339558A CN 110038641 B CN110038641 B CN 110038641B
Authority
CN
China
Prior art keywords
god
bivo
crpycl
graphene quantum
photocatalytic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910339558.5A
Other languages
English (en)
Other versions
CN110038641A (zh
Inventor
彭天右
汪进明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201910339558.5A priority Critical patent/CN110038641B/zh
Publication of CN110038641A publication Critical patent/CN110038641A/zh
Application granted granted Critical
Publication of CN110038641B publication Critical patent/CN110038641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/36Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料、制备方法及应用。所述光催化材料以功能化的石墨烯量子点为模板复合钒酸铋纳米片,然后将具有二维平面结构的铬卟啉类配合物(CrPyCl)与BiVO4纳米片结合,CrPyCl均匀而紧密地分布在BiVO4纳米片表面,以GOD为电子传递物,构筑了具有Z型光催化作用机制的二维复合材料。该光催化材料中的CrPyCl可均匀而紧密的分散在BiVO4纳米片表面,有利于光催化过程中电子的快速传递,从而可提高体系光利用效率和光催化性能,在保持光生电荷氧化还原能力的同时,提高了光生载流子的分离效率。该光催化材料具有良好的可见光驱动光催化全劈裂水产氢性能,在Z‑型机制全劈裂水催化制氢方面具有良好的应用前景。

Description

钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料、制备 方法及应用
技术领域
本发明涉及纳米光催化材料制备及其制氢应用技术领域,具体涉及钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料、制备方法及其应用。
背景技术
能源是人类赖以生存和发展的物质基础,也是国家经济发展的重要战略资源。目前,石油、煤炭和天然气等化石能源大量开发利用导致了人类生态环境的严重恶化,而氢能是一种储量丰富、无污染的新型能源。氢作为一种能源载体,能量密度高,可储可运,且燃烧后唯一产物是水,不污染环境。因此,氢能被认为是今后理想的替代能源。
利用太阳能制氢的可能途径有太阳能发电与电解水制氢、太阳能光电化学制氢、太阳能热化学分解水及生物质制氢、太阳能光催化分解水制氢等。其中,利用太阳能光催化分解水制氢(光催化制氢)是解决当前能源问题的最佳途径,该制氢技术主要是利用半导体光催化剂在紫外或可见光的激发下产生电子-空穴对,这些电子-空穴对具有极强的还原和氧化能力,可直接将水分解为氢气和氧气。因此,随着光催化技术的发展,有效地利用太阳光直接从水或其有关溶液中获得氢能已成为人类实现可持续发展的必然选择。
光催化制氢的广泛应用取决于光催化材料的催化效率和对太阳光的利用效率。其中,Z型光催化材料体系借助双光子激发过程,在不同光催化剂上分别完成氧化反应和还原反应可有效地促进光生电荷的分离和迁移,提高了光能利用率,因而吸引了众多研究者的注意。目前,诸多含铋元素的复合氧化物(如钨酸铋、钼酸铋、钒酸铋、卤氧化铋等)具有Z型可见光催化活性。其中,BiVO4因优异的可见光催化活性,同时具有无毒、光化学稳定性好、太阳能利用率高等优点成为关注的焦点。然而以BiVO4构筑的Z型光催化材料体系大多都集中在无机半导体异质结体系中,并且这类无机半导体体系的光催化活性主要集中在紫外区。因此,科研工作者们围绕着紫外光响应的半导体发展了一系列的能带和光吸收能力的调控策略来提高半导体对可见光甚至红外光的响应能力,以期构建高效、稳定、经济的可见/近红外宽光谱响应光催化材料来满足未来可持续发展的要求。从这个角度看,通过对BiVO4 Z型体系进行修饰和改性提高其对可见光的响应能力具有重要的应用前景。其中,负载有机吸光分子是一种行之有效的拓展其可见光响应能力的策略。
作为植物光合作用过程中可见光吸收中心,卟啉在蓝光区(B-band)和红光区(Q-band)有较大的消光系数,本身具有很高的荧光性质和恰当的能带位置,这些优势使其成为拓展宽带隙半导体可见光催化效果的潜在光敏剂。此外,卟啉环容易进行邻位或间位取代,并且金属中心具有可调变性,因此可通过分子设计协调卟啉分子的物理和电化学性质构筑具有电子导向性的卟啉分子。
目前,未见有关BiVO4/GOD/CrPyCl二维复合Z型光催化材料及其制备方法,以及其可见光驱动的全劈裂水制氢性能的报道。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种BiVO4/GOD/CrPyCl二维复合Z型光催化材料,该催化材料可从调控二维平面结构的CrPyCl和BiVO4之间结合力和光生电荷转移方向两方面来促进Z型光催化作用机制,从而实现可见光驱动的全劈裂水制氢过程。本发明提供的制备方法操作简便、成本低,具有在无任何牺牲试剂存在条件实现可见光驱动的全劈裂水制氢性能。
本发明首次以石墨烯量子点(GOD)为模板,采用原位沉积法将具有二维平面结构的铬卟啉类配合物(CrPyCl)和钒酸铋纳米片(BiVO4)结合构筑了BiVO4/GOD/CrPyCl二维复合Z型光催化材料,并用于可见光照条件下全劈裂水制氢。结果表明,二维平面结构的CrPyCl均匀而紧密的分散在BiVO4纳米片表面,有利于光催化过程中电子的快速传递,从而可提高体系光利用效率和光催化性能。
本发明提供的方案如下:
一种钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料,结构组成如下:以功能化的石墨烯量子点(GOD)为模板复合钒酸铋(BiVO4)纳米片,然后将具有二维平面结构的铬卟啉类配合物(CrPyCl)与BiVO4纳米片结合,CrPyCl均匀而紧密地分布在BiVO4纳米片表面,以GOD为电子传递物,构筑了具有Z型光催化作用机制的BiVO4/GOD/CrPyCl二维复合材料。
上述钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料中铬卟啉(CrPyCl)的复合比例为5.0~25.0μmol·g-1
上述超薄钒酸铋(BiVO4)纳米片具有暴露的(010)晶面,厚度约为3nm。
另一方面,本发明提供上述钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料的制备方法,包括以下步骤:
(1)采用Hummers法制备氧化石墨烯,离心分离后,取上层悬浊液烘干得到超薄的氧化石墨烯,然后将该样品分别在H2S和NH3气氛中煅烧后,再依次用浓硝酸热处理和液氨水热处理后,再经离心分离,取上层悬浊液,烘干,得到功能化的石墨烯量子点(GOD);
(2)取步骤(1)的石墨烯量子点(GOD),加入到Bi(NO3)3溶液中,搅拌均匀后,然后加入NH4VO3溶液,调节溶液至pH=7.0,再在180℃水热处理3h,最后将水热产物用去离子水和乙醇洗涤,得到BiVO4/GOD产物;
(3)取步骤(2)的BiVO4/GOD,加入到溶有CrPyCl的DMF溶液中,搅拌至完全分散,旋蒸收集BiVO4/GOD/CrPyCl产物。
上述步骤(1)中在H2S和NH3气氛中煅烧的温度为600℃,煅烧时间为4h;浓硝酸热处理温度为60℃,处理时间为12h;液氨水热处理温度为120℃,处理时间为6h。
上述述步骤(2)中,石墨烯量子点(GOD):Bi(NO3)3:NH4VO3为120-360mg:0.5-1mmol:0.5-1mmol,其中Bi(NO3)3与NH4VO3用量相同。
上述步骤(3)中,每1g BiVO4/GOD,CrPyCl的添加量为5-25μmol。
本发明还提供一种PtOx负载的钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料的制备方法,包括以下步骤:取上述BiVO4/GOD/CrPyCl,加入到Pt(NH3)4(NO3)2水溶液中,搅拌至完全溶解,旋蒸收集产物,经干燥得到所述的PtOx负载的钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料。
上述Pt(NH3)4(NO3)2用量为BiVO4/GOD/CrPyCl的用量的1.0wt%。
除此以外,本发明还提供了上述钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料在无任何牺牲试剂存在条件下可用于可见光全劈裂水制氢的应用。
本发明的有益效果:
(1)利用功能化的石墨烯量子点(GOD)为模板合成超薄BiVO4纳米片,比表面积较大,添加在可见光区具有良好光吸收性能的铬卟啉类配合物,CrPyCl和BiVO4之间结合力强;
(2)制备催化材料所需要的原料常规,制备条件温和,工艺简单,能耗和成本低,适用于大规模生产;
(3)所制备的光催化材料可在无任何牺牲试剂存在条件下可实现可见光驱动的全劈裂水制氢;其中,CrPyCl用量比例为20μmol g-1时BiVO4/GOD/CrPyCl二维复合材料表现出最佳的光催化全劈裂水活性,在400,420,450,500和550单色光照下分别取得2.87%,2.53%,1.57%,0.65%和0.15%的表观量子产率;
(4)所制备的二维复合Z型光催化材料有望应用于光催化降解污染物、光解水、光电太阳能电池等领域中,具有较大的应用价值和前景;
(5)为制备二维复合Z型光催化材提供了一种新的思路及高效、廉价的解决方案,具有较大的参考价值。
附图说明
图1为本发明制备的单纯的BiVO4/GOD(a)和没有石墨烯量子点模板剂制备的BiVO4(b)FESEM图;
图2为本发明制备的铬卟啉的UV-vis吸收光谱(a)和不同CrPyCl负载量的二维复合Z型光催化材料(BiVO4/GOD/CrPyCl)的漫反射吸收光谱(b);
图3为本发明制备的不同铬卟啉负载量的二维复合Z型光催化材料(BiVO4/GOD/CrPyCl)的全劈裂水效果图;
图4为本发明制备的20μmol·g-1铬卟啉负载量的二维复合Z型光催化材料(BiVO4/GOD/CrPyCl)在可见光区域内不同单色光照下的表观量子产率图。
具体实施方式
下面结合实施例及附图对本发明作进一步的描述,但本发明的实施方式不仅限于此。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
实施例1
0.5mmol Bi(NO3)3·5H2O溶于35mL HNO3(4M)中配制成Bi(NO3)3溶液,0.5mmolNH4VO3溶于NaOH(2M)中配制成NH4VO3溶液,将120mg的石墨烯量子点(GOD)加入到上述Bi(NO3)3溶液中,搅拌30min后,再加入NH4VO3溶液,调节溶液至pH=7.0,180℃水热处理3h,将水热产物用去离子水和乙醇洗涤,得到BiVO4/GOD产物。将0.1g BiVO4/GOD加入到10mL(0.05mM)的铬卟啉DMF溶液中,搅拌72h后,旋蒸收集产物,得到5μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl。向含4.0mg Pt(NH3)4(NO3)2水溶液中(40mL)加入0.2g BiVO4/GOD/CrPyCl,搅拌1h,旋蒸收集产物,在空气中120℃过夜处理,得到1.0wt%铂负载量的PtOx-BiVO4/GOD/CrPyCl。
图1a为本实施例合成的BiVO4/GOD的形貌,其为片状结构,厚度为~3.6nm,约为4层BiVO4。在相同温度和pH值条件下,没有GOD为模板剂时制备的BiVO4的形貌如图1b,其为无定型纳米粒子。图2a为本实施例制备的铬卟啉的UV-vis吸收光谱,图2b为不同铬卟啉负载量的BiVO4/GOD/CrPyCl二维复合材料的漫反射吸收光谱图。由图2a可见,铬卟啉在~436nm显示出很强的B-带吸收峰,以及在~517、559和598nm显示出较弱的Q-带吸收峰。由图2b可见,与BiVO4/GOD相比,5μmol·g-1铬卟啉负载量的BiVO4/GOD/CrPyCl在400~800nm范围内吸收性能明显提高,可见-近红外光区吸收范围明显拓宽,主要来源于CrPyCl对可见光吸收的贡献,但未明显观察到CrPyCl的Q-带吸收峰,原因在于CrPyCl含量低且高度分散。由图3可知,可见光照射含5μmol·g-1铬卟啉负载量的BiVO4/GOD/CrPyCl(分散于70mL水中),其全劈裂水产氢/氧活性分别为2.3/1.5μmol·h-1,而Pt负载的BiVO4及CrPyCl均不能实现可见光条件下全劈裂水,说明BiVO4/GOD/CrPyCl在可见光全劈裂水方面具有良好的应用前景。
实施例2
0.5mmol Bi(NO3)3·5H2O溶于35mL HNO3(4M)中配制成Bi(NO3)3溶液,0.5mmolNH4VO3溶于NaOH(2M)中配制成NH4VO3溶液,将120mg的石墨烯量子点(GOD)加入到上述Bi(NO3)3溶液中,搅拌30min后,再加入NH4VO3溶液,调节溶液至pH7.0,180℃水热处理3h,将水热产物用去离子水和乙醇洗涤,得到BiVO4/GOD产物。将0.1g BiVO4/GOD加入到10mL(0.1mM)的铬卟啉DMF溶液中,搅拌72h后,旋蒸收集产物,得到10μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl。向含4.0mg Pt(NH3)4(NO3)2水溶液中(40mL)加0.2g BiVO4/GOD/CrPyCl,搅拌1h,旋蒸收集产物,在空气中120℃过夜处理,得到1.0wt%铂负载量的PtOx-BiVO4/GOD/CrPyCl。
图2b为不同铬卟啉负载量的BiVO4/GOD/CrPyCl二维复合材料的漫反射吸收光谱图。由图2b可见,与BiVO4/GOD以及5μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl相比,10μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl在400~800nm范围内吸收性能明显提高,可见光区吸收范围明显拓宽,主要来源于CrPyCl对可见光吸收的贡献,并且明显观察到CrPyCl Q-带吸收峰。由图3可知,可见光照射含70mg 10μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl(分散于70mL水中),其全劈裂水产氢/氧活性分别为4.7/2.9μmol h-1。这说明10μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl的可见光全劈裂水性能随着铬卟啉负载量增大而呈现提高趋势。
实施例3
0.5mmol Bi(NO3)3·5H2O溶于35mL HNO3(4M)中配制成Bi(NO3)3溶液,0.5mmolNH4VO3溶于NaOH(2M)中配制成NH4VO3溶液,将120mg的石墨烯量子点(GOD)加入到上述Bi(NO3)3溶液中,搅拌30min后,在加入NH4VO3溶液,调节溶液至pH7.0,180℃水热处理3h,将水热产物用去离子水和乙醇洗涤,得到BiVO4/GOD产物。将0.1g BiVO4/GOD加到10mL(0.15mM)的铬卟啉DMF溶液中,搅拌72h后,旋蒸收集产物,得到15μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl。向含4.0mg Pt(NH3)4(NO3)2水溶液中(40mL)加入0.2g BiVO4/GOD/CrPyCl,搅拌1h,旋蒸收集产物,在空气中120℃过夜处理,得到1.0wt%铂负载量的PtOx-BiVO4/GOD/CrPyCl产物。
由图2b和图3可见,与10μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl复合材料相比,15μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl在400~800nm范围内吸光性能仍呈现提高趋势,且在相同条件下全劈裂水产氢/氧活性分别提高到5.8/3.4μmol h-1
实施例4
0.5mmol Bi(NO3)3·5H2O溶于35mL HNO3(4M)中配制成Bi(NO3)3溶液,0.5mmolNH4VO3溶于NaOH(2M)中配制成NH4VO3溶液,将120mg的石墨烯量子点(GOD)加入到上述Bi(NO3)3溶液中,搅拌30min后,在加入NH4VO3溶液,调节溶液至pH7.0,180℃水热处理3h,将水热产物用去离子水和乙醇洗涤,得到BiVO4/GOD产物。将0.1g BiVO4/GOD加入到10mL(0.20mM)的铬卟啉DMF溶液中,搅拌72h后,旋蒸收集产物,得到20μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl。向含4.0mg Pt(NH3)4(NO3)2水溶液中(40mL)加入0.2g BiVO4/GOD/CrPyCl,搅拌1h,旋蒸收集产物,在空气中120℃过夜处理,得到1.0wt%铂负载量的PtOx-BiVO4/GOD/CrPyCl产物。
由图2b和图3可见,与15μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl复合材料相比,20μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl在400~800nm范围内吸光性能仍呈现提高趋势,且在相同条件下光照1h后全劈裂水产氢/氧活性达到最优值分别提高到6.3/3.7μmol h-1
实施例5
0.5mmol Bi(NO3)3·5H2O溶于35mL HNO3(4M)中配制成Bi(NO3)3溶液,0.5mmolNH4VO3溶于NaOH(2M)中配制成NH4VO3溶液,将120mg的石墨烯量子点(GOD)加入到上述Bi(NO3)3溶液中,搅拌30min后,在加入NH4VO3溶液,调节溶液至pH7.0,180℃水热处理3h,将水热产物用去离子水和乙醇洗涤,得到BiVO4/GOD产物。将0.1g BiVO4/GOD加到10mL(0.25mM)的铬卟啉DMF溶液中,搅拌72h后,旋蒸收集产物,得到25μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl。向含4.0mg Pt(NH3)4(NO3)2水溶液中(40mL)加入0.2g BiVO4/GOD/CrPyCl,搅拌1h,旋蒸收集产物,在空气中120℃过夜处理,得到1.0wt%铂负载量的PtOx-BiVO4/GOD/CrPyCl产物。
由图2b和图3可见,与20μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl复合材料相比,25μmol·g-1铬卟啉负载量的BiVO4/GOD/CrPyCl在400~800nm范围内吸光性能仍呈现提高趋势,但在相同条件下全劈裂水产氢/氧活性有所下降,分别降低到到5.4/3.0μmol h-1,可能的原因是提高铬卟啉用量,铬卟啉分子未完全吸附在BiVO4表面上,在光照过程中仍有大量的铬卟啉分子游离在悬浮体中,这些分子虽然能吸收可见光,但BiVO4不能将光生电子注入到铬卟啉上有效的进行Z-型机制全劈裂制氢。因此,过高的铬卟啉用量非但对产氢没有贡献,还影响了BiVO4对可见光的吸收以及光生电子的传输,导致产氢效率的下降。
实施例6
1mmol Bi(NO3)3·5H2O溶于35mL HNO3(4M)中配制成Bi(NO3)3溶液,1mmol NH4VO3溶于NaOH(2M)中配制成NH4VO3溶液,将240mg的石墨烯量子点(GOD)加入到上述Bi(NO3)3溶液中,搅拌30min后,在加入NH4VO3溶液,调节溶液至pH7.0,180℃水热处理3h,将水热产物用去离子水和乙醇洗涤,得到BiVO4/GOD产物。将0.1g BiVO4/GOD加到10mL(0.25mM)的铬卟啉DMF溶液中,搅拌72h后,旋蒸收集产物,得到25μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl。向含4.0mg Pt(NH3)4(NO3)2水溶液中(40mL)加入0.2g BiVO4/GOD/CrPyCl,搅拌1h,旋蒸收集产物,在空气中120℃过夜处理,得到1.0wt%铂负载量的PtOx-BiVO4/GOD/CrPyCl产物。
实施例7
0.8mmol Bi(NO3)3·5H2O溶于35mL HNO3(4M)中配制成Bi(NO3)3溶液,0.8mmolNH4VO3溶于NaOH(2M)中配制成NH4VO3溶液,将360mg的石墨烯量子点(GOD)加入到上述Bi(NO3)3溶液中,搅拌30min后,在加入NH4VO3溶液,调节溶液至pH7.0,180℃水热处理3h,将水热产物用去离子水和乙醇洗涤,得到BiVO4/GOD产物。将0.1g BiVO4/GOD加到10mL(0.25mM)的铬卟啉DMF溶液中,搅拌72h后,旋蒸收集产物,得到25μmol g-1铬卟啉负载量的BiVO4/GOD/CrPyCl。向含4.0mg Pt(NH3)4(NO3)2水溶液中(40mL)加入0.2g BiVO4/GOD/CrPyCl,搅拌1h,旋蒸收集产物,在空气中120℃过夜处理,得到1.0wt%铂负载量的PtOx-BiVO4/GOD/CrPyCl产物。
应用实施例1
光催化活性测试
对实施例1-5所制备的BiVO4/GOD/CrPyCl二维复合Z型光催化材料的进行可见光全劈裂水实验,以测定其光催化活性。具体测试方法如下:
将50mg的催化剂分散在70mL的水溶液中,用盐酸调节pH3.0,超声分散5min得到均匀的悬浮液,然后用氩气反复清洗光反应器彻底除去反应器中空气,搅拌并光照(光源为300W氙灯)。采用气相色谱仪分析产生的氢气。
结果分析:
从图3可以看出,在本发明所制备的铬卟啉负载范围内,随着负载比例的提高,全劈裂水活性逐渐提高,但负载比例过高会导致产氢活性降低。其中,负载比例为20μmol g-1铬卟啉的BiVO4/GOD/CrPyCl在可见光区域内取得最佳的全劈裂水效果。图4显示20μmol g-1铬卟啉的BiVO4/GOD/CrPyCl在400,420,450,500和550单色光照下分别取得2.87%,2.53%,1.57%,0.65%和0.15%的表观量子产率。以上结果说明BiVO4/GOD/CrPyCl二维复合Z型光催化材料可实现可见光全劈裂水,具有良好的应用前景。
以上所述,仅为本发明较佳的具体实施方式,但本发明保护的范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内所做的任何修改,等同替换和改进等,均应包含在发明的保护范围之内。

Claims (9)

1.一种钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料,其特征在于:以功能化的石墨烯量子点(GOD)为模板复合钒酸铋(BiVO4)纳米片,然后将具有二维平面结构的铬卟啉类配合物(CrPyCl)与BiVO4纳米片结合,CrPyCl均匀而紧密地分布在BiVO4纳米片表面,以GOD为电子传递物,构筑了具有Z型光催化作用机制的BiVO4/GOD/CrPyCl二维复合材料;
所述钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料的制备方法如下:
(1)采用Hummers法制备氧化石墨烯,离心分离后,取上层悬浊液烘干得到超薄的氧化石墨烯,然后将该样品分别在H2S和NH3气氛中煅烧后,再依次用浓硝酸热处理和液氨水热处理后,再经离心分离,取上层悬浊液,烘干,得到功能化的石墨烯量子点(GOD);
(2)取步骤(1)的石墨烯量子点(GOD),加入到Bi(NO3)3溶液中,搅拌均匀后,然后加入NH4VO3溶液,调节溶液至pH=7.0,再在180℃水热处理3h,最后将水热产物用去离子水和乙醇洗涤,得到BiVO4/GOD产物;
(3)取步骤(2)的BiVO4/GOD,加入到溶有CrPyCl的DMF溶液中,搅拌至完全分散,旋蒸收集BiVO4/GOD/CrPyCl产物。
2.根据权利要求1所述的钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料,其特征在于:所述钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料中铬卟啉(CrPyCl)的复合比例为5.0~25.0μmol·g-1
3.根据权利要求1所述的钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料,其特征在于:所述超薄钒酸铋(BiVO4)纳米片具有暴露的(010)晶面,厚度约为3nm。
4.根据权利要求1所述的钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料,其特征在于:所述制备方法步骤(1)中在H2S和NH3气氛中煅烧的温度为600℃,煅烧时间为4h;所述步骤(1)中浓硝酸热处理温度为60℃,处理时间为12h;液氨水热处理温度为120℃,处理时间为6h。
5.根据权利要求1所述的钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料,其特征在于:所述制备方法步骤(2)中,石墨烯量子点(GOD):Bi(NO3)3:NH4VO3为120-360mg:0.5-1mmol:0.5-1mmol,其中Bi(NO3)3与NH4VO3用量相同。
6.根据权利要求1所述的钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料,其特征在于:所述制备方法步骤(3)中,每1g BiVO4/GOD,CrPyCl的添加量为5-25μmol。
7.一种PtOx负载的钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料的制备方法,其特征在于,包括以下步骤:取权利要求1所述的BiVO4/GOD/CrPyCl,加入到Pt(NH3)4(NO3)2水溶液中,搅拌至完全溶解,旋蒸收集产物,经干燥得到所述的PtOx负载的钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料。
8.根据权利要求7所述的PtOx负载的钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料的制备方法,其特征在于:所述Pt(NH3)4(NO3)2用量为BiVO4/GOD/CrPyCl的用量的1.0wt%。
9.权利要求1-3任一项所述的钒酸铋/铬卟啉/石墨烯量子点二维复合Z型光催化材料在无任何牺牲试剂存在条件下可用于可见光全劈裂水制氢的应用。
CN201910339558.5A 2019-04-25 2019-04-25 钒酸铋/铬卟啉/石墨烯量子点二维复合z型光催化材料、制备方法及应用 Active CN110038641B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910339558.5A CN110038641B (zh) 2019-04-25 2019-04-25 钒酸铋/铬卟啉/石墨烯量子点二维复合z型光催化材料、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910339558.5A CN110038641B (zh) 2019-04-25 2019-04-25 钒酸铋/铬卟啉/石墨烯量子点二维复合z型光催化材料、制备方法及应用

Publications (2)

Publication Number Publication Date
CN110038641A CN110038641A (zh) 2019-07-23
CN110038641B true CN110038641B (zh) 2020-07-10

Family

ID=67279377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910339558.5A Active CN110038641B (zh) 2019-04-25 2019-04-25 钒酸铋/铬卟啉/石墨烯量子点二维复合z型光催化材料、制备方法及应用

Country Status (1)

Country Link
CN (1) CN110038641B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2032246B1 (en) * 2022-06-22 2023-06-19 Wuhan Inst Technology Preparation method, product and application of bismuth vanadate/tetra-carboxyphenyl zinc porphyrin composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113877631B (zh) * 2021-11-16 2023-08-11 江西省科学院应用化学研究所 一种高效降解重金属离子的石墨烯量子点负载钒酸铋纳米复合材料制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256901A (ja) * 2005-03-17 2006-09-28 Nissan Motor Co Ltd 水素発生装置、水素発生方法及び水素発生システム
CN109046316A (zh) * 2018-08-31 2018-12-21 大连工业大学 一种GO-QDs/BiVO4光催化剂及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2032246B1 (en) * 2022-06-22 2023-06-19 Wuhan Inst Technology Preparation method, product and application of bismuth vanadate/tetra-carboxyphenyl zinc porphyrin composite material

Also Published As

Publication number Publication date
CN110038641A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
Guo et al. Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH
Li et al. Photocatalytic imines synthesis integrated with H2 evolution over Ni doped Mn0. 25Cd0. 75S catalyst
CN105032468B (zh) 一种Cu2O‑TiO2/g‑C3N4三元复合物及其制备和应用方法
Su et al. Recent advances in the photocatalytic reduction of carbon dioxide
CN107866234B (zh) 一种高活性ZnIn2S4/TiO2 Z体系催化剂材料制备方法
WO2021212923A1 (zh) 负载于泡沫镍表面的 p-n 异质结复合材料及其制备方法与应用
CN103990485B (zh) 氮化碳纳米粒子修饰钒酸铋复合光催化剂及其制备方法
CN110813280A (zh) 一种高分散铂负载表面修饰的黑色二氧化钛光催化剂、制备方法及其应用
CN105771948B (zh) 具有高光催化制氢性能的双壳二氧化钛催化剂的制备方法
CN106492854A (zh) 利用两步法制备具有光催化性能的复合型纳米Ag3PO4/TiO2材料及方法和应用
CN110252370A (zh) 一种二维ZnO/g-C3N4复合光催化剂的制备方法及用途
Yang et al. Sandwich-like mesoporous graphite-like carbon nitride (Meso-g-C3N4)/WP/Meso-g-C3N4 laminated heterojunctions solar-driven photocatalysts
CN104801328A (zh) 一种低温制备TiO2/g-C3N4复合光催化剂的方法
CN107159223B (zh) 一种钴酸镧/凹凸棒土/还原氧化石墨烯纳米结构复合材料及其制备方法和应用
Meng et al. Recent developments and perspectives of MXene-Based heterostructures in photocatalysis
CN106345506A (zh) 一种三元Ta2O5/rGO/g‑C3N4纳米片复合光催化剂及其制备方法和用途
CN115090313A (zh) 一种0D/3D生物炭量子点/g-C3N4异质结光催化剂的制备方法及应用
CN110038641B (zh) 钒酸铋/铬卟啉/石墨烯量子点二维复合z型光催化材料、制备方法及应用
CN111172559B (zh) 一种超薄水滑石基复合光电极及其光电分解水耦合有机物氧化反应的应用
Zhang et al. Photocatalytic conversion of 5-hydroxymethylfurfural to 2, 5-diformylfuran by S-scheme black phosphorus/CdIn 2 S 4 heterojunction
CN106000412B (zh) 一种钽酸钠基复合材料的制备方法
CN114768843A (zh) 一种co2还原-生物质氧化耦合反应用光催化剂及其制备方法
CN108014822B (zh) 一种碘化银/硒酸铋复合材料的制备方法和应用
CN110064426A (zh) 一种LixMoS2/CdS/g-C3N4复合光催化剂的制备及其分解水产氢应用
CN114192163A (zh) 一种外切36面{110}晶面K离子掺杂SrTiO3纳米光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant