CN109713402B - Solar photo-thermal lithium battery capable of working in extreme temperature range and preparation method thereof - Google Patents
Solar photo-thermal lithium battery capable of working in extreme temperature range and preparation method thereof Download PDFInfo
- Publication number
- CN109713402B CN109713402B CN201811628910.9A CN201811628910A CN109713402B CN 109713402 B CN109713402 B CN 109713402B CN 201811628910 A CN201811628910 A CN 201811628910A CN 109713402 B CN109713402 B CN 109713402B
- Authority
- CN
- China
- Prior art keywords
- thermal
- photo
- lithium
- current collector
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims description 6
- 239000003792 electrolyte Substances 0.000 claims abstract description 53
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 41
- 239000007784 solid electrolyte Substances 0.000 claims description 30
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 29
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- 239000002131 composite material Substances 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 11
- 239000003575 carbonaceous material Substances 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 230000003287 optical effect Effects 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 11
- 229910021389 graphene Inorganic materials 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000002041 carbon nanotube Substances 0.000 claims description 8
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 8
- 239000006258 conductive agent Substances 0.000 claims description 8
- 239000006230 acetylene black Substances 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 7
- 239000003273 ketjen black Substances 0.000 claims description 7
- 239000007769 metal material Substances 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- 239000002134 carbon nanofiber Substances 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- 229910003002 lithium salt Inorganic materials 0.000 claims description 6
- 159000000002 lithium salts Chemical class 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 239000003054 catalyst Substances 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 5
- 239000002086 nanomaterial Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000002388 carbon-based active material Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910002984 Li7La3Zr2O12 Inorganic materials 0.000 claims description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 3
- 239000002228 NASICON Substances 0.000 claims description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 238000000498 ball milling Methods 0.000 claims description 3
- 238000005234 chemical deposition Methods 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 239000011889 copper foil Substances 0.000 claims description 3
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000002223 garnet Substances 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 239000002608 ionic liquid Substances 0.000 claims description 3
- 230000031700 light absorption Effects 0.000 claims description 3
- 239000011244 liquid electrolyte Substances 0.000 claims description 3
- 229910000664 lithium aluminum titanium phosphates (LATP) Inorganic materials 0.000 claims description 3
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 3
- 239000002082 metal nanoparticle Substances 0.000 claims description 3
- 238000005240 physical vapour deposition Methods 0.000 claims description 3
- 239000002985 plastic film Substances 0.000 claims description 3
- 229920006255 plastic film Polymers 0.000 claims description 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(IV) oxide Inorganic materials O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 239000004408 titanium dioxide Substances 0.000 claims description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N SnO2 Inorganic materials O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 2
- 239000011149 active material Substances 0.000 claims description 2
- 238000013329 compounding Methods 0.000 claims 5
- 238000002156 mixing Methods 0.000 claims 2
- 229910017677 NH4H2 Inorganic materials 0.000 claims 1
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 239000007767 bonding agent Substances 0.000 claims 1
- 229910052593 corundum Inorganic materials 0.000 claims 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims 1
- 229910052808 lithium carbonate Inorganic materials 0.000 claims 1
- 238000004806 packaging method and process Methods 0.000 claims 1
- 238000005498 polishing Methods 0.000 claims 1
- 239000007774 positive electrode material Substances 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 238000004528 spin coating Methods 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 4
- -1 Li 2 CO 3 Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910005793 GeO 2 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- WFLRGOXPLOZUMC-UHFFFAOYSA-N [Li].O=C=O Chemical compound [Li].O=C=O WFLRGOXPLOZUMC-UHFFFAOYSA-N 0.000 description 2
- GRQJZSJOACLQOV-UHFFFAOYSA-N [Li].[N] Chemical compound [Li].[N] GRQJZSJOACLQOV-UHFFFAOYSA-N 0.000 description 2
- 235000011089 carbon dioxide Nutrition 0.000 description 2
- 239000006182 cathode active material Substances 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910009496 Li1.5Al0.5Ge1.5 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 1
- 229910015872 LiNi0.8Co0.1Mn0.1O2 Inorganic materials 0.000 description 1
- 229910015014 LiNiCoAlO Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012675 LiTiO2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- QTJOIXXDCCFVFV-UHFFFAOYSA-N [Li].[O] Chemical compound [Li].[O] QTJOIXXDCCFVFV-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000003863 metallic catalyst Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Hybrid Cells (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种可在极限温度范围工作的太阳能光热锂电池及其制备方法,属于太阳能光热电池技术领域。The invention relates to a solar photothermal lithium battery which can work in an extreme temperature range and a preparation method thereof, and belongs to the technical field of solar photothermal batteries.
背景技术Background technique
发展能够在寒冷的低温环境(~-40℃)和炎热的高温环境(~60℃)中能很好工作的锂离子电池对于能源的存储具有重要的意义。同时,军事和医疗级别的装备也进一步要求所背佩戴的电池能够在极限温度环境中操作。如航天飞机等配备的电池需要在-60℃以下。医疗灭菌装置所配备的电池需要耐120℃的高温。相比于传统的有机液体电池,固态/全固态锂离子电池不仅在高能量密度,安全性及环境友好方面展示出了巨大的优势,同时也展示出了良好的高温操作性能。The development of lithium-ion batteries that can work well in cold low temperature environments (~-40 °C) and hot high temperature environments (~60 °C) is of great significance for energy storage. At the same time, military and medical-grade equipment further requires that the batteries worn on the back can operate in extreme temperature environments. Batteries such as space shuttles need to be below -60°C. Batteries equipped with medical sterilization devices need to withstand a high temperature of 120°C. Compared with traditional organic liquid batteries, solid-state/all-solid-state lithium-ion batteries not only show great advantages in terms of high energy density, safety, and environmental friendliness, but also exhibit good high-temperature operation performance.
但是,固态/全固态电池中电解质低的室温离子电导率及差的界面电荷传输使得电池难以在室温以下工作。而对于电解质及界面处的离子迁移,温度起着决定性的作用。当温度降低到零摄氏度以下时,固态/全固态电池将损失其所有的容量/功率。However, the low room-temperature ionic conductivity and poor interfacial charge transport of electrolytes in solid-state/all-solid-state batteries make it difficult for the batteries to operate below room temperature. For the ion migration at the electrolyte and interface, temperature plays a decisive role. Solid-state/all-solid-state batteries lose all their capacity/power when the temperature drops below zero degrees Celsius.
因此,目前报道的固态/全固态电池大多都在一个相对较高的温度(55℃~70℃)下工作。发展能够在一个小于-200℃的极低温环境到200℃以上的高温环境操作的锂离子电池是当前的一个巨大挑战。Therefore, most of the solid-state/all-solid-state batteries reported so far work at a relatively high temperature (55°C to 70°C). It is a great challenge to develop lithium-ion batteries that can operate in an extremely low temperature environment of less than -200 °C to a high temperature environment of more than 200 °C.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是,克服现有技术的缺点,提供一种太阳能光热电池技术来解决锂离子电池难以在低温下操作的巨大挑战。将该技术应用到全固态锂离子电池中可以实现电池在极低温环境到高温环境的宽温度范围的有效储能。The technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a solar thermal battery technology to solve the huge challenge that lithium ion batteries are difficult to operate at low temperatures. The application of this technology to all-solid-state lithium-ion batteries can realize the effective energy storage of batteries in a wide temperature range from extremely low temperature environments to high temperature environments.
为了解决以上技术问题,本发明提供一种可在极限温度范围工作的太阳能光热锂电池,其特征在于:所述太阳能光热锂电池为封闭式锂离子电池或半开放式锂离子电池。In order to solve the above technical problems, the present invention provides a solar photothermal lithium battery that can work in an extreme temperature range, characterized in that the solar photothermal lithium battery is a closed lithium ion battery or a semi-open lithium ion battery.
所述封闭式锂离子电池:从上至下依次包括正极集流体、光热正极、电解质、负极以及负极集流体;或从上至下依次包括正极集流体、正极、电解质、负极及光热负极集流体;或依次包括正极集流体、光热正极、电解质、负极及光热负极集流体。The closed lithium-ion battery: from top to bottom, it includes positive current collector, photothermal positive electrode, electrolyte, negative electrode and negative electrode current collector; or from top to bottom, it includes positive electrode current collector, positive electrode, electrolyte, negative electrode and photothermal negative electrode. A current collector; or a positive electrode current collector, a photothermal positive electrode, an electrolyte, a negative electrode and a photothermal negative electrode current collector in sequence.
所述半开放式锂离子电池:从上至下依次包括多孔集流体、光热正极、电解质、负极以及负极集流体;或从上至下依次包括多孔集流体、正极、电解质、负极及光热负极集流体;或从上至下依次包括多孔集流体、光热正极、电解质、负极、光热负极集流体。The semi-open lithium-ion battery: from top to bottom, it includes a porous current collector, a photothermal positive electrode, an electrolyte, a negative electrode, and a negative electrode current collector; or from top to bottom, it includes a porous current collector, a positive electrode, an electrolyte, a negative electrode, and a photothermal current. A negative electrode current collector; or a porous current collector, a photothermal positive electrode, an electrolyte, a negative electrode, and a photothermal negative electrode current collector in sequence from top to bottom.
当光照从正极一侧辐照时,光热正极能够俘获太阳光并将其转换成热来提高整个电池组件的内部的温度,使得其能够在极低温环境中工作。When light is irradiated from the positive side, the photothermal positive electrode can capture sunlight and convert it into heat to increase the internal temperature of the entire battery assembly, enabling it to work in an extremely low temperature environment.
当光照从负极一侧辐照时,光热负极集流体吸收太阳光并将其转换成热经负极传递给电解质和正极,从而达到对整个电池的组件的加热,使其在极低温环境中工。When the light is irradiated from the negative side, the photothermal negative current collector absorbs sunlight and converts it into heat and transmits it to the electrolyte and the positive electrode through the negative electrode, so as to achieve the heating of the entire battery components and make it work in an extremely low temperature environment. .
当光同时从正极和负极辐照时,光热正极和光热负极集流体能同时俘获太阳光并将其转换成热来加热整个电池组件,使其在极低温环境中有效工作。When light is irradiated from both the positive and negative electrodes at the same time, the photothermal positive and photothermal negative current collectors can simultaneously capture sunlight and convert it into heat to heat the entire battery assembly, enabling it to work efficiently in extremely low temperature environments.
本发明进一步限定的技术方案为:所述极低温环境温度≥-200℃,所述封闭式锂离子电池为全固态锂电池,其工作温度范围为-200℃~200℃;所述半开放式锂离子电池为锂-气体电池,可在工作极低温-200℃环境下工作。所述太阳能光热电池能够有效地俘获太阳光并将其转变成热来加热电池组件从而使锂电池,特别是全固态电池能够在超低温到高温区的整个温度范围内有效地工作。The technical solution further defined in the present invention is: the extremely low temperature environment temperature is ≥-200°C, the closed lithium ion battery is an all-solid-state lithium battery, and its working temperature range is -200°C to 200°C; the semi-open type lithium ion battery The lithium-ion battery is a lithium-gas battery, which can work in an extremely low temperature environment of -200 °C. The solar photothermal cell can effectively capture sunlight and convert it into heat to heat the cell components so that the lithium cell, especially the all-solid-state cell, can work efficiently in the entire temperature range from ultra-low temperature to high temperature region.
进一步的,当所述封闭式锂离子电池从上至下依次为正极集流体、光热正极、电解质、负极以及负极集流体结构时,则所述正极集流体的上面设有光学窗口;当所述封闭式锂离子电池从上至下依次为正极集流体、正极、电解质、负极以及光热负极集流体时,则所述光热负极集流体的下面设有光学窗口;所述半开放式锂离子电池的光热负极集流体的下面设有光学窗口。Further, when the closed lithium-ion battery has a positive electrode current collector, a photothermal positive electrode, an electrolyte, a negative electrode and a negative electrode current collector structure from top to bottom, then the top of the positive electrode current collector is provided with an optical window; When the closed lithium-ion battery is a positive electrode current collector, a positive electrode, an electrolyte, a negative electrode and a photothermal negative electrode current collector from top to bottom, an optical window is provided under the photothermal negative electrode current collector; An optical window is provided under the photothermal negative current collector of the ion battery.
进一步的,所述正极是由质量百分数为5%~90%的钴酸锂、锰酸锂、磷酸铁锂或三元材料、5%~95%的锂盐、3%~50%的导电剂及3%~15%粘结剂复合而成的锂离子电池正极;或由质量百分比5%~85%的硫活性物、3%~50%的导电剂及3%~15%粘结剂复合而成的锂-硫电池正极;或由质量百分比3%~95%的电子导电剂、3%~95%的离子导电电解质粉末及3%~100%的催化剂复合而成的锂-气体电池正极。Further, the positive electrode is made of lithium cobalt oxide, lithium manganate, lithium iron phosphate or ternary material with a mass percentage of 5% to 90%, a lithium salt of 5% to 95%, and a conductive agent of 3% to 50%. Lithium-ion battery positive electrode composited with 3% to 15% binder; or composite of 5% to 85% of sulfur actives, 3% to 50% of conductive agent and 3% to 15% of binder by mass Lithium-sulfur battery positive electrode; or a lithium-gas battery positive electrode compounded by mass percentage of 3% to 95% of electronic conductive agent, 3% to 95% of ion conductive electrolyte powder and 3% to 100% of catalyst .
进一步的,所述电解质为有机液体电解质、固态电解质、熔融盐电解质、离子液体电解质以及锂盐中的一种或两种及以上的组合。Further, the electrolyte is one or a combination of two or more of organic liquid electrolytes, solid electrolytes, molten salt electrolytes, ionic liquid electrolytes and lithium salts.
进一步的,所述固态电解质包括但不限于钙钛矿型/反钙钛矿型的ABO3电解质,其中A=Ca,Sr,La;B=Al,Ti,离子导电率在10-7~10-3,NASICON型的Li1.5Al0.5Ge1.5P3O12/Li1.3Al0.3Ti1.7P3O12,LAGP/LATP,10-4~10-3S cm-1,石榴石型的Li7La3Zr2O12,LLZO,10-4~10-3S cm-1及硫系电解质10-4~10-2S cm-1。Further, the solid electrolyte includes but is not limited to perovskite/anti-perovskite ABO3 electrolyte, wherein A=Ca, Sr, La; B=Al, Ti, and the ionic conductivity is between 10-7 and 10- 3. NASICON type Li1.5Al0.5Ge1.5P3O12/Li1.3Al0.3Ti1.7P3O12, LAGP/LATP, 10-4~10-3S cm-1, garnet type Li7La3Zr2O12, LLZO, 10-4~10- 3S cm-1 and sulfur-based electrolytes 10-4 to 10-2S cm-1.
进一步的,所述光热正极是将具有等离子体效应的金属或金属氧化物RuO2通过物理气相沉积或化学沉积的方法组装在碳和正极活性物的复合材料上形成等离子体增强的光热正极;或直接将具有高效的光吸收和光转效应的碳材料、活性材料及粘合剂复合而成光热正极;或直接在固态电解质片上沉积金属纳米颗粒或者碳材料的光热正极。Further, the photothermal cathode is a plasma-enhanced photothermal cathode formed by assembling a metal or metal oxide RuO 2 with plasmonic effect on a composite material of carbon and cathode active material by physical vapor deposition or chemical deposition. ; Or directly combine carbon materials, active materials and binders with efficient light absorption and light conversion effects to form a photothermal positive electrode; or directly deposit metal nanoparticles or carbon materials on a solid electrolyte sheet. Photothermal positive electrode.
进一步的,所述光热负极集流体包括但不限于由炭黑、乙炔黑、SP、石墨烯Graphene、碳纳米管CNT、科琴黑或碳纳米纤维,铝、钌、金、银、铜、镍或钴金属材料及相应金属氧化物,硅、锗、锡或二氧化钛半导体材料中的一种或两种及两种以上复合而成的纳米材料。Further, the photothermal negative current collector includes but is not limited to carbon black, acetylene black, SP, graphene Graphene, carbon nanotube CNT, Ketjen black or carbon nanofiber, aluminum, ruthenium, gold, silver, copper, Nickel or cobalt metal materials and corresponding metal oxides, silicon, germanium, tin or titanium dioxide semiconductor materials, one or two or more composite nanomaterials.
进一步的,所述光热负极集流体,是由独立的光热材料和负极集流体复合而成;所述光热材料包括光热转换膜,所述光热转换膜为所述金属材料的纳米结构与所述碳材料中的一种或两种及以上的复合材料。Further, the photothermal negative electrode current collector is composed of an independent photothermal material and a negative electrode current collector; the photothermal material includes a photothermal conversion film, and the photothermal conversion film is a nanometer of the metal material. The structure and one or two or more of the carbon materials in the composite material.
进一步的,所述负极为***型负极、合金类负极以及转换负极中的一种或者两种及以上的复合。Further, the negative electrode is one or a combination of two or more of an insertion-type negative electrode, an alloy-type negative electrode, and a conversion negative electrode.
本发明还公开了一种可在极限温度范围工作的太阳能光热锂电池的制备方法,尤其是一种基于LAGP固态电解质的太阳能光热全固态锂-空气电池,制备方法包括以下几个步骤:The invention also discloses a preparation method of a solar photothermal lithium battery that can work in an extreme temperature range, especially a solar photothermal all-solid-state lithium-air battery based on LAGP solid electrolyte. The preparation method includes the following steps:
第一步、将GeO2、Li2CO3、Al2O3和NH4H2PO4的粉末按照质量比0.7:0.3:1.8:4混合,反复三次球磨和退火,将所得粉末压制成LAGP固态电解质圆片,将LAGP固态电解质圆片在900°再退火1小时后打磨抛光待用;The first step is to mix the powders of GeO 2 , Li 2 CO 3 , Al 2 O 3 and NH 4 H 2 PO 4 according to the mass ratio of 0.7:0.3:1.8:4, repeat the ball milling and annealing three times, and press the obtained powder into LAGP For solid electrolyte wafers, LAGP solid electrolyte wafers are annealed at 900° for 1 hour and then ground and polished for use;
第二步、将RuO2、LAGP粉末和CNT按照质量百分比10:100:1的比例混合后加入粘结剂5%,加入适量的N-甲基吡咯烷酮搅拌均匀后将溶液旋涂在LAGP固态电解质片上即可得到制备有光热正极的固态电解质片;The second step: Mix RuO 2 , LAGP powder and CNT according to the mass percentage of 10:100:1, add 5% binder, add an appropriate amount of N-methylpyrrolidone and stir evenly, spin the solution on the LAGP solid electrolyte A solid electrolyte sheet prepared with a photothermal positive electrode can be obtained on the sheet;
第三步、在Ar气氛下500℃退火15min;The third step, annealing at 500℃ for 15min in Ar atmosphere;
第四步、从上至下将铝网正极集流体、涂有光热正极的LAGP固态电解质片、金属锂负极以及铜箔负极集流体采用铝塑膜封装成软包电池即可。The fourth step is to encapsulate the aluminum mesh positive current collector, the LAGP solid electrolyte sheet coated with the photothermal positive electrode, the metal lithium negative electrode, and the copper foil negative current collector with aluminum-plastic film from top to bottom to form a soft pack battery.
本发明的有益效果是:本发明首次提出了太阳能光热电池技术,特别是太阳能光热固态/全固态锂离子电池技术。采用固态电解质的固态/全固态电池设计保障了该电池体系在高温下优良的循环性能。将光热技术引入锂离子电池当中首次提出利用太阳能光热锂电池技术来解决电极材料电解质/固态电解质及其界面处在低温下锂子迁移率低的关键挑战,开发能够在极低温下工作的固态/全固态锂离子电池。本发明是通过俘获太阳光并将其转换成热来提高锂离子电池在低温下电解质及界面处的离子迁移,从而使其能够在超低温下工作。对于固态/全固态电池还可以实现在极低温到高温的宽温区范围内的操作。在本发明的光热电池结构中,对于从正极测照光的结构,光热正极直接与电解质接触,可以将转换的热快速且高效地传递给电解质、负极乃至整个电池组件从而使电池在超低温下也保持一个相对高的工作温度。对于从负极一侧打光的电池结构,除了也使电解质和电极材料保持一个相高的工作温度外,如果负极使用金属锂,光热负极集流体产生的热可以直接传递给负极也同时在一定程度上提高金属锂负极的温度来到达熔融金属锂枝晶抑制负极金属锂枝晶的生长。本发明的太阳能光热锂电池甚至可以在-200℃的极低温环境到200℃以上的高温环境工作,从而实现锂离子电池在宽的极限温度范围内良好的循环;该技术将是未来锂电池发展方向的一个巨大进步,值得在航天、医疗等极限环境下推广使用。The beneficial effects of the present invention are as follows: the present invention proposes the solar photothermal battery technology for the first time, especially the solar photothermal solid-state/all-solid-state lithium-ion battery technology. The solid-state/all-solid-state battery design with solid electrolyte ensures the excellent cycle performance of the battery system at high temperature. The introduction of photothermal technology into lithium-ion batteries is the first to propose the use of solar photothermal lithium battery technology to solve the key challenge of electrode material electrolyte/solid electrolyte and its interface with low lithium mobility at low temperatures. Solid-state/all-solid-state lithium-ion batteries. The present invention is to improve the ion migration of lithium ion battery at low temperature electrolyte and interface by capturing sunlight and converting it into heat, so that it can work at ultra-low temperature. For solid-state/all-solid-state batteries, operation in a wide temperature range from extremely low temperature to high temperature can also be achieved. In the photothermal battery structure of the present invention, for the structure in which light is measured from the positive electrode, the photothermal positive electrode is directly in contact with the electrolyte, and the converted heat can be quickly and efficiently transferred to the electrolyte, the negative electrode and even the entire battery assembly, so that the battery can operate at an ultra-low temperature. A relatively high operating temperature is also maintained. For the battery structure illuminated from the negative electrode side, in addition to keeping the electrolyte and electrode material at a relatively high working temperature, if the negative electrode uses metallic lithium, the heat generated by the photothermal negative electrode current collector can be directly transferred to the negative electrode. The temperature of the metal lithium anode is increased to a certain extent to reach the molten metal lithium dendrite and inhibit the growth of the anode metal lithium dendrite. The solar photothermal lithium battery of the present invention can even work in a very low temperature environment of -200°C to a high temperature environment above 200°C, thereby realizing a good cycle of the lithium ion battery in a wide extreme temperature range; this technology will be the future lithium battery. A huge progress in the development direction, it is worth promoting and using in extreme environments such as aerospace and medical care.
附图说明Description of drawings
图1为本发明实施例1的四种电池结构示意图。FIG. 1 is a schematic structural diagram of four types of batteries according to
其中图a和图b为从正极一侧打光的电池结构,图c和图d为从负极一侧打光的电池结构。Among them, Figures a and b are the battery structures illuminated from the positive side, and Figures c and d are the battery structures illuminated from the negative side.
图2为本发明实施例LAGP固态电解质的太阳能光热全固态锂-空气电池在极限温度下的工作性能测试示意图。FIG. 2 is a schematic diagram of a working performance test of a solar photothermal all-solid-state lithium-air battery with a LAGP solid-state electrolyte according to an embodiment of the present invention at extreme temperatures.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明做进一步的说明。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
实施例1Example 1
本发明提供的可在极限温度范围工作的太阳能光热锂电池,该电池在极限温度下的工作原理基于光诱导的热效应。该电池可以通过正极一侧俘获太阳能光,也可以通过负极一侧俘获太阳光。The solar photothermal lithium battery provided by the invention can work in the extreme temperature range, and the working principle of the battery in the extreme temperature range is based on the light-induced thermal effect. The cell can capture solar light through the positive side, and can also capture sunlight through the negative side.
可以是封闭式全固态锂离子电池或半开放式锂-气体离子电池。It can be a closed all-solid-state lithium-ion battery or a semi-open lithium-gas-ion battery.
封闭式锂离子电池有三种结构形式:There are three structural forms of closed lithium-ion batteries:
S1.从上至下依次包括正极集流体、光热正极、电解质、负极以及负极集流体。S1. From top to bottom, it includes a positive electrode current collector, a photothermal positive electrode, an electrolyte, a negative electrode, and a negative electrode current collector.
S2.从上至下依次包括正极集流体、正极、电解质、负极以及光热负极集流体。S2. Include a positive electrode current collector, a positive electrode, an electrolyte, a negative electrode and a photothermal negative electrode current collector in sequence from top to bottom.
S3.从上至下依次包括正极集流体、光热正极、电解质、负极以及光热负极集流体;S3. From top to bottom, it includes a positive electrode current collector, a photothermal positive electrode, an electrolyte, a negative electrode, and a photothermal negative electrode current collector;
半开放式锂离子电池也有三种结构形式:There are also three structural forms of semi-open lithium-ion batteries:
D1.从上至下依次包括多孔集流体、光热正极、电解质、负极以及负极集流体。D1. From top to bottom, it includes a porous current collector, a photothermal positive electrode, an electrolyte, a negative electrode, and a negative electrode current collector.
D2.从上至下依次包括多孔集流体、正极、电解质、负极以及光热负极集流体。D2. From top to bottom, it includes a porous current collector, a positive electrode, an electrolyte, a negative electrode and a photothermal negative electrode current collector.
D3.从上至下依次包括多孔集流体、光热正极、电解质、负极以及光热负极集流体。D3. From top to bottom, it includes a porous current collector, a photothermal positive electrode, an electrolyte, a negative electrode, and a photothermal negative electrode current collector.
当光照从正极一侧辐照时,S1、S3、D1、D3结构的电池光热正极能够吸收太阳光并将其转换成热来提高电解质或整个电池组件的温度;当光照从负极一侧辐照时,S2、S3、D2、D3结构的电池光热负极集流体能够吸收太阳光并将其转换成热经负极传递给电解质和正极,从而达到对整个电池的组件的加热;当光同时从正极和负极两侧辐照时,光热正极和光热负极集流体能同时俘获太阳光并将其转换成热来加热整个电池组件,使其在极低温环境中有效工作。When light is radiated from the positive side, the photothermal positive electrodes of the S1, S3, D1, D3 structures can absorb sunlight and convert it into heat to increase the temperature of the electrolyte or the entire battery assembly; when the light is radiated from the negative side When illuminated, the solar thermal anode current collectors of S2, S3, D2, D3 structures can absorb sunlight and convert it into heat and transfer it to the electrolyte and the anode through the anode, so as to achieve heating of the entire battery components; When irradiated on both sides of the positive electrode and negative electrode, the photothermal positive electrode and photothermal negative electrode current collector can simultaneously capture sunlight and convert it into heat to heat the entire battery assembly, making it work effectively in an extremely low temperature environment.
本发明的光照光源可以是太阳光,也可以是AM1.5和氙灯,光照功率从103W m-2到106W m2。The illumination light source of the present invention can be sunlight, or AM1.5 and xenon lamps, and the illumination power is from 10 3 W m -2 to 10 6 W m 2 .
所述封闭式锂离子电池和半开放式锂离子电池可在极限温度下工作,尤其是太阳能光热固态/全固态锂离子电池,其工作温度范围可达到-200℃~200℃。The closed lithium-ion battery and the semi-open lithium-ion battery can work under extreme temperature, especially the solar photothermal solid-state/all-solid-state lithium-ion battery, whose working temperature range can reach -200°C to 200°C.
当封闭式锂离子电池从上至下依次为正极集流体、光热正极、电解质、负极以及负极集流体结构时,则所述正极集流体的上面设有光学窗口。When the closed lithium-ion battery has a positive electrode current collector, a photothermal positive electrode, an electrolyte, a negative electrode and a negative electrode current collector structure from top to bottom, an optical window is provided on the top of the positive electrode current collector.
当所述封闭式锂离子电池从上至下依次为正极集流体、正极、电解质、负极以及光热负极集流体时,则所述光热负极集流体的下面设有光学窗口。When the closed lithium-ion battery is a positive electrode current collector, a positive electrode, an electrolyte, a negative electrode and a photothermal negative electrode current collector in order from top to bottom, an optical window is provided below the photothermal negative electrode current collector.
半开放式锂离子电池的光热负极集流体的下面设有光学窗口。本实施中的光学窗口采用厚度在0.2mm到1cm之间的石英、透明玻璃等透光性好的材料。An optical window is provided under the photothermal negative current collector of the semi-open lithium-ion battery. The optical window in this embodiment adopts materials with good light transmittance such as quartz and transparent glass with a thickness between 0.2 mm and 1 cm.
作为优选,可以为锂离子电池用的由钴酸锂、锰酸锂、磷酸铁锂、三元材料即LiNi0.8Co0.1Mn0.1O2、LiNi0.5Co0.2Mn0.3O2,LiNi0.5Co0.2Mn0.2O2,LiNiCoMnO2,LiNiCoAlO2等中的一种,占比5%~90%,锂盐LiBF4、LiPF6等,占比5%~95%,导电剂炭黑、乙炔黑、SP、石墨烯、碳纳米管、科琴黑、碳纳米纤维等中的一种或两种及以上的复合,占比3%~50%及粘结剂PVDF,PVA等3%~15%复合而成的正极。也可以是锂-硫电池用的由硫活性物,占比5%~85%、导电剂炭黑、乙炔黑、SP、石墨烯、碳纳米管、科琴黑、碳纳米纤维等中的一种或两种及以上的复合,占比3%~50%及粘结剂PVA,PVDF等,占比3%~15%复合而成的正极。还可以是锂-气体电池锂-空气、锂-氧气、锂-二氧化碳、锂-氮气电池用的由电子导电剂炭黑、乙炔黑、SP、石墨烯、碳纳米管、科琴黑、碳纳米纤维等中的一种或两种及以上的复合,占比3%~9%,离子导电的电解质粉末Li1.5Al0.5Ge1.5P3O12/Li1.3Al0.3Ti1.7P3O12、Li7La3Zr2O12、Perovskite/Antiperovskite ABO3A=Ca,Sr,La;B=Al,Ti等,占比3%~95%及催化剂Ru,RuO2,Au,Fe、Ni、Co、RuO2、NiO等过渡金属化合物和非贵金属催化剂及N-掺杂碳材料等在内的非金属催化剂等,占比3%~100%复合而成的正极。Preferably, it can be lithium cobalt oxide, lithium manganate, lithium iron phosphate, and ternary materials for lithium ion batteries, namely LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.5 Co 0.2 Mn 0.2 O 2 , one of LiNiCoMnO 2 , LiNiCoAlO 2 , etc., accounting for 5% to 90%, lithium salts LiBF 4 , LiPF 6 , etc., accounting for 5% to 95%, conductive agent carbon black, acetylene black, SP, A compound of one or two or more of graphene, carbon nanotubes, Ketjen black, carbon nanofibers, etc., accounting for 3% to 50% and binders such as PVDF, PVA, etc. 3% to 15%. the positive pole. It can also be one of the sulfur actives used in lithium-sulfur batteries, accounting for 5% to 85%, conductive agent carbon black, acetylene black, SP, graphene, carbon nanotubes, Ketjen black, carbon nanofibers, etc. One or two or more composites, accounting for 3% to 50%, and binders PVA, PVDF, etc., accounting for 3% to 15% of the composite positive electrode. It can also be carbon black, acetylene black, SP, graphene, carbon nanotubes, Ketjen black, carbon nanotubes for lithium-gas batteries, lithium-air, lithium-oxygen, lithium-carbon dioxide, and lithium-nitrogen batteries. A composite of one or two or more of fibers, etc., accounting for 3% to 9%, ion-conductive electrolyte powder Li 1.5 Al 0.5 Ge 1.5 P 3 O 12 /Li 1.3 Al 0.3 Ti 1.7 P 3 O 12 , Li 7 La 3 Zr 2 O 12 , Perovskite/Antiperovskite ABO 3 A=Ca, Sr, La; B=Al, Ti, etc., accounting for 3% to 95% and catalysts Ru, RuO 2 , Au, Fe, Ni, Co, The positive electrode is composed of transition metal compounds such as RuO 2 and NiO, and non-precious metal catalysts and non-metallic catalysts including N-doped carbon materials, accounting for 3% to 100%.
作为优选,本发明的电解质为有机液体电解质、固态电解质、熔融盐电解质、离子液体电解质以及锂盐中的一种或两种及以上的组合。Preferably, the electrolyte of the present invention is one or a combination of two or more of organic liquid electrolytes, solid electrolytes, molten salt electrolytes, ionic liquid electrolytes and lithium salts.
作为优选,固态电解质包括但不限于钙钛矿型/反钙钛矿型的ABO3电解质,其中A=Ca,Sr,La;B=Al,Ti,离子导电率在10-7~10-3,NASICON型的Li1.5Al0.5Ge1.5P3O12/Li1.3Al0.3Ti1.7P3O12,LAGP/LATP,10-4~10-3S cm-1,石榴石型的Li7La3Zr2O12,LLZO,10-4~10-3S cm-1及硫系电解质10-4~10-2S cm-1。Preferably, the solid electrolyte includes but is not limited to perovskite/anti-perovskite ABO3 electrolyte, wherein A=Ca, Sr, La; B=Al, Ti, the ionic conductivity is 10-7~10-3, NASICON type Li1.5Al0.5Ge1.5P3O12/Li1.3Al0.3Ti1.7P3O12, LAGP/LATP, 10-4~10-3S cm-1, garnet type Li7La3Zr2O12, LLZO, 10-4~10-3S cm -1 and sulfur-based electrolyte 10-4 to 10-2S cm-1.
作为优选,光热正极可以是将具有等离子体效应的金属Al、Ru、Au、Ag、Cu、Ni、Co等/金属氧化物RuO2通过物理气相沉积或化学沉积的方法组装在碳和正极活性物的复合材料上形成等离子体增强的光热正极。也可以是直接将具有高效的光吸收和和光转效应的碳材料炭黑、乙炔黑、SP、石墨烯、碳纳米管、科琴黑、碳纳米纤维等中的一种或两种及以上的复合与活性材料及粘合剂复合而成光热正极。对于锂-气体电池,还可以是直接在固态电解质片上沉积金属纳米颗粒或者碳材料的光热正极。Preferably, the photothermal cathode can be made of metal Al, Ru, Au, Ag, Cu, Ni, Co, etc. with plasmonic effect/metal oxide RuO2 assembled on carbon and cathode active material by physical vapor deposition or chemical deposition method A plasmonic-enhanced photothermal cathode was formed on the composite. It can also be one or two or more of carbon black, acetylene black, SP, graphene, carbon nanotubes, Ketjen black, carbon nanofibers, etc., which have efficient light absorption and light conversion effects. The composite is combined with the active material and the binder to form a photothermal positive electrode. For lithium-gas batteries, it can also be a photothermal cathode in which metal nanoparticles or carbon materials are deposited directly on the solid electrolyte sheet.
作为优选,光热负极集流体包括但不限于由炭黑、乙炔黑、SP、石墨烯Graphene、碳纳米管CNT、科琴黑、碳纳米纤维等碳材料,铝Al、钌Ru、金Au、银Ag、铜Cu、镍Ni、钴Co等金属材料及相应金属氧化物,硅Si、锗Ge、锡Sn、二氧化钛TiO2等半导体材料中的一种或两种及两种以上复合而成的纳米材料。光照时,该光热负极集流体膜可将光转换成热对负极、固态电解质和正极进行加热。Preferably, the photothermal anode current collector includes but is not limited to carbon black, acetylene black, SP, graphene Graphene, carbon nanotube CNT, Ketjen black, carbon nanofiber and other carbon materials, aluminum Al, ruthenium Ru, gold Au, Metal materials such as silver Ag, copper Cu, nickel Ni, cobalt Co and other metal materials and corresponding metal oxides, one or two or more than two kinds of semiconductor materials such as silicon Si, germanium Ge, tin Sn, titanium dioxide TiO 2 are compounded. nanomaterials. When illuminated, the photothermal anode current collector film can convert light into heat to heat the anode, the solid electrolyte and the cathode.
作为优选,所述光热负极集流体,还可以是由独立的光热材料和负极集流体复合而成;所述光热材料包括光热转换膜,所述光热转换膜为所述金属材料的纳米结构与所述碳材料中的一种或两种及以上的复合材料。Preferably, the photothermal negative electrode current collector can also be composed of an independent photothermal material and a negative electrode current collector; the photothermal material includes a photothermal conversion film, and the photothermal conversion film is the metal material A composite material of the nanostructure and one or two or more of the carbon materials.
作为优选,负极可以为***型负极碳、石墨烯、TiO2、LiTiO2等,合金类负极Si、Ge、Sn、Al等,转换负极(Fe2O3、CuO、CoO2等中的一种或者两种及以上的复合。Preferably, the negative electrode can be an insertion-type negative electrode carbon, graphene, TiO2, LiTiO2, etc., an alloy negative electrode Si, Ge, Sn, Al, etc., a conversion negative electrode (Fe2O3, CuO, CoO2, etc. one or two or more of them complex.
本发明的太阳能光热锂电子电池,包括但不限于传统的基于有机液体的锂离子电池,锂-气体电池,固态/全固态锂离子电池,固态/全固态锂-硫电池,固态/全固态锂-空气电池,固态/全固态锂-二氧化碳电池,固态/全固态锂-氮气电池以及熔融盐电池和锂-气体电池等在内的相关电池极其混合型电池。The solar photothermal lithium electronic battery of the present invention includes, but is not limited to, traditional organic liquid-based lithium-ion batteries, lithium-gas batteries, solid-state/all-solid-state lithium-ion batteries, solid-state/all-solid-state lithium-sulfur batteries, solid-state/all-solid-state batteries Lithium-air batteries, solid-state/all-solid-state lithium-carbon dioxide batteries, solid-state/all-solid-state lithium-nitrogen batteries, and related batteries such as molten salt batteries and lithium-gas batteries are extremely hybrid batteries.
在低温下,该电池通过设计光热正极图1a,1b或光热负极集流体图1c,1d来有效地俘获太阳光并将其转换成热传递给包括电解质/固态电解质,电极材料和集流体在内的所有电池组件。使得整个电池即使是在极低温外部环境下也能够保持一个较高的工作温度和良好的循环性能。在室温下,光产生的热能够使得电池保持在一个更高温的工作环境,提高了电池中电荷的存储和传输,能有效提高电池的容量/能量密度及循环性能。At low temperature, this cell effectively captures sunlight and converts it into heat by designing photothermal cathodes Fig. 1a, 1b or photothermal anode current collectors Fig. 1c, 1d All battery components included. The whole battery can maintain a high working temperature and good cycle performance even in an extremely low temperature external environment. At room temperature, the heat generated by light can keep the battery in a higher temperature working environment, improve the storage and transfer of charge in the battery, and effectively improve the capacity/energy density and cycle performance of the battery.
本实施例公开了一种基于LAGP固态电解质的太阳能光热全固态锂-空气电池,制备方法包括以下几个步骤:This embodiment discloses a solar photothermal all-solid-state lithium-air battery based on LAGP solid electrolyte, and the preparation method includes the following steps:
第一步、将GeO2、Li2CO3、Al2O3和NH4H2PO4的粉末按照质量百分比0.7:0.3:1.8:4混合,反复三次球磨和退火,将所得粉末压制成直径为1.6cm的LAGP固态电解质圆片,将LAGP固态电解质圆片在900°再退火1小时后打磨抛光待用;The first step is to mix the powders of GeO 2 , Li 2 CO 3 , Al 2 O 3 and NH 4 H 2 PO 4 according to the mass percentage of 0.7:0.3:1.8:4, repeat the ball milling and annealing three times, and press the obtained powder into a diameter It is a 1.6cm LAGP solid electrolyte wafer, and the LAGP solid electrolyte wafer is annealed at 900° for 1 hour and then ground and polished for use;
第二步、将RuO2、LAGP粉末和CNT按照质量百分比10:100:1的比例混合后加入粘结剂5%,加入适量的N-甲基吡咯烷酮搅拌均匀后将溶液旋涂在LAGP固态电解质片上即可得到制备有光热正极的固态电解质片;The second step: Mix RuO 2 , LAGP powder and CNT according to the mass percentage of 10:100:1, add 5% binder, add an appropriate amount of N-methylpyrrolidone and stir evenly, spin the solution on the LAGP solid electrolyte A solid electrolyte sheet prepared with a photothermal positive electrode can be obtained on the sheet;
第三步、在Ar气氛下500℃退火15min;The third step, annealing at 500℃ for 15min in Ar atmosphere;
第四步、从上至下将铝网正极集流体、涂有光热正极的LAGP固态电解质片、金属锂负极以及铜箔负极集流体采用铝塑膜封装成软包电池即可。The fourth step is to encapsulate the aluminum mesh positive current collector, the LAGP solid electrolyte sheet coated with the photothermal positive electrode, the metal lithium negative electrode, and the copper foil negative current collector with aluminum-plastic film from top to bottom to form a soft pack battery.
以下是该LAGP固态电解质的太阳能光热全固态锂-空气电池在极限温度下的工作性能测试:The following is the working performance test of the solar photothermal all-solid-state lithium-air battery of the LAGP solid-state electrolyte at extreme temperatures:
图2a为光热全固态锂-空气电池在干冰-78℃到-73℃环境中的循环性能;图(2b)在干冰中稳定在-78℃到-73℃全固态光热电池各部分组件的温度随光照时间变化。Figure 2a shows the cycling performance of the photothermal all-solid-state Li-air battery in dry ice -78°C to -73°C environment; Figure (2b) is stable in dry ice at -78°C to -73°C for all solid-state photothermal battery components The temperature varies with exposure time.
由图2a可知全固态电池在-78℃的温度下展示出了杰出的循环性能,其光热正极通过俘获太阳光并转换成热来把电池内部从-78℃的超低温加热到70℃,展示出了有效地光加热效果。由此将电池内部温度进一步降到文献报道的20℃及以下,我们采用的光热全固态电池的外部工作环境温度可从-78℃进一步降低。加上当前成熟的绝热和聚光技术实现全固态电池在-200℃的操作是完全可行的。如天津大学的Ye等,Adv.EnergyMater.2017,7,1601657报道了Ru纳米颗作为光热催化剂还原CO2的工作,在Xe灯照射Ru纳米颗粒在不同载体上的表面温度高达280℃到350℃。麻省理工的Chen等,NatureEnergy.2016,16126提出了热聚集的概念,并通过聚合物泡沫实现了一个太阳下100℃水蒸汽温度。It can be seen from Figure 2a that the all-solid-state battery exhibits excellent cycle performance at a temperature of -78 °C. Out of the effective light heating effect. As a result, the internal temperature of the battery is further reduced to 20 °C and below reported in the literature, and the external working environment temperature of the photothermal all-solid-state battery we use can be further reduced from -78 °C. Coupled with the current mature adiabatic and concentrating technologies, it is completely feasible to realize the operation of all-solid-state batteries at -200 °C. For example, Ye et al. of Tianjin University, Adv. EnergyMater. 2017, 7, 1601657 reported the work of Ru nanoparticles as photothermal catalysts for CO reduction, and the surface temperature of Ru nanoparticles on different supports under Xe lamp irradiation was as high as 280 °C to 350 °C °C. Chen et al. of MIT, Nature Energy. 2016, 16126 proposed the concept of heat accumulation, and achieved a water vapor temperature of 100 °C under a sun through polymer foam.
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。In addition to the above-described embodiments, the present invention may also have other embodiments. All technical solutions formed by equivalent replacement or equivalent transformation fall within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811628910.9A CN109713402B (en) | 2018-12-28 | 2018-12-28 | Solar photo-thermal lithium battery capable of working in extreme temperature range and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811628910.9A CN109713402B (en) | 2018-12-28 | 2018-12-28 | Solar photo-thermal lithium battery capable of working in extreme temperature range and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109713402A CN109713402A (en) | 2019-05-03 |
CN109713402B true CN109713402B (en) | 2020-07-03 |
Family
ID=66259377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811628910.9A Active CN109713402B (en) | 2018-12-28 | 2018-12-28 | Solar photo-thermal lithium battery capable of working in extreme temperature range and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109713402B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021099981A (en) * | 2019-12-19 | 2021-07-01 | 住友ベークライト株式会社 | Sheet for forming solid electrolyte layer, battery, and manufacturing method of battery |
CN113422103B (en) * | 2021-06-21 | 2022-08-16 | 南京大学 | Interface layer for high-temperature solid lithium metal battery and preparation method |
CN114300787B (en) * | 2021-12-29 | 2024-03-22 | 吉林大学 | Light-assisted wide-temperature solid lithium air battery and preparation method thereof |
CN114552074A (en) * | 2022-03-04 | 2022-05-27 | 哈尔滨工业大学 | A room temperature polymer-based solid-state rechargeable metal-air battery |
CN115566251A (en) * | 2022-09-29 | 2023-01-03 | 重庆邮电大学 | Flexible all-solid-state photothermal lithium-sulfur battery that can work at low temperature and its preparation method |
CN116143217A (en) * | 2023-01-03 | 2023-05-23 | 重庆邮电大学 | Preparation method of multifunctional light-heat conversion film with semiconductor-metal nanowire structure |
CN116130607B (en) * | 2023-03-15 | 2023-07-14 | 哈尔滨工业大学 | Preparation method and application of a solid sulfur positive electrode |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100987257B1 (en) * | 2008-01-25 | 2010-10-12 | 주식회사 이엠따블유에너지 | Heating device for batteries and battery assembly comprising same |
WO2014156904A1 (en) * | 2013-03-25 | 2014-10-02 | 大日本印刷株式会社 | Battery packaging material |
US10644364B2 (en) * | 2016-10-17 | 2020-05-05 | David Fortenbacher | Self-heating cells and self-heating batteries including the self-heating cells |
CN108069409B (en) * | 2017-11-24 | 2019-11-08 | 中国科学院深圳先进技术研究院 | A kind of black phosphorene airgel and preparation method thereof |
CN108365259B (en) * | 2018-02-08 | 2020-10-27 | 南京大学 | Lithium ion solid electrolyte and preparation method and application thereof |
CN108658119B (en) * | 2018-05-21 | 2020-07-31 | 南京工业大学 | Method and application for preparing copper sulfide nanosheets and their composites by low temperature vulcanization technology |
CN108682819A (en) * | 2018-05-22 | 2018-10-19 | 天津新动源科技有限公司 | A kind of positive electrode directly coated with solid electrolyte and its process |
-
2018
- 2018-12-28 CN CN201811628910.9A patent/CN109713402B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109713402A (en) | 2019-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109713402B (en) | Solar photo-thermal lithium battery capable of working in extreme temperature range and preparation method thereof | |
He et al. | V 2 O 5 nanosheets supported on 3D N-doped carbon nanowall arrays as an advanced cathode for high energy and high power fiber-shaped zinc-ion batteries | |
Liu et al. | Advanced rechargeable lithium-ion batteries based on bendable ZnCo 2 O 4-urchins-on-carbon-fibers electrodes | |
Wu et al. | Rocking-chair Na-ion hybrid capacitor: a high energy/power system based on Na 3 V 2 O 2 (PO 4) 2 F@ PEDOT core–shell nanorods | |
CN105914374B (en) | Composite material of nitrogen-doped carbon cladding selenizing molybdenum/graphene nucleocapsid array interlayer structure and its preparation method and application | |
US20250006902A1 (en) | Oxide composite positive electrode material coated with borate in situ, preparation method, and use | |
Lv et al. | Key challenges, recent advances and future perspectives of rechargeable lithium-sulfur batteries | |
CN110581268B (en) | Self-supporting binary metal sulfide composite material and preparation method thereof, negative electrode of lithium ion battery, and lithium ion battery | |
CN106935860A (en) | A kind of carbon intercalation V2O3Nano material, its preparation method and application | |
CN106159318A (en) | Novel slice type solid-state serondary lithium battery that garnet-type solid electrolyte supports and preparation method thereof | |
He et al. | Construction of cobalt sulfide/molybdenum disulfide heterostructure as the anode material for sodium ion batteries | |
Liu et al. | Iron doping of NiSe2 nanosheets to accelerate reaction kinetics in sodium-ion half/full batteries | |
CN107742702A (en) | Three-dimensional "face-line-face" structure of carbon nanotubes and tin dioxide modified titanium carbide lithium ion battery negative electrode material and preparation method | |
Yuan et al. | High-performance CuO/Cu composite current collectors with array-pattern porous structures for lithium-ion batteries | |
CN108346783A (en) | A kind of layered structure MoSxSe2-x/ graphene negative material and preparation method thereof | |
CN103219491A (en) | Copper sulfide anode and preparation method thereof | |
CN102610824A (en) | Preparation method of lithium titanate (Li4Ti5O12)/Ag composite lithium-ion negative electrode materials | |
You et al. | Synthesis of homogeneous CaMoO 4 microspheres with nanopits for high-capacity anode material in Li-ion battery | |
CN105428612B (en) | A kind of nanometer MoO2‑MoSe2@SFC lithium ion battery negative materials and preparation method thereof | |
CN110304658B (en) | Nb for lithium ion battery18W16O93Negative electrode material and preparation method thereof | |
CN112952047A (en) | Preparation method of carbon-loaded potassium vanadate and application of carbon-loaded potassium vanadate in potassium ion battery | |
CN102969493B (en) | For the preparation method of the negative material of non-aqueous secondary batteries, non-aqueous secondary batteries negative pole and non-aqueous secondary batteries | |
CN115566251A (en) | Flexible all-solid-state photothermal lithium-sulfur battery that can work at low temperature and its preparation method | |
CN105591107B (en) | A kind of ultra-thin stratiform V5S8And preparation method thereof with the application in lithium ion/sodium-ion battery | |
CN102629685B (en) | Preparation method of Cu2O/Cu/PPy nanowire composite lithium ion battery negative material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |