CN109637829A - 一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法 - Google Patents

一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法 Download PDF

Info

Publication number
CN109637829A
CN109637829A CN201811595426.0A CN201811595426A CN109637829A CN 109637829 A CN109637829 A CN 109637829A CN 201811595426 A CN201811595426 A CN 201811595426A CN 109637829 A CN109637829 A CN 109637829A
Authority
CN
China
Prior art keywords
porous carbon
sodium alginate
diamine compounds
doping porous
diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811595426.0A
Other languages
English (en)
Other versions
CN109637829B (zh
Inventor
赵玉来
隗猛之
朱中正
肖龙强
侯琳熙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201811595426.0A priority Critical patent/CN109637829B/zh
Publication of CN109637829A publication Critical patent/CN109637829A/zh
Application granted granted Critical
Publication of CN109637829B publication Critical patent/CN109637829B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法,其是先将二胺类化合物加盐酸酸化配成酸化二胺化合物溶液,然后在搅拌条件下,通过静电滴液的方法将海藻酸钠溶液滴入酸化二胺化合物溶液中,并经搅拌、过滤得到凝胶微球,再将其洗涤、冷冻干燥后,在氮气保护和一定温度下经碳化和氢氧化钾活化得到所述氮掺杂多孔碳。本发明方法可通过改变二胺类化合物的种类及其溶液浓度,制备一系列具有不同孔结构和氮含量的多孔碳,以所得多孔碳作为电极材料制备的超级电容器表现出良好的电化学性能。

Description

一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的 方法
技术领域
本发明属于高分子材料制备技术领域,具体涉及一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法。
背景技术
超级电容器是指兼有静电电容器和电池特性的一种新型储能装置,其能提供比静电电容器更高的能量密度、比电池更高的功率密度和更长的循环寿命。超级电容器电极材料主要包括碳材料、导电聚合物、金属氧化物及其复合材料等,其中碳材料(如活性碳、碳纳米管、碳纤维、石墨烯等)具有原料丰富、价格低廉、比表面大、导电性好、化学稳定性高等优点,因而被认为是最有前景的电极材料之一。
作为储能器件,超级电容器虽具有优于燃料电池和锂离子电池的功率密度,但是其能量密度却远不及电池。为了进一步提高多孔碳基超级电容器的能量密度,一方面可通过对电极材料进行杂原子掺杂,来提高电极材料表面极性和润湿性,同时增加赝电容、提高湿润性;另一方面可通过调节碳材料孔径及孔分布来增加碳材料的比表面积。
生物质材料(如海藻酸钠、水稻、鸡蛋壳、纤维素等)具有来源广泛、成本低、环境友好等优点,因此是生物质碳在超级电容器、锂离子电池等领域被广泛应用。海藻酸钠是从褐藻中提取出的天然多糖,含有大量的羟基和羧基,是一种十分具有潜力的生物质材料。
发明内容
本发明的目的在于针对现有技术的不足,提供一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法。通过调整二胺类化合物的种类与含量,可实现对制备的多孔碳材料孔结构及含氮量的调控。
为实现上述目的,本发明采用如下技术方案:
一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法,其包括如下步骤:
(1)将二胺类化合物与盐酸按摩尔比1:1-1:4溶解在去离子水中,配成浓度为0.1-0.6mol/L的酸化二胺化合物溶液;
(2)采用静电滴液的方式,将质量浓度为1-5 %的海藻酸钠溶液在20 kV电压下,以4ml/h的速度滴入步骤(1)所得酸化二胺化合物溶液中,以制备凝胶微球;
(3)将步骤(2)得到的凝胶微球用去离子水洗涤至洗出液呈中性,随后进行冷冻干燥;
(4)将步骤(3)冷冻干燥后的凝胶微球在600℃、氮气保护下碳化1-3h得到碳材料;
(5)用一定量的氢氧化钾溶液与步骤(4)得到的碳材料进行混合,干燥后在800℃、氮气保护下活化1-3h,得到氮掺杂多孔碳;所用氢氧化钾溶液的用量按碳材料与氢氧化钾的质量比为1:4进行换算。
所述二胺类化合物为乙二胺、尿素或对苯二胺。
所得氮掺杂多孔碳可作为电极材料用于制备超级电容器。
本发明的有益效果在于:
(1)本发明开发了一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法。通过调整二胺类化合物的种类与含量,可实现对由海藻酸钠微球制备的碳材料的孔结构及含氮量的调控,因而对碳材料的性能和应用具有重要意义。
(2)二胺类化合物具有较高的含氮量,在酸性条件下可与海藻酸钠形成凝胶,所得凝胶微球经过碳化后,制得氮掺杂的多孔碳材料,一方面提高了材料的湿润性,同时引入赝电容,可以提高碳材料的电化学性能。
现有专利“一种纳米球形碳气凝胶的制备方法”(CN 107973285A)中公开了一种海藻酸基碳气凝胶的制备方法,但其中是利用乙二胺等作为碱液,增大海藻酸钠溶液在水中的溶解度,再滴加到乙醇或丙酮中得到纳米球;而本发明中将海藻酸钠溶液滴加到酸化的二胺化合物溶液中,是通过海藻酸钠与二胺化合物交联成球,形成碳材料的前驱体,故两者反应机理不同。
附图说明
图1为实施例1-6制备的氮掺杂多孔碳的电镜图;其中,a为实施例1;b为实施例2,c为实施例3,d为实施例4;e为实施例5;f为实施例6。
图2为实施例1-4制备的氮掺杂多孔碳的氮气吸脱附曲线图(a)和孔径分布图(b)。
图3为制备的氮掺杂多孔碳的X射线光电子能谱曲线;其中,a为实施例2、3的X射线光电子全谱图;b为实施例2的氮谱图。
图4为实施例1-4制备的氮掺杂多孔碳的拉曼光谱图。
图5为实施例1-4制备的氮掺杂多孔碳的X射线衍射图。
图6为以实施例1-4制备的氮掺杂多孔碳基超级电容器的的恒电流充放电曲线。
图7为以实施例2制备的氮掺杂多孔碳基超级电容器的的循环伏安曲线。
图8为以实施例2制备的氮掺杂多孔碳基超级电容器的在电流为5A/g的恒流充放电循环测试曲线。
图9为以实施例2、5、6为电极材料制备的超级电容器的比电容曲线。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1:
(1)将乙二胺与盐酸按摩尔比1:2溶解在去离子水中,配成浓度为0.1mol/L的酸化乙二胺溶液;
(2)采用静电滴液的方式,将80ml质量浓度为3%的海藻酸钠溶液在20 kV电压下,以4ml/h的速度滴入步骤(1)所得酸化乙二胺溶液中,以制备凝胶微球;
(3)将步骤(2)得到的凝胶微球用去离子水洗涤至洗涤液呈中性,随后进行冷冻干燥;
(4)将步骤(3)冷冻干燥后的凝胶微球在600℃、氮气保护下碳化1h得到碳材料;
(5)按碳材料与氢氧化钾的质量比为1:4,将步骤(4)得到的碳材料与质量浓度为8%的氢氧化钾溶液混合,干燥后在800℃、氮气保护下活化1h,得到氮掺杂多孔碳。
实施例2:
步骤(1)中配制的酸化乙二胺溶液的浓度为0.2mol/L,其余步骤与实施例1相同。
实施例3:
步骤(1)中配制的酸化乙二胺溶液的浓度为0.4mol/L,其余步骤与实施例1相同。
实施例4:
步骤(1)中配制的酸化乙二胺溶液的浓度为0.6mol/L,其余步骤与实施例1相同。
实施例5:
步骤(1)中采用尿素替换乙二胺,配制的酸化尿素溶液的浓度为0.2mol/L,其余步骤与实施例1相同。
实施例6:
步骤(1)中采用对苯二胺替换乙二胺,配制的酸化对苯二胺溶液的浓度为0.2mol/L,其余步骤与实施例1相同。
图1为实施例1-6制备的氮掺杂多孔碳的扫描电镜图;其中,a为实施例1;b为实施例2,c为实施例3,d为实施例4;e为实施例5;f为实施例6。由图1可以看出,实施例1-4所得碳材料普遍呈泡沫状结构,而实施例4、5所得碳材料呈片层状结构,无明显孔结构。
图2为实施例1-4制备的氮掺杂多孔碳的氮气吸脱附曲线图(a)和孔径分布图(b)。由图2可知,实施例1-4所得碳材料的氮气吸脱附等温曲线是典型的I型(IUPAC)氮气吸脱附等温曲线,并可以看出实施例2具有较大的比表面积;且实施例1-4所得碳材料的孔径分布在0-4nm较为密集。
图3为制备的氮掺杂多孔碳的X射线光电子能谱曲线;其中,a为实施例2、3的X射线光电子全谱图;b为实施例2的氮谱图。由图3可见,其X射线光电子全谱图有明显的碳峰、氧峰,但并未看到明显的氮峰,而其氮谱图证实了氮的掺杂。
图4为实施例1-4制备的氮掺杂多孔碳的拉曼光谱图。图中位于1360cm-1以及1580cm-1处的振动峰分别对应石墨结构中代表缺陷的D峰以及代表有序石墨结构的G峰,这两个衍射峰的比值说明碳材料的石墨化程度。通过计算峰面积比值得到,四个样品的ID/IG值顺序为:实施例2(1.29)>实施例4(1.23)>实施例3(1.16)>实施例1(1.06),说明实施例2的缺陷最多,而实施例1的缺陷最小。
图5为实施例1-4制备的氮掺杂多孔碳的X射线衍射图。图中可以看到两个衍射峰,分别是位于22.5°左右碳的(002)晶面以及位于43.2°左右炭的(100)晶面。
图6为以实施例1-4制备的氮掺杂多孔碳基超级电容器的的恒电流充放电曲线。从图6可见,实施例1-4制备的超级电容器在电流密度为1A/g时恒流充放电曲线均表现出典型的对称三角形形状,说明其具有良好的双电层电容特性。充放电曲线在-0.2V到0V的电压范围内有向外的突出,说明赝电容的存在。
图7为以实施例2制备的氮掺杂多孔碳基超级电容器的的循环伏安曲线。由图7可以看出,以实施例2所得氮掺杂多孔碳为电极材料制备的超级电容器在不同扫描速度下测试得到的循环伏安曲线均表现出了很好的类矩形形状,说明所制备的多孔碳具有良好的双电层电容特性。
图8为以实施例2制备的氮掺杂多孔碳基超级电容器的在电流为5A/g的恒流充放电循环测试曲线。由图8可见,以实施例2制备的氮掺杂多孔碳为电极材料制备的超级电容器在电流为5A/g条件下,循环4000次后的电容保持率为92.9%,表明了多孔材料良好的循环性能。
图9为以实施例2、5、6为电极材料制备的超级电容器的比电容曲线。由图9可见,采用实施例2制备的超级电容器具有优异的电容性能。
表1 不同条件下制备的氮掺杂多孔碳的性能数据
由表1中实施例1-4数据可知,多孔碳材料的孔体积随乙二胺溶液浓度的增大而减小,而比表面积与比电容随乙二胺溶液浓度的增大呈现先增大后减小的趋势,其中,当乙二胺溶液浓度为0.2mol/L时,碳材料的比表面积最大为3305.48m2·g-1,比电容最大为为269.0F/g。由实施例2、5、6对比可知,相同浓度下不同二胺类化合物掺杂所得的碳材料中,掺杂乙二胺的碳材料的比表面积、孔体积、比电容都具有较大的优势。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (8)

1.一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法,其特征在于,包括如下步骤:
(1)将二胺类化合物与盐酸溶解在去离子水中配成酸化二胺化合物溶液;
(2)将一定浓度的海藻酸钠溶液采用静电滴液的方式滴入步骤(1)所得酸化二胺化合物溶液中,以制备凝胶微球;
(3)将步骤(2)得到的凝胶微球用去离子水洗涤至洗出液呈中性,随后将其进行冷冻干燥;
(4)将步骤(3)干燥后的凝胶微球在600℃、氮气保护下碳化1-3h,得到碳材料;
(5)用一定量的氢氧化钾溶液与步骤(4)得到的碳材料进行混合,干燥后在800℃、氮气保护下活化1-3h,得到氮掺杂多孔碳。
2.根据权利要求1所述的海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法,其特征在于:步骤(1)中所述二胺类化合物为乙二胺、尿素或对苯二胺。
3.根据权利要求1所述的海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法,其特征在于:步骤(1)中所用二胺类化合物与盐酸的摩尔比为1:1-1:4。
4.根据权利要求1所述的海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法,其特征在于:步骤(1)中所得的二胺化合物溶液中二胺类化合物的浓度为0.1-0.6mol/L。
5. 根据权利要求1所述的海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法,其特征在于:步骤(2)中所述的海藻酸钠溶液的质量浓度为1-5 %。
6. 根据权利要求1所述的海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法,其特征在于:步骤(2)中静电滴液的电压为20 kV,海藻酸钠溶液的滴加速度为4 ml/h。
7.根据权利要求1所述的海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法,其特征在于:步骤(5)中氢氧化钾溶液的用量按碳材料与氢氧化钾的质量比为1:4进行换算。
8.一种如权利要求1所述方法制得的氮掺杂多孔碳在制备超级电容器中的应用。
CN201811595426.0A 2018-12-25 2018-12-25 一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法 Expired - Fee Related CN109637829B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811595426.0A CN109637829B (zh) 2018-12-25 2018-12-25 一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811595426.0A CN109637829B (zh) 2018-12-25 2018-12-25 一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法

Publications (2)

Publication Number Publication Date
CN109637829A true CN109637829A (zh) 2019-04-16
CN109637829B CN109637829B (zh) 2020-07-07

Family

ID=66077593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811595426.0A Expired - Fee Related CN109637829B (zh) 2018-12-25 2018-12-25 一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法

Country Status (1)

Country Link
CN (1) CN109637829B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107308975A (zh) * 2017-07-07 2017-11-03 江南大学 一种氮掺杂碳封装金属氧化物催化剂的制备方法
CN110228808A (zh) * 2019-05-30 2019-09-13 福州大学 一种制备多孔碳材料的内相-外相协同的高内相乳液模板法
CN112239201A (zh) * 2020-11-30 2021-01-19 福州大学 一种通过一步碳化制备氮-硫双掺杂多孔碳的方法
CN112919460A (zh) * 2021-01-29 2021-06-08 北京理工大学 自支撑多孔碳电极材料
CN113003571A (zh) * 2021-04-29 2021-06-22 长安大学 一种氮掺杂海藻酸钠基多孔碳材料及其制备方法和应用
CN113998688A (zh) * 2021-11-03 2022-02-01 安徽工程大学 一种基于壳聚糖胶体粒子的多孔碳纳米材料及其制备方法和应用
CN114921230A (zh) * 2022-05-13 2022-08-19 武汉工程大学 一种高导热和储热相变复合材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107973285A (zh) * 2017-11-20 2018-05-01 宁波中车新能源科技有限公司 一种纳米球形碳气凝胶的制备方法
CN108128765A (zh) * 2017-12-26 2018-06-08 贵州大学 制备氮掺杂多孔碳材料的方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107973285A (zh) * 2017-11-20 2018-05-01 宁波中车新能源科技有限公司 一种纳米球形碳气凝胶的制备方法
CN108128765A (zh) * 2017-12-26 2018-06-08 贵州大学 制备氮掺杂多孔碳材料的方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CUIJUAN XUAN,ET AL.: ""Biomass derived nitrogen doped carbon with porous architecture as efficient electrode materials for supercapacitors"", 《CHINESE CHEMICAL LETTERS》 *
车迎: ""基于海藻酸碳源的碳气凝胶/二氧化钼纳米复合材料的多相储能研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107308975A (zh) * 2017-07-07 2017-11-03 江南大学 一种氮掺杂碳封装金属氧化物催化剂的制备方法
CN110228808A (zh) * 2019-05-30 2019-09-13 福州大学 一种制备多孔碳材料的内相-外相协同的高内相乳液模板法
CN110228808B (zh) * 2019-05-30 2022-07-08 福州大学 一种制备多孔碳材料的内相-外相协同的高内相乳液模板法
CN112239201A (zh) * 2020-11-30 2021-01-19 福州大学 一种通过一步碳化制备氮-硫双掺杂多孔碳的方法
CN112919460A (zh) * 2021-01-29 2021-06-08 北京理工大学 自支撑多孔碳电极材料
CN113003571A (zh) * 2021-04-29 2021-06-22 长安大学 一种氮掺杂海藻酸钠基多孔碳材料及其制备方法和应用
CN113998688A (zh) * 2021-11-03 2022-02-01 安徽工程大学 一种基于壳聚糖胶体粒子的多孔碳纳米材料及其制备方法和应用
CN114921230A (zh) * 2022-05-13 2022-08-19 武汉工程大学 一种高导热和储热相变复合材料的制备方法

Also Published As

Publication number Publication date
CN109637829B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
CN109637829A (zh) 一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法
Shi et al. Highly porous carbon with graphene nanoplatelet microstructure derived from biomass waste for high‐performance supercapacitors in universal electrolyte
Mehare et al. Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application
Wang et al. Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors
Bai et al. Pumpkin‐derived porous carbon for supercapacitors with high performance
Jiang et al. Synthesis of nitrogen-doped hierarchical porous carbons from peanut shell as a promising electrode material for high-performance supercapacitors
Han et al. Heteroatoms (O, N)-doped porous carbon derived from bamboo shoots shells for high performance supercapacitors
Jiang et al. Fe 2 O 3/hemp straw-based porous carbon composite for supercapacitor electrode materials
Huang et al. Mycelial pellet-derived heteroatom-doped carbon nanosheets with a three-dimensional hierarchical porous structure for efficient capacitive deionization
CN106206065B (zh) 一种超级电容器电极材料MnO2@PDA纳米复合材料的制备方法
Fu et al. Nitrogen-rich accordion-like lignin porous carbon via confined self-assembly template and in-situ mild activation strategy for high-performance supercapacitors
Li et al. NiCo2S4 combined 3D hierarchical porous carbon derived from lignin for high-performance supercapacitors
Zhou et al. Hierarchical porous carbon microtubes derived from corn silks for supercapacitors electrode materials
Xie et al. Reed straw derived active carbon/graphene hybrids as sustainable high-performance electrodes for advanced supercapacitors
Xiang et al. Hydrothermally etching commercial carbon cloth to form a porous structure for flexible zinc-ion hybrid supercapacitors
Yang et al. Optimizing hierarchical porous carbon from biomass waste for high-performance supercapacitors
CN108288547A (zh) 氮磷硫三元共掺杂有序介孔碳材料的制备方法
Tang et al. Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature
Mo et al. Nitrogen and oxygen co-doped hierarchical porous carbon for zinc-ion hybrid capacitor
He et al. Pseudocapacitance electrode and asymmetric supercapacitor based on biomass juglone/activated carbon composites
Zhang et al. One pot synthesis of nitrogen-doped hierarchical porous carbon derived from phenolic formaldehyde resin with sodium citrate as activation agent for supercapacitors
Liu et al. High‐Performance Aqueous Supercapacitors Based on Biomass‐Derived Multiheteroatom Self‐Doped Porous Carbon Membranes
Xu et al. Soft-template hydrothermal synthesis of N and B co-doped walnut-shaped porous carbon spheres with hydrophilic surfaces for supercapacitors
Sun et al. Sodium lignosulfonate-derived hierarchical porous carbon electrode materials for supercapacitor applications
Yao et al. Cheese-like hierarchical porous carbon material with large specific surface area derived from red dates for high performance supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200707

CF01 Termination of patent right due to non-payment of annual fee