CN109133922B - 双掺杂稀土离子石榴石结构光功能陶瓷粉体及其制备方法 - Google Patents
双掺杂稀土离子石榴石结构光功能陶瓷粉体及其制备方法 Download PDFInfo
- Publication number
- CN109133922B CN109133922B CN201811135840.3A CN201811135840A CN109133922B CN 109133922 B CN109133922 B CN 109133922B CN 201811135840 A CN201811135840 A CN 201811135840A CN 109133922 B CN109133922 B CN 109133922B
- Authority
- CN
- China
- Prior art keywords
- solution
- mixed solution
- precipitant
- ceramic powder
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000843 powder Substances 0.000 title claims abstract description 61
- 239000000919 ceramic Substances 0.000 title claims abstract description 42
- 230000003287 optical effect Effects 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title claims abstract description 30
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 30
- 239000002223 garnet Substances 0.000 title claims abstract description 26
- 239000000243 solution Substances 0.000 claims abstract description 91
- 239000011259 mixed solution Substances 0.000 claims abstract description 85
- 229910052751 metal Inorganic materials 0.000 claims abstract description 60
- 150000001768 cations Chemical class 0.000 claims abstract description 59
- 239000002184 metal Substances 0.000 claims abstract description 58
- -1 rare earth ion Chemical class 0.000 claims abstract description 29
- 239000000126 substance Substances 0.000 claims abstract description 22
- 239000002243 precursor Substances 0.000 claims abstract description 20
- 238000005406 washing Methods 0.000 claims abstract description 17
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 42
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 238000004448 titration Methods 0.000 claims description 16
- 235000006408 oxalic acid Nutrition 0.000 claims description 13
- 239000013078 crystal Substances 0.000 claims description 12
- 229910002651 NO3 Inorganic materials 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 8
- 150000002500 ions Chemical class 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 6
- 239000000725 suspension Substances 0.000 claims description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- 239000012065 filter cake Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate group Chemical group [N+](=O)([O-])[O-] NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- 239000012266 salt solution Substances 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 238000002156 mixing Methods 0.000 abstract description 26
- 239000000463 material Substances 0.000 abstract description 15
- 230000032683 aging Effects 0.000 abstract description 12
- 238000010438 heat treatment Methods 0.000 abstract description 11
- 239000002245 particle Substances 0.000 abstract description 8
- 238000001514 detection method Methods 0.000 abstract description 5
- 238000001914 filtration Methods 0.000 abstract description 5
- 238000001354 calcination Methods 0.000 abstract description 4
- 238000000227 grinding Methods 0.000 abstract description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 22
- 239000007864 aqueous solution Substances 0.000 description 16
- 239000013543 active substance Substances 0.000 description 14
- 239000012716 precipitator Substances 0.000 description 13
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium nitrate Inorganic materials [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 9
- 239000008236 heating water Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 description 6
- 238000005054 agglomeration Methods 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 229910010293 ceramic material Inorganic materials 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000000975 co-precipitation Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000002284 excitation--emission spectrum Methods 0.000 description 3
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 3
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000009388 chemical precipitation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 2
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical group OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910009253 Y(NO3)3 Inorganic materials 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000643 oven drying Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- DFCYEXJMCFQPPA-UHFFFAOYSA-N scandium(III) nitrate Inorganic materials [Sc+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O DFCYEXJMCFQPPA-UHFFFAOYSA-N 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- BXJPTTGFESFXJU-UHFFFAOYSA-N yttrium(3+);trinitrate Chemical compound [Y+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O BXJPTTGFESFXJU-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
- C04B35/505—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/442—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/443—Nitrates or nitrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Luminescent Compositions (AREA)
Abstract
一种双掺杂稀土离子石榴石结构光功能陶瓷粉体及其制备方法,粉体的化学通式为:(Y1‑x‑yPrxCey)3(Al1‑nAn)5O12;A为Ga、Cr、Sc或Mn;制备方法为:(1)配制金属阳离子混合溶液;(2)配制含NH4 +的沉淀剂溶液;(3)将金属阳离子混合溶液加热后与沉淀剂溶液滴定混合;(4)加入NH4HCO3溶液调节pH值后静置陈化;(5)过滤洗涤获得前驱体;(6)研磨后煅烧。本发明制备的粉体颗粒分散性良好;可应用于LED荧光显示、高能粒子及射线探测等领域,是具有广阔应用前景的光功能材料。
Description
技术领域
本发明属于光功能陶瓷材料技术领域,特别涉及一种双掺杂稀土离子石榴石结构光功能陶瓷粉体及其制备方法。
背景技术
稀土离子掺杂的光功能陶瓷粉体是荧光粉及高光功能陶瓷材料的主要基础性材料,利用稀土离子丰富的能级跃迁辐射出的宽波段光波资源,其与高能粒子或射线,例如X射线,α、β及γ射线的有效相互作用特性,为高能理物、安全检查、无损工业探伤及X-CT、正电子发射断层扫描PET技术的实现与应用提供多角度多层次的物质基础。
目前,如固体激光器及X射线CT等涉及介质材料与高能粒子或射线相互作用的光功能器件中,单晶材料的应用仍然最为广泛,相比使用提拉法及传统生长法等方式获得单晶材料,陶瓷材料具有制备成本及能耗低、易实现大尺寸、均匀高浓度掺杂、力学特性及化学热稳定性更为理想的特点,制备高性能光功能陶瓷粉体材料为陶瓷材料在未来可以替代单晶材料提供了客观物质基础与有效途径。
为了提高光功能陶瓷粉体的质量及性能,如何完善粉体材料的制备工艺,进一步优化工艺参数以实现微观结构可控及性能剪切是需要进一步探究和讨论的方向和内容。目前光功能陶瓷粉体材料的制备方法主要有固相法、化学法、溶胶-凝胶法等,其中化学共沉淀法易于在分子尺度上实现均匀掺杂且易于发光中心离子与基质离子替代反应的进一步均匀进行;化学共沉淀法工艺制备步骤主要分为两大部分,前驱体制备与陶瓷粉体制备,制备步骤主要有:滴定、陈化、淋洗过滤、干燥、研磨以及煅烧,每个步骤所涉及的工艺参数对最后得到的粉体材料样品性能均有重要影响。 目前对于陶瓷粉体制备技术,团聚现象仍然是影响光功能陶瓷粉体微观形貌及发光性能的因素及问题之一;林智慧使用湿化学法制备YAG陶瓷材料,在陶瓷粉体制备过程中使用正无戊醇及减压蒸馏的方法针对过滤及淋洗工艺过程来减缓团聚现象的发生,所得粉体经1100℃煅烧2小时后得到分散性改善的YAG陶瓷粉体;Sun Yan针对Ce:GAGG陶瓷粉体材料,在滴定工艺过程中使用UACC法(Ultra AssistedChemical Co-precipitation method)超声辅助化学沉淀法,引入外物理场针对沉淀反应阶段的过程施加影响以改善颗粒尺寸及空间分布状态;周禾丰等使用固相反应法在碳还原气氛下1450℃高温煅烧9小时后得到Ce,Pr:YAG陶瓷粉体。
以上工作对于石榴石结构光功能陶瓷粉体材料的光学性能-发光强度及微观形貌,特别是团聚现象的改善存在一定局限性;激活剂离子引入的单一性同时也一定程度上限制了材料的辐射跃迁发光。
发明内容
本发明的目的是提供一种双掺杂稀土离子石榴石结构光功能陶瓷粉体及其制备方法,在传统制备步骤基础上改进工艺,通过在产物形成过程中完善反应环境,得到微观形貌及发光性能良好的光功能陶瓷粉体材料。
本发明的双掺杂稀土离子石榴石结构光功能陶瓷粉体的化学通式为:
(Y1-x-yPrxCey)3(Al1-nAn)5O12;
式中,A为占据Al原子晶格位置的Ga、Cr、Sc或Mn元素,x=0.001~0.005,y=0.001~0.005,n=0~0.05。
上述的双掺杂稀土离子石榴石结构光功能陶瓷粉体的晶粒尺寸为30~80nm。
本发明的双掺杂稀土离子石榴石结构光功能陶瓷粉体的制备方法按以下步骤进行:
1、按上述化学通式中金属元素的比例,配制含Al3+、Ce3+、Y3+和Pr3+的金属阳离子混合溶液,或含Al3+、Ce3+、Y3+ 、Pr3+和A离子的金属阳离子混合溶液;所述的A离子为Ga3+、Cr3+、Sc3+或Mn2+;金属阳离子混合溶液中Al3+的浓度为0.1~5mol/L;
2、配制含NH4 +的溶液,NH4 +的浓度为0.1~5mol/L,作为沉淀剂溶液;
3、将金属阳离子混合溶液加热至30~60℃;采用正向滴定法,将沉淀剂溶液滴加到加热后的金属阳离子混合溶液,搅拌混合均匀形成混合溶液;或采用反向滴定法将加热后的金属阳离子混合溶液滴加到沉淀剂溶液中,搅拌混合均匀形成混合溶液;或采用共滴定法,将加热后的金属阳离子混合溶液与沉淀剂溶液同时滴定到容器中,搅拌混合均匀,形成混合溶液;金属阳离子混合溶液和沉淀剂溶液的用量比按全部金属阳离子与NH4 +的摩尔比为1:3;
4、向混合溶液中加入NH4HCO3溶液调节pH值为9~11,然后静置陈化6~24h,获得悬浊液;
5、将悬浊液过滤获得滤饼,洗涤后获得前驱体;
6、将前驱体研磨成粉末,然后在600~1200℃煅烧0.5~6小时,制成双掺杂稀土离子石榴石结构光功能陶瓷粉体。
上述方法中,配制金属阳离子混合溶液的原料为带结晶水的金属无机盐,或由带结晶水的金属无机盐溶于水配制成的金属无机盐溶液;所述的带结晶水的金属无机盐选用带结晶水的硝酸盐。
上述方法中,配制含NH4 +的溶液采用的原料为氨水和/或NH4HCO3。
上述方法中,配制含NH4 +的溶液时,向含NH4 +的溶液中加入高分子活性剂、草酸和/或丙三醇,制成混合溶液作为沉淀剂溶液;所述的高分子活性剂为PEG400、 PEG600或PEG2000;当加入高分子活性剂时,沉淀剂溶液中高分子活性剂的质量浓度为0.03~0.05%,当加入草酸时,沉淀剂溶液中草酸与NH4 +的摩尔比为1:1;当加入丙三醇时,丙三醇与沉淀剂溶液的体积比为1:(15~25)。
上述方法中,沉淀剂溶液制成后控制其温度为25~30℃,控制方式选用风冷方式。
上述方法中,洗涤是先水洗去除离子态杂质,然后用无水乙醇清洗去除有机物杂质,残余的无水乙醇在后续步骤中挥发;其中水洗时先将水加热至30~90℃。
上述步骤4中的NH4HCO3溶液的浓度为10~15%。
本发明使用改进的化学共沉淀法得到光学性能优异,粉体颗粒分散性良好纳米陶瓷粉体;化学沉淀法具有生产成本及能耗低等优点,且在分子尺度实现沉淀反应均匀进行,微观结构及发光性能良好的稀土离子双掺杂陶瓷粉体,通过加入高分子活性剂、草酸或丙三醇能够避免产品出现团聚现象并提高晶型完整性(当不加入时产品有团聚现象则加入),可应用于LED荧光显示、高能粒子及射线探测等领域,是具有广阔应用前景的光功能材料。
附图说明
图1为实施例1中的前驱体的红外光谱曲线图;
图2为实施例1中的前驱体的场发射电子扫描显微镜(FESEM)表面形貌图;
图3为实施例1中的双掺杂稀土离子石榴石结构光功能陶瓷粉体的X射线衍射(XRD)谱图;
图4为实施例1中的双掺杂稀土离子石榴石结构光功能陶瓷粉体的场发射电子扫面显微镜(FESEM)表面形貌图;
图5为实施例1中对比试验不加入高分子活性剂制备的产品的场发射电子扫面显微镜(FESEM)表面形貌图;
图6为实施例1中的双掺杂稀土离子石榴石结构光功能陶瓷粉体的激发发射光谱(520nm)曲线图;
图7为实施例1中的双掺杂稀土离子石榴石结构光功能陶瓷粉体的激发发射光谱(360nm)曲线图.
具体实施方式
为进一步阐明本发明,举列以下具体实施例;实施例仅用于说明本发明而非限制本发明的保护范围。
本发明实施例中采用的Al(NO3)3∙9H2O、Y(NO3)3∙6H2O、Ce(NO3)3∙6H2O、Pr(NO3)3∙6H2O、Ga (NO3)3∙6H2O、Cr(NO3)3∙9H2O、Sc(NO3)3∙6H2O或Mn(NO3)2∙6H2O为市购产品,纯度99.99%以上。
本发明实施例中采用的水为去离子水。
本发明实施例中采用的无水乙醇为市购分析纯试剂。
本发明实施例中采用的NH4HCO3为市购分析纯试剂。
本发明实施例中采用的氨水(质量浓度28~30%)为市购分析纯试剂。
本发明实施例中采用的PEG400、 PEG600 和PEG2000为市购产品。
本发明实施例中采用的草酸和丙三醇为市购分析纯试剂。
本发明实施例中干燥方式为电热箱干燥、真空干燥或微波干燥。
本发明实施例中NH4HCO3溶液的浓度为10~15%。
实施例1
双掺杂稀土离子石榴石结构光功能陶瓷粉体的化学通式为:
(Y1-x-yPrxCey)3Al5O12;
式中,x=0.001,y=0.005,其晶粒尺寸为30~80nm;
制备方法为:
将Al(NO3)3∙9H2O、Ce(NO3)3∙6H2O和Pr(NO3)3∙6H2O分别配制成水溶液,准备Y(NO3)3∙6H2O;将各水溶液及Y(NO3)3∙6H2O溶于水中,制成含Al3+、Ce3+、Y3+和Pr3+的金属阳离子混合溶液;金属阳离子混合溶液中Al3+的浓度为0.5mol/L;
采用氨水和NH4HCO3配制NH4 +的浓度为0.5mol/L的溶液,再加入溶液总质量0.05%的PEG600,形成混合溶液作为沉淀剂溶液;
将阳离子混合溶液加热至30℃;采用反向滴定法将加热后的金属阳离子混合溶液滴加到沉淀剂溶液中,搅拌混合均匀形成混合溶液;金属阳离子混合溶液和沉淀剂溶液的用量比按全部金属阳离子与NH4 +的摩尔比为1:3;
向混合溶液中加入NH4HCO3溶液调节pH值为9.3,然后静置陈化6h,获得悬浊液;
将悬浊液过滤获得滤饼,先水洗去除离子态杂质,然后用无水乙醇清洗去除有机物杂质(残余的无水乙醇在后续步骤中挥发),获得前驱体,其红外光谱曲线如图1所示,电镜扫描表面形貌如图2所示;其中水洗时先将水加热至30℃;
将前驱体研磨成粉末,然后在900℃煅烧3小时,制成双掺杂稀土离子石榴石结构光功能陶瓷粉体,其X射线衍射如图3所示,电镜扫描表面形貌如图4所示(由图可见其粒径D50=30~80nm),激发发射光谱曲线分别如图6(检测发射波长:520nm,门宽5nm,光电倍增管电压550V)和图7(检测激发波长360nm,门宽5nm,光电倍增管电压500V)所示;
采用上述原料进行对比试验,配制沉淀剂溶液时不加入PEG600,其他条件相同,制成的陶瓷粉体的产品电镜扫描表面形貌如图5所示,由图可见团聚现象较严重。
实施例2
双掺杂稀土离子石榴石结构光功能陶瓷粉体的化学通式为:
(Y1-x-yPrxCey)3Al5O12;
式中,x=0.002,y=0.004,其晶粒尺寸为30~80nm;
方法同实施例1,不同点在于:
(1)金属阳离子混合溶液中Al3+的浓度为0.1mol/L;
(2)采用氨水配制NH4 +的浓度为1mol/L的溶液,作为沉淀剂溶液;
(3)将阳离子混合溶液加热至50℃;采用正向滴定法,将沉淀剂溶液滴加到加热后的金属阳离子混合溶液,搅拌混合均匀形成混合溶液;
(4)向混合溶液中加入NH4HCO3调节pH值为9.5,然后静置陈化8h;
(5)水洗时先将水加热至40℃;
(6)将前驱体研磨成粉末,然后在600℃煅烧6小时。
实施例3
双掺杂稀土离子石榴石结构光功能陶瓷粉体的化学通式为:
(Y1-x-yPrxCey)3Al5O12;
式中,x=0.003,y=0.003,其晶粒尺寸为30~80nm;
方法同实施例1,不同点在于:
(1)金属阳离子混合溶液中Al3+的浓度为1mol/L;
(2)采用NH4HCO3配制NH4 +的浓度为1.5mol/L的溶液,作为沉淀剂溶液;
(3)将阳离子混合溶液加热至60℃;采用共滴定法,将加热后的金属阳离子混合溶液与沉淀剂溶液同时滴定到容器中,搅拌混合均匀,形成混合溶液;
(4)向混合溶液中加入NH4HCO3调节pH值为9.8,然后静置陈化12h;
(5)水洗时先将水加热至50℃;
(6)将前驱体研磨成粉末,然后在1200℃煅烧0.5小时。
实施例4
双掺杂稀土离子石榴石结构光功能陶瓷粉体的化学通式为:
(Y1-x-yPrxCey)3(Al1-nAn)5O12;
式中,A为Ga元素,x=0.001,y=0.005,n=0.01,其晶粒尺寸为30~80nm;
方法同实施例1,不同点在于:
(1)将Al(NO3)3∙9H2O、Ce(NO3)3∙6H2O、Pr(NO3)3∙6H2O和Ga (NO3)3∙6H2O分别配制成水溶液,准备Y(NO3)3∙6H2O;将各水溶液及Y(NO3)3∙6H2O溶于水中,制成含Al3+、Ce3+、Y3+、Pr3+的和Ga3+的金属阳离子混合溶液;金属阳离子混合溶液中Al3+的浓度为2mol/L;
(2)采用氨水和NH4HCO3配制NH4 +的浓度为5mol/L的溶液,加入高分子活性剂PEG400,作为沉淀剂溶液;沉淀剂溶液中高分子活性剂的质量浓度为0.03%;采用风冷方式控制其温度为25~30℃;
(3)将阳离子混合溶液加热至35℃;采用正向滴定法,将沉淀剂溶液滴加到加热后的金属阳离子混合溶液,搅拌混合均匀形成混合溶液;
(4)向混合溶液中加入NH4HCO3调节pH值为10,然后静置陈化16h;
(5)水洗时先将水加热至60℃;
(6)将前驱体研磨成粉末,然后在1100℃煅烧1小时。
实施例5
双掺杂稀土离子石榴石结构光功能陶瓷粉体的化学通式为:
(Y1-x-yPrxCey)3(Al1-nAn)5O12;
式中,A为Cr元素,x=0.002,y=0.004,n=0.02,其晶粒尺寸为30~80nm;
方法同实施例1,不同点在于:
(1))将Al(NO3)3∙9H2O、Ce(NO3)3∙6H2O、Pr(NO3)3∙6H2O和Cr(NO3)3∙9H2O分别配制成水溶液,准备Y(NO3)3∙6H2O;将各水溶液及Y(NO3)3∙6H2O溶于水中,制成含Al3+、Ce3+、Y3+、Pr3+的和Cr3+的金属阳离子混合溶液;金属阳离子混合溶液中Al3+的浓度为3mol/L;
(2)采用的原料为氨水配制NH4 +的浓度为3mol/L的溶液,加入高分子活性剂PEG600作为沉淀剂溶液;沉淀剂溶液中高分子活性剂的质量浓度为0.04%;采用风冷方式控制其温度为25~30℃;
(3)将阳离子混合溶液加热至45℃;
(4)向混合溶液中加入NH4HCO3调节pH值为10.4,然后静置陈化18h;
(5)水洗时先将水加热至70℃;
(6)将前驱体研磨成粉末,然后在1000℃煅烧1.5小时。
实施例6
双掺杂稀土离子石榴石结构光功能陶瓷粉体的化学通式为:
(Y1-x-yPrxCey)3(Al1-nAn)5O12;
式中,A为Sc元素,x=0.003,y=0.003,n=0.03,其晶粒尺寸为30~80nm;
方法同实施例1,不同点在于:
(1)将Al(NO3)3∙9H2O、Ce(NO3)3∙6H2O、Pr(NO3)3∙6H2O和Sc (NO3)3∙6H2O分别配制成水溶液,准备Y(NO3)3∙6H2O;将各水溶液及Y(NO3)3∙6H2O溶于水中,制成含Al3+、Ce3+、Y3+、Pr3+的和Sc3+的金属阳离子混合溶液;金属阳离子混合溶液中Al3+的浓度为4mol/L;
(2)采用NH4HCO3配制NH4 +的浓度为0.1mol/L的溶液,加入高分子活性剂PEG2000作为沉淀剂溶液;沉淀剂溶液中高分子活性剂的质量浓度为0.05%;采用风冷方式控制其温度为25~30℃;
(3)将阳离子混合溶液加热至55℃;采用共滴定法,将加热后的金属阳离子混合溶液与沉淀剂溶液同时滴定到容器中,搅拌混合均匀,形成混合溶液;
(4)向混合溶液中加入NH4HCO3调节pH值为10.6,然后静置陈化20h;
(5)水洗时先将水加热至80℃;
(6)将前驱体研磨成粉末,然后在800℃煅烧2.5小时。
实施例7
双掺杂稀土离子石榴石结构光功能陶瓷粉体的化学通式为:
(Y1-x-yPrxCey)3(Al1-nAn)5O12;
式中,A为Mn元素,x=0.004,y=0.003,n=0.04,其晶粒尺寸为30~80nm;
方法同实施例1,不同点在于:
(1)将Al(NO3)3∙9H2O、Ce(NO3)3∙6H2O、Pr(NO3)3∙6H2O和Mn(NO3)3∙6H2O分别配制成水溶液,准备Y(NO3)3∙6H2O;将各水溶液及Y(NO3)3∙6H2O溶于水中,制成含Al3+、Ce3+、Y3+、Pr3+的和Mn3+的金属阳离子混合溶液;金属阳离子混合溶液中Al3+的浓度为5mol/L;
(2)采用氨水配制NH4 +的浓度为2mol/L的溶液,加入草酸后作为沉淀剂溶液;沉淀剂溶液中草酸和NH4 +的摩尔比为1:1;采用风冷方式控制其温度为25~30℃;
(3)采用正向滴定法,将沉淀剂溶液滴加到加热后的金属阳离子混合溶液,搅拌混合均匀形成混合溶液;
(4)向混合溶液中加入NH4HCO3调节pH值为11,然后静置陈化24h;
(5)水洗时先将水加热至90℃;
(6)将前驱体研磨成粉末,然后在700℃煅烧4小时。
实施例8
双掺杂稀土离子石榴石结构光功能陶瓷粉体的化学通式为:
(Y1-x-yPrxCey)3(Al1-nAn)5O12;
式中,A为Ga元素,x=0.005,y=0.001,n=0.05,其晶粒尺寸为30~80nm;
方法同实施例1,不同点在于:
(1)将Al(NO3)3∙9H2O、Ce(NO3)3∙6H2O、Pr(NO3)3∙6H2O和Ga (NO3)3∙6H2O分别配制成水溶液,准备Y(NO3)3∙6H2O;将各水溶液及Y(NO3)3∙6H2O溶于水中,制成含Al3+、Ce3+、Y3+、Pr3+的和Ga3+的金属阳离子混合溶液;金属阳离子混合溶液中Al3+的浓度为0.8mol/L;
(2)采用NH4HCO3配制NH4 +的浓度为2.5mol/L的溶液,加入丙三醇后作为沉淀剂溶液;其中丙三醇与沉淀剂溶液的体积比为1:20;采用风冷方式控制其温度为25~30℃;
(3)将阳离子混合溶液加热至40℃;
(4)向混合溶液中加入NH4HCO3调节pH值为9.6,然后静置陈化13h;
(5)水洗时先将水加热至55℃;
(6)将前驱体研磨成粉末,然后在1150℃煅烧1小时。
实施例9
双掺杂稀土离子石榴石结构光功能陶瓷粉体的化学通式为:
(Y1-x-yPrxCey)3(Al1-nAn)5O12;
式中,A为Cr元素,x=0.002,y=0.002,n=0.02,其晶粒尺寸为30~80nm;
方法同实施例1,不同点在于:
(1)将Al(NO3)3∙9H2O、Ce(NO3)3∙6H2O、Pr(NO3)3∙6H2O和Cr(NO3)3∙9H2O分别配制成水溶液,准备Y(NO3)3∙6H2O;将各水溶液及Y(NO3)3∙6H2O溶于水中,制成含Al3+、Ce3+、Y3+、Pr3+的和Cr3+的金属阳离子混合溶液;金属阳离子混合溶液中Al3+的浓度为1.5mol/L;
(2)采用氨水和NH4HCO3配制NH4 +的浓度为0.8mol/L的溶液,加入高分子活性剂、草酸和丙三醇后制成沉淀剂溶液;高分子活性剂为PEG600;沉淀剂溶液中高分子活性剂的质量浓度为0.04%,草酸和NH4 +的摩尔比为1:1;丙三醇与沉淀剂溶液的体积比为1:15;采用风冷方式控制其温度为25~30℃;
(3)将阳离子混合溶液加热至50℃;采用共滴定法,将加热后的金属阳离子混合溶液与沉淀剂溶液同时滴定到容器中,搅拌混合均匀,形成混合溶液;
(4)向混合溶液中加入NH4HCO3调节pH值为10.1,然后静置陈化15h;
(5)水洗时先将水加热至65℃;
(6)将前驱体研磨成粉末,然后在1050℃煅烧1.5小时。
实施例10
双掺杂稀土离子石榴石结构光功能陶瓷粉体的化学通式为:
(Y1-x-yPrxCey)3(Al1-nAn)5O12;
式中,A为Sc元素,x=0.004,y=0.004,n=0.04,其晶粒尺寸为30~80nm;
方法同实施例1,不同点在于:
(1)将Al(NO3)3∙9H2O、Ce(NO3)3∙6H2O、Pr(NO3)3∙6H2O和Sc (NO3)3∙6H2O分别配制成水溶液,准备Y(NO3)3∙6H2O;将各水溶液及Y(NO3)3∙6H2O溶于水中,制成含Al3+、Ce3+、Y3+、Pr3+的和Sc3+的金属阳离子混合溶液;金属阳离子混合溶液中Al3+的浓度为2.2mol/L;
(2)采用NH4HCO3配制NH4 +的浓度为4mol/L的溶液,加入草酸和丙三醇制成沉淀剂溶液;沉淀剂溶液中草酸和NH4 +的摩尔比为1:1,丙三醇与沉淀剂溶液的体积比为1:25;采用风冷方式控制其温度为25~30℃;
(3)将阳离子混合溶液加热至60℃;采用正向滴定法,将沉淀剂溶液滴加到加热后的金属阳离子混合溶液,搅拌混合均匀形成混合溶液;
(4)向混合溶液中加入NH4HCO3调节pH值为10.7,然后静置陈化19h;
(5)水洗时先将水加热至45℃;
(6)将前驱体研磨成粉末,然后在950℃煅烧3.5小时。
Claims (1)
1.一种双掺杂稀土离子石榴石结构光功能陶瓷粉体的制备方法,其特征在于按以下步骤进行:
(1)按双掺杂稀土离子石榴石结构光功能陶瓷粉体的化学通式中金属元素的比例,配制含Al3+、Ce3+、Y3+ 、Pr3+和A离子的金属阳离子混合溶液;所述的A离子为Ga3+、Cr3+、Sc3+或Mn2+;金属阳离子混合溶液中Al3+的浓度为0.1~5mol/L;所述的化学通式为:
(Y1-x-yPrxCey)3(Al1-nAn)5O12;
式中,A为占据Al原子晶格位置的Ga、Cr、Sc或Mn元素,x=0.002~0.004,y=0.002~0.004,n=0.02~0.05;配制金属阳离子混合溶液的原料为带结晶水的金属无机盐,或由带结晶水的金属无机盐溶于水配制成的金属无机盐溶液;所述的带结晶水的金属无机盐为带结晶水的硝酸盐;
(2)配制含NH4 +的溶液,NH4 +的浓度为0.8~5mol/L,作为沉淀剂溶液;配制含NH4 +的溶液采用的原料为氨水和/或NH4HCO3;配制含NH4 +的溶液时,向含NH4 +的溶液中加入草酸和/或丙三醇,制成混合溶液作为沉淀剂溶液;当加入草酸时,沉淀剂溶液中草酸与NH4 +的摩尔比为1:1;当加入丙三醇时,丙三醇与沉淀剂溶液的体积比为1:(15~25);沉淀剂溶液制成后控制其温度为25~30℃,控制方式选用风冷方式;
(3)将金属阳离子混合溶液加热至30~60℃;采用正向滴定法,将沉淀剂溶液滴加到加热后的金属阳离子混合溶液,搅拌混合均匀形成混合溶液;或采用反向滴定法将加热后的金属阳离子混合溶液滴加到沉淀剂溶液中,搅拌混合均匀形成混合溶液;或采用共滴定法,将加热后的金属阳离子混合溶液与沉淀剂溶液同时滴定到容器中,搅拌混合均匀,形成混合溶液;金属阳离子混合溶液和沉淀剂溶液的用量比按全部金属阳离子与NH4 +的摩尔比为1:3;
(4)向混合溶液中加入NH4HCO3溶液调节pH值为9.6~11,然后静置陈化13~24h,获得悬浊液;NH4HCO3溶液的浓度为10~15%;
(5)将悬浊液过滤获得滤饼,洗涤后获得前驱体;
(6)将前驱体研磨成粉末,然后在700~1150℃煅烧1~4小时,制成双掺杂稀土离子石榴石结构光功能陶瓷粉体,其晶粒尺寸为30~80nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811135840.3A CN109133922B (zh) | 2018-09-28 | 2018-09-28 | 双掺杂稀土离子石榴石结构光功能陶瓷粉体及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811135840.3A CN109133922B (zh) | 2018-09-28 | 2018-09-28 | 双掺杂稀土离子石榴石结构光功能陶瓷粉体及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109133922A CN109133922A (zh) | 2019-01-04 |
CN109133922B true CN109133922B (zh) | 2022-02-01 |
Family
ID=64812921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811135840.3A Expired - Fee Related CN109133922B (zh) | 2018-09-28 | 2018-09-28 | 双掺杂稀土离子石榴石结构光功能陶瓷粉体及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109133922B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110511757A (zh) * | 2019-06-18 | 2019-11-29 | 南京工业大学 | 一种石榴石结构荧光粉及其制备工艺 |
CN111621295A (zh) * | 2020-06-05 | 2020-09-04 | 眉山博雅新材料有限公司 | 一种用于制备GAGG:Ce,Pr闪烁粉体和闪烁晶体的方法 |
CN111995398B (zh) * | 2020-09-28 | 2021-11-09 | 东北大学 | 一种用于高显指激光照明的荧光陶瓷及其制备方法 |
CN114956176B (zh) * | 2022-05-25 | 2024-12-27 | 陕西天璇涂层科技有限公司 | 一种耐腐蚀、抗烧蚀钽酸钙陶瓷的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102079975A (zh) * | 2009-12-01 | 2011-06-01 | 中国科学院理化技术研究所 | 稀土掺杂钇铝石榴石荧光粉的共沉淀制备方法 |
CN103468264A (zh) * | 2013-08-22 | 2013-12-25 | 昆山开威电子有限公司 | 一种Ce:YAG多晶荧光体的制作方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100551868C (zh) * | 2006-03-09 | 2009-10-21 | 中国科学院上海硅酸盐研究所 | 混合型石榴石基陶瓷材料的制备方法 |
CN108249909A (zh) * | 2016-12-28 | 2018-07-06 | 中国科学院上海硅酸盐研究所 | 一种新型的制备铽铝石榴石基纳米粉体及磁光透明陶瓷的方法 |
-
2018
- 2018-09-28 CN CN201811135840.3A patent/CN109133922B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102079975A (zh) * | 2009-12-01 | 2011-06-01 | 中国科学院理化技术研究所 | 稀土掺杂钇铝石榴石荧光粉的共沉淀制备方法 |
CN103468264A (zh) * | 2013-08-22 | 2013-12-25 | 昆山开威电子有限公司 | 一种Ce:YAG多晶荧光体的制作方法 |
Non-Patent Citations (3)
Title |
---|
YAG∶Ce3+、Pr3+荧光粉的制备和光谱特性研究;周禾丰等;《人工晶体学报》;20090630;第38卷(第3期);第629-632页 * |
共沉淀法制备钇铝石榴石纳米粉体;冯斌等;《材料研究与应用》;20130630;第7卷(第2期);第82-85页 * |
周禾丰等.YAG∶Ce3+、Pr3+荧光粉的制备和光谱特性研究.《人工晶体学报》.2009,第38卷(第3期), * |
Also Published As
Publication number | Publication date |
---|---|
CN109133922A (zh) | 2019-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109133922B (zh) | 双掺杂稀土离子石榴石结构光功能陶瓷粉体及其制备方法 | |
Xu et al. | Self-assembled 3D urchin-like NaY (MoO4) 2: Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors | |
Li et al. | Eu3+/Tb3+-doped La2O2CO3/La2O3 nano/microcrystals with multiform morphologies: facile synthesis, growth mechanism, and luminescence properties | |
Tian et al. | Self-assembled 3D flower-shaped NaY (WO 4) 2: Eu 3+ microarchitectures: microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties | |
Zhang et al. | Rapid, large-scale, morphology-controllable synthesis of YOF: Ln3+ (Ln= Tb, Eu, Tm, Dy, Ho, Sm) nano-/microstructures with multicolor-tunable emission properties | |
Lukić et al. | Optical and structural properties of Zn2SiO4: Mn2+ green phosphor nanoparticles obtained by a polymer-assisted sol–gel method | |
Zhong et al. | Synthesis and luminescence properties of Eu3+-doped ZnO nanocrystals by a hydrothermal process | |
Morozov et al. | Influence of the Structure on the Properties of Na x Eu y (MoO4) z Red Phosphors | |
Zhang et al. | Highly uniform and monodisperse GdOF: Ln 3+(Ln= Eu, Tb, Tm, Dy, Ho, Sm) microspheres: hydrothermal synthesis and tunable-luminescence properties | |
CN102382654B (zh) | 上转换荧光材料稀土掺杂NaYF4纳米晶的制备方法 | |
Yang et al. | Preparation and morphology-sensitive luminescence properties of Eu 3+-doped YVO 4: a defect chemistry viewpoint of study | |
He et al. | A novel Sc 3+-containing fluoride host material for down-and up-conversion luminescence | |
CN101177611A (zh) | 高发光强度上转换荧光纳米晶氧化物及其制备方法 | |
CN104031647B (zh) | 一种圆饼状铕掺杂钒酸镧红色荧光粉的制备方法 | |
CN102093892A (zh) | 多元溶剂热法制备稀土掺杂氟化镧发光空心纳米粉体的方法 | |
Song et al. | OH− ions-controlled synthesis and upconversion luminescence properties of NaYF4: Yb3+, Er3+ nanocrystals via oleic acid-assisted hydrothermal process | |
CN103571490A (zh) | 一种稀土掺杂钒酸镧纳米晶荧光粉的制备方法 | |
Pu et al. | Synthesis and luminescence properties of (Y, Gd)(P, V) O 4: Eu 3+, Bi 3+ red nano-phosphors with enhanced photoluminescence by Bi 3+, Gd 3+ doping | |
Yang et al. | Is there lattice contraction in multicomponent metal oxides? Case study for GdVO4: Eu3+ nanoparticles | |
Li et al. | Morphology control and multicolor-tunable luminescence of YOF: Ln 3+(Ln= Eu, Tb, Dy, Tm) nano-/microcrystals | |
CN101260299B (zh) | 一种微乳液法制备氧化钇、钆、铕纳米发光粉体的方法 | |
CN111057399B (zh) | 一种荧光和颜色可调的稀土掺杂黏土矿物基铋黄杂化颜料的制备方法 | |
CN107418560B (zh) | 一种高效硫掺杂氧化锌纳米材料的制备方法 | |
Jiang et al. | Facile one-step hydrothermal synthesis and luminescence properties of Eu3+-doped NaGd (WO4) 2 nanophosphors | |
CN105238398A (zh) | 一种稀土掺杂钛酸锶上转换发光纳米颗粒及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220201 |