CN108722384B - 一种富氧空位二氧化钛纳米花及其制备方法 - Google Patents

一种富氧空位二氧化钛纳米花及其制备方法 Download PDF

Info

Publication number
CN108722384B
CN108722384B CN201810463274.2A CN201810463274A CN108722384B CN 108722384 B CN108722384 B CN 108722384B CN 201810463274 A CN201810463274 A CN 201810463274A CN 108722384 B CN108722384 B CN 108722384B
Authority
CN
China
Prior art keywords
titanium dioxide
oxygen
nanoflower
rich
vacancy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810463274.2A
Other languages
English (en)
Other versions
CN108722384A (zh
Inventor
胡海华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Priority to CN201810463274.2A priority Critical patent/CN108722384B/zh
Publication of CN108722384A publication Critical patent/CN108722384A/zh
Application granted granted Critical
Publication of CN108722384B publication Critical patent/CN108722384B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种富氧空位二氧化钛纳米花的制备方法。所述方法包括:本发明制备的富氧空位二氧化钛纳米花由超薄锐钛矿相纳米片自组装成的,且富含大量氧空位。本发明的富氧空位二氧化钛纳米花材料是一种高效,稳定的光电转化材料,采用溶剂热法制备,制备过程简单,反应条件容易控制,适用于大规模制备和工业化生产。

Description

一种富氧空位二氧化钛纳米花及其制备方法
技术领域
本发明涉及一种富氧空位二氧化钛纳米花及其制备方法,属于纳米材料和半导体氧化物材料技术以及光催化领域。
背景技术
近年来,由于二氧化钛纳米花具有较大的特殊比表面积、较好的结晶取向以及较好的光生载流子分离性能,被广泛应用于光催化领域。但是,二氧化钛纳米花较宽的禁带宽度(3.2eV),导致其只能吸收紫外光,严重限制其光催化性能。目前,科研工作者提出不同的策略来拓宽二氧化钛纳米花的光吸收范围,如贵金属修饰、金属或非金属离子掺杂以及窄带隙半导体复合等策略都被成功的报道,并且都使二氧化钛纳米花在可见光区具备较好的光催化活性。目前,在二氧化钛纳米材料中引入缺陷的方式来拓宽其光吸收范围被认为是一种有效的途径。比如在二氧化钛晶格中引入氧空位可以拓宽其光吸收范围,其原因是,引入氧空位会在二氧化钛价带附近形成浅施主能级,这意味着可见光区的光子也可以激发富氧空位缺陷的二氧化钛,有效的拓宽其在可见光区的吸收范围。因此,在二氧化钛纳米花晶体中引入氧空位是一种非常有效提高二氧化钛光催化活性的策略。
目前,报道了很多方法制备二氧化钛纳米花材料,主要有气相法、水热法、化学沉淀法、水解法、溶胶-凝胶法和微乳液法等。但是,在二氧化钛纳米花中引入氧空位的制备方法还未有报道,因此,有必要开发一种简单方便的方法制备富氧空位二氧化钛纳米花。本文采用一步简单的溶剂热方法将氧空位引入到二氧化钛纳米花中。该方法具有制备简单方便,氧空位浓度可控和产物纯度高,以及二氧化钛纳米花尺寸可控等优点。
发明内容
本发明目的是针对上述问题,提供一种富氧空位二氧化钛纳米花及其制备方法,该方法制备的富氧空位二氧化钛纳米花解决了现有技术中二氧化钛光吸收弱,导致其光催化效率低下以及制备的二氧化钛纳米花单分散性差和产物尺寸分布较宽的问题。
本发明采用以下技术方案:一种富氧空位二氧化钛纳米花的制备方法,该方法为:先将异丙醇加入到二乙烯三胺中,搅拌均匀,再加入二(乙酰丙酮基)钛酸二异丙酯,搅拌均匀,倒入反应釜中,在150~220℃条件下热处理12~36小时,洗涤,干燥,得到富氧空位二氧化钛纳米花材料。
进一步地,异丙醇、二乙烯三胺和二(乙酰丙酮基)钛酸二异丙酯的体积比为1260~2520:1~10:45~360。
进一步地,异丙醇、二乙烯三胺和二(乙酰丙酮基)钛酸二异丙酯的体积比为1260:1:45,反应温度为200℃,反应时间为24小时。
一种富氧空位二氧化钛纳米花,由二氧化钛纳米片组成,所述二氧化钛纳米片为锐钛矿相,厚度2~9nm。
本发明的有益效果在于:本发明提供一种简单的制备富氧空位二氧化钛纳米花材料的制备方法,简单方便地在二氧化钛纳米花中引入大量氧空位,可以通过调节二乙烯三胺的加入量来优化其尺寸与形貌。该富氧空位二氧化钛纳米花材料由锐钛矿相二氧化钛纳米片自组装形成以及具有三维分级结构,可以拓展二氧化钛纳米花可见光的吸收范围,增加光的多次散射性能,快速转移光电子和增加更多的吸附位点和反应位点。另外一方面,富氧空位二氧化钛纳米花含大量的氧空位,这些氧空位可以拓宽其在可见光区的吸收范围,进而提高了其光催化性能。此外,本材料制备方法简单、纳米花分级结构与尺寸易控制和利于工业化生产。因此,本发明大大降低了二氧化钛纳米花的生产成本以及显著提高了其光催化性能,具备极大的应用前景。
附图说明
图1是实施例1所制备富氧空位二氧化钛纳米花扫描电子显微镜(SEM)图片。
图2是实施例1所制备富氧空位二氧化钛纳米花透射电子显微镜(TEM)图片。
图3是实施例1所制备富氧空位二氧化钛的X射线衍射图(XRD)。
图4是实施例1所制备富氧空位二氧化钛纳米花电子顺磁共振谱(EPR)。
图5是实施例2所制备富氧空位二氧化钛纳米花扫描电子显微镜(SEM)图片。
图6是实施例3所制备富氧空位二氧化钛纳米花扫描电子显微镜(SEM)图片。
图7是实例5中所制备富氧空位二氧化钛纳米花作为光催化剂时光解水产氢曲线图。
具体实施方式:
下面结合实施例对本发明作进一步说明。以下实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。
实施例1:
在31.5mL异丙醇中加入二乙烯三胺(EDTA)0.025mL,搅拌10min。再往溶液中再加入二(乙酰丙酮基)钛酸二异丙酯1.125mL。继续搅拌10min。将所得混合溶液倒入反应釜中,在200℃条件下溶剂热处理24小时。反应结束后将沉淀物用去离子水和无水乙醇分别洗涤三次,置于60℃烘箱中,干燥24小时,得到富氧空位二氧化钛纳米花材料。
图1、2分别是实例1所制备的富氧空位二氧化钛纳米花的扫描电子显微镜图片(SEM)和透射电子显微镜图片(TEM),从图中可以清楚的看出富氧空位二氧化钛纳米花的尺寸为500~1000nm,其由超薄二氧化钛纳米片自组装形成,纳米片厚度为2~9nm。
图3为实例1所制备的富氧空位二氧化钛纳米花的X射线衍射图(XRD),由图可以看出该材料衍射图和标准锐钛矿相二氧化钛的特征峰相符合。
图4为实例1所制备的富氧空位二氧化钛纳米花的顺磁共振谱(EPR)图,由图可以看出,所制备的富氧空位二氧化钛纳米花富含大量氧空位。
实施例2:
往31.5mL异丙醇溶液加入二乙烯三胺(EDTA)0.05mL,搅拌10min。往溶液中再加入二(乙酰丙酮基)钛酸二异丙酯1.125mL。继续搅拌10min。将所得混合溶液倒入反应釜中,在150℃条件下溶剂热处理36小时。反应结束后将沉淀物用去离子水和无水乙醇分别洗涤三次,置于60℃烘箱中,干燥24小时,得到富氧空位二氧化钛纳米花材料。
图5为实例2所制备的富氧空位二氧化钛纳米花的扫描电子显微镜图片(SEM),从图中可以看出,二氧化钛纳米花的尺寸为100~300nm,其由超薄二氧化钛纳米片自组装形成,纳米片厚度为2~9nm,相比于实施例1获得的二氧化钛纳米花,尺寸明显变小。进一步的,对该产物进行了XRD测试和EPR测试,结果表明,该材料为锐钛矿,富含大量氧空位。
实施例3:
往31.5mL异丙醇溶液中加入二(乙酰丙酮基)钛酸二异丙酯1.125mL。搅拌10min。将所得混合溶液倒入反应釜中,在200℃条件下溶剂热处理24小时。反应结束后将沉淀物用去离子水和无水乙醇分别洗涤三次,置于60℃烘箱中,干燥24小时,得到样品。
图6为该实例所制备样品的扫描电子显微镜图片(SEM),从图中明显可以,在制备过程中未加入二乙烯三胺,所制备的二氧化钛未形成分级结构,而是以颗粒的形式存在,表明富氧空位二氧化钛纳米花的形貌与尺寸可以通二乙烯三胺的加入量来控制。
实施例4:
在31.5mL异丙醇中加入二乙烯三胺(EDTA)0.025mL,搅拌10min。再往溶液中再加入二(乙酰丙酮基)钛酸二异丙酯1.125mL。继续搅拌10min。将所得混合溶液倒入反应釜中,在220℃条件下溶剂热处理12小时。反应结束后将沉淀物用去离子水和无水乙醇分别洗涤三次,置于60℃烘箱中,干燥24小时,得到富氧空位二氧化钛纳米花材料。
所得到的材料为纳米花结构,二氧化钛纳米花的尺寸为500~1000nm,其由超薄二氧化钛纳米片自组装形成,纳米片厚度为2~9nm,对该产物进行了XRD测试和EPR测试,结果表明,该材料为锐钛矿,富含大量氧空位。
实施例5:
本发明制备的富氧空位二氧化钛纳米花纳米材料可作为高效光催化分解水产氢的光催化剂,具体实验过程如下:在全光谱下,取实施例1制备的富氧空位二氧化钛纳米花50mg超声分散在30%(v/v)甲醇溶液100mL,抽真空,光照时间每隔1小时取样一次,用气相色谱检测气体。最后,绘制出富氧空位二氧化钛纳米花光催化剂在模拟光源下光催化分解水产氢曲线图,如图7所示,由该图可知,在模拟光激发下富氧空位二氧化钛纳米花对水分解产氢具有优异的效果。光照5小时,产氢量为120.5μmol/g。

Claims (3)

1. 一种富氧空位二氧化钛纳米花的制备方法,其特征在于,该方法为:先将异丙醇加入到二乙烯三胺中,搅拌均匀,再加入二(乙酰丙酮基)钛酸二异丙酯,搅拌均匀,倒入反应釜中,在150~220 ℃条件下热处理12~36小时,洗涤,干燥,得到富氧空位二氧化钛纳米花材料,所述富氧空位二氧化钛纳米花材料由二氧化钛纳米片组成,所述二氧化钛纳米片为锐钛矿相,厚度2~9 nm。
2.根据权利要求1所述的制备方法,其特征在于,异丙醇、二乙烯三胺和二(乙酰丙酮基)钛酸二异丙酯的体积比为1260~2520:1~10:45~360。
3. 根据权利要求2所述的制备方法,其特征在于,异丙醇、二乙烯三胺和二(乙酰丙酮基)钛酸二异丙酯的体积比为1260:1:45,反应温度为200 ℃,反应时间为24小时。
CN201810463274.2A 2018-05-15 2018-05-15 一种富氧空位二氧化钛纳米花及其制备方法 Expired - Fee Related CN108722384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810463274.2A CN108722384B (zh) 2018-05-15 2018-05-15 一种富氧空位二氧化钛纳米花及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810463274.2A CN108722384B (zh) 2018-05-15 2018-05-15 一种富氧空位二氧化钛纳米花及其制备方法

Publications (2)

Publication Number Publication Date
CN108722384A CN108722384A (zh) 2018-11-02
CN108722384B true CN108722384B (zh) 2020-04-24

Family

ID=63937497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810463274.2A Expired - Fee Related CN108722384B (zh) 2018-05-15 2018-05-15 一种富氧空位二氧化钛纳米花及其制备方法

Country Status (1)

Country Link
CN (1) CN108722384B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109663610B (zh) * 2018-11-20 2022-04-08 浙江理工大学上虞工业技术研究院有限公司 一种二维氮化碳/二维二氧化钛复合材料的制备方法
CN109499597B (zh) * 2018-11-20 2022-04-01 浙江理工大学上虞工业技术研究院有限公司 一种多孔二氧化钛/氮化碳纳米颗粒复合材料的制备方法
CN109574069B (zh) * 2018-11-21 2021-10-12 上海大学 碳量子点诱导的二氧化钛分级纳米结构及其制备方法
CN109718752B (zh) * 2019-01-27 2021-11-12 安徽大学 一种石墨烯/TiO2纳米复合材料及其制备方法
CN110589883A (zh) * 2019-09-23 2019-12-20 安徽师范大学 一种富含氧空穴的二维层状二氧化钛纳米材料、制备方法及其应用
CN110624527A (zh) * 2019-10-14 2019-12-31 上海纳米技术及应用国家工程研究中心有限公司 三维有色二氧化钛光催化材料的制备方法及其产品和应用
CN111545184A (zh) * 2020-03-31 2020-08-18 上海电力大学 一种富氧空位的二氧化钛的制备方法和产品及其应用
CN112939053B (zh) * 2021-01-29 2022-11-11 浙江大学 一种制备含有氧空位的过渡金属氧化物材料的方法
CN112892515A (zh) * 2021-01-29 2021-06-04 浙江大学 全光响应、富含表面氧空位的二氧化钛纳米管光催化剂及其低温制备方法和应用
CN115140765B (zh) * 2021-03-30 2023-08-01 中国科学院大连化学物理研究所 一种在金红石型氧化钛(110)表面制备氧空位对缺陷的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741137A (zh) * 2013-12-31 2015-07-01 西北大学 一种二氧化钛及其掺杂体的制备方法
CN105772039B (zh) * 2016-05-10 2018-08-21 宿州学院 一种具有氧空位的(001)晶面氟硼共掺杂TiO2纳米片的制备方法及用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Hierarchical spheres assembled from large ultrathin anatase TiO2 nanosheets for photocatalytic hydrogen evolution from water splitting";Zixuan Ding et al.;《International Journal of Hydrogen Energy》;20180614;第43卷;第13190-13199页 *
"Oxygen vacancies mediated in-situ growth of noble-metal (Ag, Au, Pt) nanoparticles on 3D TiO2 hierarchical spheres for efficient photocatalytic hydrogen evolution from water splitting";Haihua Hu et al.;《International Journal of Hydrogen Energy》;20191126;第45卷;第629-639页 *
"TiO2分级纳米球的制备、异质结设计及其光催化性能的研究";丁子轩;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20190115;B014-627 *

Also Published As

Publication number Publication date
CN108722384A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
CN108722384B (zh) 一种富氧空位二氧化钛纳米花及其制备方法
Liu et al. Progress in black titania: a new material for advanced photocatalysis
Lai et al. A new insight into regulating high energy facets of rutile TiO 2
Liu et al. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties
Ye et al. Garden-like perovskite superstructures with enhanced photocatalytic activity
CN108311164B (zh) 一种铁改性光催化材料及其制备方法和应用
CN111921550B (zh) 一种MXene/二氧化钛纳米管复合材料光催化剂及其制备方法
Pei et al. Single crystalline Sr germanate nanowires and their photocatalytic performance for the degradation of methyl blue
Zhang et al. Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal treatment
Chen et al. Surfactant-additive-free synthesis of 3D anatase TiO 2 hierarchical architectures with enhanced photocatalytic activity
Wu et al. Template-free synthesis of mesoporous anatase yttrium-doped TiO 2 nanosheet-array films from waste tricolor fluorescent powder with high photocatalytic activity
Fang et al. Mesocrystal precursor transformation strategy for synthesizing ordered hierarchical hollow TiO 2 nanobricks with enhanced photocatalytic property
Yang et al. One-step hydrothermal synthesis of hierarchical nanosheet-assembled Bi2O2CO3 microflowers with a {001} dominant facet and their superior photocatalytic performance
CN111686770A (zh) 一种金属离子共掺杂BiOBr微球、制备方法及其应用
Bai et al. Efficient molecular oxygen utilization of micelle-based BiOCl for enhanced in situ H 2 O 2 production induced photocatalytic removal of antibiotics
Li et al. Hydroxyl-assisted iodine ions intercalating Bi 2 O 2 CO 3 nanosheets to construct an interlayered bridge for enhanced photocatalytic degradation of phenols
CN109837590B (zh) 一种26面体钽酸钠晶体及其制备方法
Bao et al. Hydrothermal synthesis of Bi@ Bi 4 Ti 3 O 12 nanosheets with enhanced visible-light photocatalytic activity
CN108404948B (zh) 一种(BiO)2CO3-BiO2-x复合光催化剂及其制备方法和应用
CN110563036A (zh) 一种富含氧空位的氧化铋纳米材料及其制备方法
CN113735163B (zh) 一种含氧空位的多孔二氧化钛材料及其制备方法和应用
Yanchao et al. La-doped titania nanocrystals with superior photocatalytic activity prepared by hydrothermal method
Leilei et al. Photocatalytic activity for hydrogen evolution over well-dispersed heterostructured In2O3/Ta2O5 composites
CN115007136A (zh) 一种中空结构的氧化钨光催化剂及其制备方法和应用
CN111229240B (zh) 铁酸铋催化剂及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200424

CF01 Termination of patent right due to non-payment of annual fee