CN108525667A - Metal organic frame derives the preparation method of the TiO 2 nanotubes modified array of cobaltosic oxide - Google Patents
Metal organic frame derives the preparation method of the TiO 2 nanotubes modified array of cobaltosic oxide Download PDFInfo
- Publication number
- CN108525667A CN108525667A CN201810315665.XA CN201810315665A CN108525667A CN 108525667 A CN108525667 A CN 108525667A CN 201810315665 A CN201810315665 A CN 201810315665A CN 108525667 A CN108525667 A CN 108525667A
- Authority
- CN
- China
- Prior art keywords
- tio
- ntas
- derived
- titanium dioxide
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 title claims abstract 9
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(2+);cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 title claims abstract 5
- 238000002360 preparation method Methods 0.000 title claims description 22
- 229910052751 metal Inorganic materials 0.000 title description 3
- 239000002184 metal Substances 0.000 title description 3
- 239000002071 nanotube Substances 0.000 claims abstract description 72
- 239000012621 metal-organic framework Substances 0.000 claims abstract description 62
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 48
- 238000001354 calcination Methods 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 44
- 239000010936 titanium Substances 0.000 claims abstract description 37
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 32
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 32
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000003491 array Methods 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 16
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims abstract description 11
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 11
- 229910021607 Silver chloride Inorganic materials 0.000 claims abstract description 10
- 239000003792 electrolyte Substances 0.000 claims abstract description 10
- 238000011065 in-situ storage Methods 0.000 claims abstract description 10
- 239000004332 silver Substances 0.000 claims abstract description 9
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims abstract description 9
- 239000013078 crystal Substances 0.000 claims abstract description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000002659 electrodeposit Substances 0.000 claims abstract description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 149
- 229910020599 Co 3 O 4 Inorganic materials 0.000 claims description 46
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 33
- 229910017052 cobalt Inorganic materials 0.000 claims description 29
- 239000010941 cobalt Substances 0.000 claims description 29
- -1 cobalt tetroxide-modified titania Chemical class 0.000 claims description 29
- YSWBFLWKAIRHEI-UHFFFAOYSA-N 4,5-dimethyl-1h-imidazole Chemical compound CC=1N=CNC=1C YSWBFLWKAIRHEI-UHFFFAOYSA-N 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 14
- 230000003647 oxidation Effects 0.000 claims description 13
- 238000007254 oxidation reaction Methods 0.000 claims description 13
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 11
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 10
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 229910001429 cobalt ion Inorganic materials 0.000 claims description 7
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 claims description 7
- 230000035484 reaction time Effects 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 5
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 abstract description 7
- 239000004408 titanium dioxide Substances 0.000 abstract description 7
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 abstract description 3
- 230000008859 change Effects 0.000 abstract description 2
- 239000002957 persistent organic pollutant Substances 0.000 abstract description 2
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 abstract 1
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 abstract 1
- 238000010335 hydrothermal treatment Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 35
- 230000001699 photocatalysis Effects 0.000 description 20
- 230000015556 catabolic process Effects 0.000 description 13
- 238000006731 degradation reaction Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- 238000004070 electrodeposition Methods 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 11
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 10
- 229960000907 methylthioninium chloride Drugs 0.000 description 10
- 238000001878 scanning electron micrograph Methods 0.000 description 8
- 239000002105 nanoparticle Substances 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910017855 NH 4 F Inorganic materials 0.000 description 2
- VJFCXDHFYISGTE-UHFFFAOYSA-N O=[Co](=O)=O Chemical compound O=[Co](=O)=O VJFCXDHFYISGTE-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000006303 photolysis reaction Methods 0.000 description 2
- 230000015843 photosynthesis, light reaction Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000985 reflectance spectrum Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000005476 size effect Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- GPKIXZRJUHCCKX-UHFFFAOYSA-N 2-[(5-methyl-2-propan-2-ylphenoxy)methyl]oxirane Chemical compound CC(C)C1=CC=C(C)C=C1OCC1OC1 GPKIXZRJUHCCKX-UHFFFAOYSA-N 0.000 description 1
- 229910020647 Co-O Inorganic materials 0.000 description 1
- 229910020704 Co—O Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- XZXAIFLKPKVPLO-UHFFFAOYSA-N cobalt(2+);dinitrate;hydrate Chemical compound O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XZXAIFLKPKVPLO-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000007281 self degradation Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- STZCRXQWRGQSJD-UHFFFAOYSA-M sodium;4-[[4-(dimethylamino)phenyl]diazenyl]benzenesulfonate Chemical compound [Na+].C1=CC(N(C)C)=CC=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-UHFFFAOYSA-M 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/75—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/005—Spinels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/26—Anodisation of refractory metals or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/36—Organic compounds containing halogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/40—Organic compounds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法,先将钛片基底材料进行预处理;将含有氟化铵以及水的乙二醇溶液作为电解液,对处理后的钛基底材料进行电化学处理,随之进行马弗炉煅烧改变二氧化钛晶型;其次借助三电极电化学工作站,将六水合硝酸钴作为电解液,二氧化钛纳米管阵列作为工作电极,铂片为负极,银/氯化银作为参比电极进行电沉积氢氧化钴;接着将二氧化钛纳米管阵列进行水热处理原位形成ZIF‑67;最后进行马弗炉二次煅烧则获得ZIF‑67衍生的多孔四氧化三钴修饰的二氧化钛纳米管阵列。本发明可以有效提高TiO2对可见光的吸收能力、促进电子空穴对的分离,提高有机污染物的光催化降解效率。
The invention discloses a method for preparing a metal-organic framework-derived tricobalt tetroxide-modified titanium dioxide nanotube array. Firstly, the base material of a titanium sheet is pretreated; an ethylene glycol solution containing ammonium fluoride and water is used as an electrolyte, and the processed The titanium base material is electrochemically treated, followed by calcination in a muffle furnace to change the crystal form of titanium dioxide; secondly, with the help of a three-electrode electrochemical workstation, cobalt nitrate hexahydrate is used as the electrolyte, the titanium dioxide nanotube array is used as the working electrode, and the platinum sheet is used as the negative electrode. Silver/silver chloride was used as a reference electrode to electrodeposit cobalt hydroxide; then the titanium dioxide nanotube array was subjected to hydrothermal treatment to form ZIF-67 in situ; finally, the porous cobalt tetraoxide modified by ZIF-67 was obtained by secondary calcination in muffle furnace TiO nanotube arrays. The invention can effectively improve the absorption capacity of TiO2 to visible light, promote the separation of electron-hole pairs, and improve the photocatalytic degradation efficiency of organic pollutants.
Description
技术领域technical field
本发明涉及光催化降解污染物材料技术领域,具体涉及一种金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法。The invention relates to the technical field of photocatalytic degradation of pollutant materials, in particular to a method for preparing a metal-organic framework-derived tricobalt tetroxide-modified titanium dioxide nanotube array.
背景技术Background technique
现如今社会面临众多难题,其中对能源需求的急剧增加以及大量环境污染问题成为关注焦点,其中水污染是最急需解决的问题。二氧化钛自1972年发现以来,因其具有良好导电性、突出的化学稳定性、光电特性、生物相容性、抗腐蚀性和低成本等特点吸引了大量学者对其研究并且广泛应用于光催化降解污染物、燃料敏化太阳能电池、生物医用材料、气体传感器和光解水制氢等方面,为有机污染物的绿色降解提供了新的途径。Today's society is facing many problems, among which the sharp increase in energy demand and a large number of environmental pollution problems have become the focus of attention, among which water pollution is the most urgent problem to be solved. Since titanium dioxide was discovered in 1972, it has attracted a large number of scholars to study it because of its good electrical conductivity, outstanding chemical stability, photoelectric properties, biocompatibility, corrosion resistance and low cost, and has been widely used in photocatalytic degradation. Pollutants, fuel-sensitized solar cells, biomedical materials, gas sensors, and photolysis of water to produce hydrogen provide new ways for the green degradation of organic pollutants.
纳米材料由于其低尺寸效应、量子尺寸效应和宏观量子隧道效应被大量研究用于解决现阶段环境与能源问题,其中由于二氧化钛具有良好的催化降解性能而被广泛应用。相对于二氧化钛纳米颗粒,阳极氧化法所制得的TiO2纳米管阵列具有更大的比表面积、比表面能、易回收利用以及电子-空穴复合率较低等优点。但是由于TiO2 NTAs仍然存在的一些缺点,从而限制了它在很多方面的应用:(1)TiO2的禁带宽度较宽(锐钛矿为3.2 eV,金红石为3.0 eV),只能吸收3~5%的太阳光能(λ<387 nm),利用率低;(2)TiO2的光生电子空穴对的复合率仍然较高,光催化活性低。Due to its low size effect, quantum size effect and macroscopic quantum tunneling effect, nanomaterials have been widely studied to solve environmental and energy problems at this stage, among which titanium dioxide is widely used because of its good catalytic degradation performance. Compared with titanium dioxide nanoparticles, the TiO 2 nanotube arrays prepared by anodic oxidation have the advantages of larger specific surface area, specific surface energy, easy recycling, and lower electron-hole recombination rate. However, due to some shortcomings of TiO 2 NTAs, its application in many aspects is limited: (1) TiO 2 has a wide band gap (3.2 eV for anatase and 3.0 eV for rutile), and can only absorb 3 ~5% of solar light energy (λ<387 nm), the utilization rate is low; (2) The recombination rate of photogenerated electron-hole pairs of TiO2 is still high, and the photocatalytic activity is low.
针对以上问题,研究表明可以通过各种途径(掺杂金属、非金属以及半导体纳米粒子或是与具有不同能带结构的纳米半导体以某种方式结合在一起,形成复合型纳米材料)来改善TiO2纳米管阵列的光电催化性能。TiO2作为一种新型n型半导体材料,选择一种合适的p型半导体材料与之以某种方式进行复合构成p-n结构,可以使TiO2禁带宽度减小,有效抑制电子空穴对的复合,从而提高光催化效率。Co3O4是一种p型半导体,其禁带宽度为2.6eV,与TiO2复合后形成p-n异质结,一方面使TiO2纳米管阵列的光响应区域从紫外区向可见区方向发生红移,从而提高了对太阳能的利用率;另一方面,由于二者的禁带宽度差异,能够使光生电子和空穴得以有效的分离,因此提高了光电转换效率。In response to the above problems, studies have shown that TiO can be improved in various ways (doping metal, non-metal and semiconductor nanoparticles or combining with nano-semiconductors with different energy band structures in a certain way to form composite nanomaterials). 2 Photocatalytic performance of nanotube arrays. TiO 2 is a new type of n-type semiconductor material. Selecting a suitable p-type semiconductor material and combining it in a certain way to form a pn structure can reduce the band gap of TiO 2 and effectively inhibit the recombination of electron-hole pairs. , thereby improving the photocatalytic efficiency. Co 3 O 4 is a p-type semiconductor with a forbidden band width of 2.6eV. After recombining with TiO 2 , it forms a pn heterojunction. On the one hand, the photoresponse region of the TiO 2 nanotube array is generated from the ultraviolet region to the visible region. On the other hand, due to the difference in the band gap between the two, the photogenerated electrons and holes can be effectively separated, thus improving the photoelectric conversion efficiency.
近年来,将Co3O4与TiO2复合形成p-n结的研究很多,但是将Co3O4与TiO2纳米管阵列结合的很少,其中金属有机框架衍生Co3O4再与TiO2 NTAs更是少之又少。金属有机框架(MOF)是由金属簇和有机配体通过配位键自组装形成的具有特定结构的多孔材料,这些材料具有高比表面积、规则有序和可调孔径大小和形状以及易功能化等特点,是目前配位化学和能源材料化学研究中最热门领域之一,在气体储存、二氧化碳捕获、化学传感器、异相催化、电磁和生物医学等领域中有广泛的应用前景。MOF作为一种新型的碳基多孔材料被选作碳材料前躯体经过高温碳化制备新型纳米多孔碳催化剂是当前的研究热门,其高温热解之后形成的金属氧化物、碳化物、氮化物或是金属粒子都具备不同的性能与应用。In recent years, there have been many studies on the combination of Co 3 O 4 and TiO 2 to form pn junctions, but there are few studies on the combination of Co 3 O 4 and TiO 2 nanotube arrays, in which metal-organic framework derived Co 3 O 4 and TiO 2 NTAs Even less. Metal-organic frameworks (MOFs) are porous materials with specific structures formed by the self-assembly of metal clusters and organic ligands through coordination bonds. These materials have high specific surface area, regular order and adjustable pore size and shape, and easy functionalization. It is one of the hottest fields in the research of coordination chemistry and energy material chemistry, and has broad application prospects in the fields of gas storage, carbon dioxide capture, chemical sensors, heterogeneous catalysis, electromagnetics, and biomedicine. As a new type of carbon-based porous material, MOF is selected as the precursor of carbon material. The preparation of new nanoporous carbon catalysts through high-temperature carbonization is a current research hotspot. The metal oxides, carbides, nitrides or Metal particles have different properties and applications.
发明内容Contents of the invention
本发明目的是提供一种金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法,解决上述问题。The purpose of the present invention is to provide a method for preparing a metal-organic framework-derived tricobalt tetroxide-modified titanium dioxide nanotube array, so as to solve the above problems.
本发明的技术方案是:Technical scheme of the present invention is:
一种金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法,该方法包括如下步骤:A method for preparing a metal-organic framework-derived tricobalt tetroxide-modified titanium dioxide nanotube array, the method comprising the following steps:
(1)钛片的预处理:对钛片基底进行超声清洗;(1) Pretreatment of the titanium sheet: Ultrasonic cleaning of the titanium sheet substrate;
(2)阳极氧化法制备TiO2纳米管阵列:以所述钛片基底作为阳极、以铂片电极为阴极,将所述阳极与阴极同时***含有氟化铵和水的乙二醇溶液中,施加电压使所述阳极氧化,制得TiO2 NTAs,再将所述TiO2 NTAs进行煅烧,使所述TiO2 NTAs从无定型状态的TiO2纳米管阵列转变为锐钛矿晶型的TiO2纳米管阵列;(2) Preparation of TiO nanotube arrays by anodic oxidation method: using the titanium sheet substrate as the anode and the platinum sheet electrode as the cathode, inserting the anode and the cathode into an ethylene glycol solution containing ammonium fluoride and water simultaneously, Applying a voltage to oxidize the anode to produce TiO 2 NTAs, and then calcining the TiO 2 NTAs to convert the TiO 2 NTAs from an amorphous TiO 2 nanotube array to an anatase crystal TiO 2 nanotube arrays;
(3)电沉积Co(OH)2:将TiO2 NTAs作为工作电极、铂片作为对电极、银/氯化银作为参比电极,六水合硝酸钴溶液作为电解液,使用三电极电化学工作站将钴离子以Co(OH)2形式附着于TiO2 NTAs上,形成Co(OH)2/TiO2 NTAs,冲洗、干燥待用;(3) Electrodeposit Co(OH) 2 : use TiO 2 NTAs as working electrode, platinum sheet as counter electrode, silver/silver chloride as reference electrode, cobalt nitrate hexahydrate solution as electrolyte, and use a three-electrode electrochemical workstation Cobalt ions are attached to TiO 2 NTAs in the form of Co(OH) 2 to form Co(OH) 2 /TiO 2 NTAs, washed and dried for use;
(4)将所述Co(OH)2/TiO2 NTAs放入反应釜中,将以N,N-二甲基甲酰胺为溶剂的二甲基咪唑溶液倒入所述反应釜中进行水热反应,使Co(OH)2与二甲基咪唑有机配位进行反应生成ZIF-67,使其原位生长于TiO2 NTAs上,反应后清洗、干燥,再通过煅烧将ZIF-67衍生为多孔纳米结构的Co3O4,制得金属有机框架衍生的多孔四氧化三钴修饰二氧化钛纳米管阵列。(4) Put the Co(OH) 2 /TiO 2 NTAs into the reactor, pour the dimethylimidazole solution with N,N-dimethylformamide as the solvent into the reactor for hydrothermal Reaction, Co(OH) 2 and dimethylimidazole are organically coordinated to generate ZIF-67, which is grown on TiO 2 NTAs in situ, washed and dried after the reaction, and then derivatized into porous ZIF-67 by calcination Nanostructured Co 3 O 4 , prepared metal-organic framework-derived porous cobalt tetroxide-modified titania nanotube arrays.
进一步的,步骤(1)中所述钛片的材料为纯钛或钛合金,尺寸为1.0cm×1.0cm。Further, the material of the titanium sheet in step (1) is pure titanium or titanium alloy, and the size is 1.0 cm×1.0 cm.
进一步的,步骤(1)中所述超声清洗为依次采用丙酮、乙醇和去离子水超声清洗10~60min。Further, the ultrasonic cleaning in step (1) is sequentially using acetone, ethanol and deionized water for 10-60 minutes.
进一步的,步骤(2)中所述含有氟化铵和水的乙二醇溶液中,氟化铵的质量百分比浓度为0.1~1.0wt%,水的体积百分比浓度为1.0~5.0v%。Further, in the ethylene glycol solution containing ammonium fluoride and water described in step (2), the mass percent concentration of ammonium fluoride is 0.1-1.0 wt%, and the volume percent concentration of water is 1.0-5.0v%.
进一步的,步骤(2)中所述阳极氧化的电压为30~90V,时间为1~5h。Further, the voltage of the anodic oxidation in step (2) is 30-90V, and the time is 1-5h.
进一步的,步骤(2)中所述煅烧是在空气中煅烧,煅烧的温度为300~600℃,煅烧的时间为1~5h,煅烧的升温和降温速率均为2~5℃/min。Further, the calcination in step (2) is in air, the calcination temperature is 300-600°C, the calcination time is 1-5h, and the heating and cooling rates of calcination are both 2-5°C/min.
进一步的,步骤(3)中所述六水合硝酸钴的质量百分比浓度为0.001~0.01wt%。Further, the mass percent concentration of the cobalt nitrate hexahydrate in step (3) is 0.001-0.01wt%.
进一步的,步骤(3)中所述三电极电化学工作站施加的电压为-0.1V~-1V,通电的时间分别为60s、90s、120s,所述冲洗使用去离子水冲洗,干燥为放入烘箱进行干燥。Further, the voltage applied by the three-electrode electrochemical workstation in step (3) is -0.1V~-1V, and the power-on time is 60s, 90s, and 120s respectively. Oven for drying.
进一步的,步骤(4)中所述二甲基咪唑质量百分比浓度为0.05~0.2wt%。Further, the mass percent concentration of dimethylimidazole in step (4) is 0.05-0.2 wt%.
进一步的,步骤(4)中所述水热反应所采用的反应釜为50ml,温度为60~150℃,反应时间为12~24h,所述清洗为依次用乙醇与去离子水冲洗,所述干燥为放入烘箱进行干燥,所述煅烧是在空气中煅烧,煅烧的温度为300~600℃,煅烧的时间为1~5h,煅烧的升温和降温速率均为2~5℃/min。Further, the reaction kettle used in the hydrothermal reaction in step (4) is 50ml, the temperature is 60-150°C, and the reaction time is 12-24h. The cleaning is to wash with ethanol and deionized water in sequence, and the Drying is drying in an oven. The calcination is calcination in air, the calcination temperature is 300-600°C, the calcination time is 1-5h, and the heating and cooling rates of calcination are both 2-5°C/min.
本发明提供了一种金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法,并解决了金属有机框架衍生物重复利用、稳定性差以及改善了TiO2 NTAs光催化性能等问题,具有工艺简便易操作,可以控制Co3O4的分散和尺寸大小。金属有机框架衍生出多孔四氧化三钴修饰二氧化钛纳米管阵列一方面构成p-n异质结构可提高复合物的光吸收能力,将其光响应拓展至可见光区,提高太阳光的利用率;另一方面增加了比表面积,反应位点增多,可以更加有效催化降解有机物。与未复合的TiO2相比较,制得的复合金属有机框架衍生出多孔四氧化三钴的二氧化钛纳米管阵列光催化剂在可见光下降解10mg/L的亚甲基蓝是未修饰二氧化钛纳米管光催化速率的4.8倍,光催化降解污染物的效率明显提高,具有良好的化学稳定性能和可回收性,可实现低成本、大规模工业化应用。The invention provides a method for preparing metal-organic framework-derived tricobalt tetroxide-modified titanium dioxide nanotube arrays, and solves the problems of metal-organic framework derivatives reuse, poor stability, and improved photocatalytic performance of TiO 2 NTAs. The process is simple and easy to operate , the dispersion and size of Co 3 O 4 can be controlled. Metal-organic frameworks derived porous tricobalt tetroxide-modified titania nanotube arrays. On the one hand, forming a pn heterostructure can improve the light absorption ability of the composite, extend its photoresponse to the visible light region, and improve the utilization rate of sunlight; on the other hand, it increases the ratio The surface area increases and the reaction sites increase, which can more effectively catalyze the degradation of organic matter. Compared with uncomposited TiO 2 , the obtained composite metal-organic framework derived porous tricobalt tetraoxide titanium dioxide nanotube array photocatalyst can degrade 10 mg/L methylene blue under visible light, which is 4.8 times the photocatalytic rate of unmodified titanium dioxide nanotubes. The efficiency of catalytic degradation of pollutants is significantly improved, and it has good chemical stability and recyclability, and can realize low-cost, large-scale industrial applications.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中,In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For Those of ordinary skill in the art can also obtain other drawings based on these drawings without any creative effort. in,
图1为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法的流程示意图;1 is a schematic flow diagram of the method for preparing a metal-organic framework-derived tricobalt tetroxide-modified titanium dioxide nanotube array of the present invention;
图2为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,阳极氧化2 h制备的高度有序的TiO2 NTAs的SEM形貌图(a),电沉积Co(OH)2-TiO2 NTAs的SEM形貌图(b),ZIF-67-TiO2 NTAs的SEM形貌图(c),ZIF-67衍生出Co3O4-TiO2 NTAs的SEM形貌图(d);Figure 2 is the SEM image (a) of the highly ordered TiO 2 NTAs prepared by anodizing for 2 h in the method for preparing metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention, electrodeposited Co(OH) 2 -SEM image of TiO 2 NTAs (b), SEM image of ZIF-67-TiO 2 NTAs (c), SEM image of ZIF-67 derived Co 3 O 4 -TiO 2 NTAs (d) ;
图3为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,ZIF-67-TiO2 NTAs(a),ZIF-67衍生Co3O4-TiO2 NTAs的元素分布能谱图(b)以及元素含量能谱图(c);Figure 3 is the ZIF-67-TiO 2 NTAs (a), ZIF-67 derived Co 3 O 4 -TiO 2 NTAs elemental distribution energy spectrum in the preparation method of the metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube array of the present invention (b) and element content spectrum (c);
图4为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,未修饰TiO2 NTAs和ZIF-67衍生Co3O4-TiO2 NTAs的XPS谱图( a, b, c, d );Figure 4 is the XPS spectra of unmodified TiO 2 NTAs and ZIF-67 derived Co 3 O 4 -TiO 2 NTAs in the method for preparing metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention (a, b, c, d);
图5为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,未修饰TiO2 NTAs和ZIF-67衍生Co3O4-TiO2 NTAs的拉曼谱图;Fig. 5 is the Raman spectrum of unmodified TiO 2 NTAs and ZIF-67 derived Co 3 O 4 -TiO 2 NTAs in the method for preparing metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention;
图6为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,(a)为未修饰TiO2 NTAs和ZIF-67衍生Co3O4-TiO2 NTAs的紫外-可见光漫反射图谱,(b)为禁带宽度图谱;Figure 6 shows the UV-Vis diffuse reflectance spectra of unmodified TiO 2 NTAs and ZIF-67 derived Co 3 O 4 -TiO 2 NTAs in the preparation method of metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention. , (b) is the band gap spectrum;
图7为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,未修饰TiO2 NTAs和ZIF-67衍生Co3O4-TiO2 NTAs的荧光图谱;Fig. 7 is the fluorescence spectrum of unmodified TiO 2 NTAs and ZIF-67 derived Co 3 O 4 -TiO 2 NTAs in the method for preparing metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention;
图8为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,未修饰TiO2 NTAs和ZIF-67衍生Co3O4-TiO2 NTAs的光电流图谱;Fig. 8 is the photocurrent spectrum of unmodified TiO 2 NTAs and ZIF-67 derived Co 3 O 4 -TiO 2 NTAs in the method for preparing metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention;
图9为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,(a)为未修饰TiO2纳米管阵列和ZIF-67衍生Co3O4-TiO2 NTAs的光催化效果图,(b)为光催化动力学方程图;Figure 9 is the preparation method of metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube array of the present invention, (a) is the photocatalytic effect diagram of unmodified TiO2 nanotube array and ZIF-67 derived Co 3 O 4 -TiO 2 NTAs, (b) is the photocatalytic kinetic equation diagram;
图10为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,ZIF-67衍生Co3O4-TiO2 NTAs光催化循环次数降解图;Fig. 10 is a photocatalytic cycle degradation diagram of ZIF-67 derived Co 3 O 4 -TiO 2 NTAs in the preparation method of metal organic framework derived cobalt tetroxide modified titanium dioxide nanotube array of the present invention;
图11为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,ZIF-67衍生Co3O4-TiO2 NTAs光催化影响因子对降解效率效果图。Fig. 11 is a diagram showing the photocatalytic influence factors of ZIF-67-derived Co 3 O 4 -TiO 2 NTAs on the degradation efficiency in the method for preparing metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention.
具体实施方式Detailed ways
请参阅图1,图1为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法的流程示意图。如图1所示,本发明提供一种金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法,包括以下步骤:Please refer to FIG. 1 . FIG. 1 is a schematic flowchart of a method for preparing a metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube array of the present invention. As shown in Figure 1, the present invention provides a method for preparing a metal-organic framework-derived tricobalt tetroxide-modified titanium dioxide nanotube array, comprising the following steps:
钛片的预处理;Pretreatment of titanium sheet;
阳极氧化法制备TiO2 NTAs;Preparation of TiO 2 NTAs by anodic oxidation method;
将TiO2 NTAs作为工作电极、铂片作为对电极、银/氯化银作为参比电极,六水合硝酸钴溶液作为电解液,使用三电极电化学工作站制得Co(OH)2-TiO2 NTAs;Co(OH) 2 -TiO 2 NTAs were prepared using a three-electrode electrochemical workstation with TiO 2 NTAs as the working electrode, platinum sheet as the counter electrode, silver/silver chloride as the reference electrode, and cobalt nitrate hexahydrate solution as the electrolyte. ;
将Co(OH)2-TiO2 NTAs放入反应釜中,以N,N-二甲基甲酰胺为溶剂的二甲基咪唑溶液倒入反应釜进行水热反应,原位生长ZIF-67,通过煅烧将ZIF-67衍生为多孔纳米结构的Co3O4,制得金属有机框架衍生多孔四氧化三钴修饰二氧化钛纳米管阵列。Put Co(OH) 2 -TiO 2 NTAs into the reactor, and pour the dimethylimidazole solution with N,N-dimethylformamide as the solvent into the reactor for hydrothermal reaction to grow ZIF-67 in situ. ZIF-67 was derivatized into porous nanostructured Co 3 O 4 by calcination, and metal-organic framework-derived porous tricobalt tetroxide-modified titania nanotube arrays were prepared.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, the present invention will be further described in detail below in conjunction with specific embodiments.
一种金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法,包括:A method for preparing a metal-organic framework-derived tricobalt tetroxide-modified titanium dioxide nanotube array, comprising:
步骤一:钛片的预处理;Step 1: pretreatment of titanium sheet;
在一个实施例中,该步骤可以具体如下执行:对钛片基底进行超声清洗。其中,钛片的材料为纯钛或钛合金,尺寸为1.0cm×1.0cm。依次采用丙酮、乙醇和去离子水对钛片超声清洗10~60min。In one embodiment, this step can be specifically performed as follows: Ultrasonic cleaning is performed on the titanium sheet substrate. Wherein, the material of the titanium sheet is pure titanium or titanium alloy, and the size is 1.0 cm×1.0 cm. Use acetone, ethanol and deionized water in sequence to ultrasonically clean the titanium sheet for 10-60 minutes.
步骤二:阳极氧化法制备TiO2 NTAs;Step 2: preparing TiO 2 NTAs by anodic oxidation;
在一个实施例中,该步骤可以具体如下执行:以所述钛片基底为阳极、以铂片电极为阴极,将所述阳极和阴极同时***含有NH4F和H2O的乙二醇溶液中,其中NH4F的质量百分比浓度为0.1~1.0wt%,H2O的体积百分比浓度为1.0~5.0v%,施加30~90V电压1~5h,使所述阳极氧化,制得TiO2 NTAs,再将TiO2 NTAs在空气中煅烧,煅烧的温度为300~600℃,煅烧的时间为1~5h,煅烧的升温和降温速率均为2~5℃/min,使所述TiO2 NTAs从无定型状态的转变成锐钛矿晶型。In one embodiment, this step can be specifically performed as follows: using the titanium sheet substrate as the anode and the platinum sheet electrode as the cathode, simultaneously inserting the anode and the cathode into an ethylene glycol solution containing NH 4 F and H 2 O wherein the mass percent concentration of NH 4 F is 0.1-1.0wt%, the volume percent concentration of H 2 O is 1.0-5.0v%, and a voltage of 30-90V is applied for 1-5 hours to oxidize the anode to obtain TiO 2 NTAs, and then calcining the TiO 2 NTAs in the air, the calcination temperature is 300-600°C, the calcination time is 1-5h, and the heating and cooling rates of the calcination are both 2-5°C/min, so that the TiO 2 NTAs Transformation from the amorphous state to the anatase crystal form.
步骤三:电沉积制得Co(OH)2-TiO2 NTAs;Step 3: Electrodeposition to obtain Co(OH) 2 -TiO 2 NTAs;
在一个实施例中,该步骤可以具体如下执行:将上述处理后TiO2 NTAs作为工作电极、铂片作为对电极、银/氯化银作为参比电极,六水合硝酸钴溶液作为电解液,六水合硝酸钴的质量百分比浓度为0.001~0.01wt%,使用三电极电化学工作站将钴离子以Co(OH)2形式附着于TiO2 NTAs上,施加电压为-0.1V~-1V,通电时间分别为60s、90s、120s,制得Co(OH)2-TiO2 NTAs,随后使用去离子水冲洗,放入烘箱进行干燥;In one embodiment, this step can be specifically performed as follows: use the above-mentioned treated TiO 2 NTAs as the working electrode, the platinum sheet as the counter electrode, the silver/silver chloride as the reference electrode, the cobalt nitrate hexahydrate solution as the electrolyte, and the six The mass percent concentration of cobalt nitrate hydrate is 0.001-0.01wt%. Cobalt ions are attached to TiO 2 NTAs in the form of Co(OH) 2 using a three-electrode electrochemical workstation. The applied voltage is -0.1V--1V, and the electrification time is For 60s, 90s, and 120s, Co(OH) 2 -TiO 2 NTAs were prepared, then rinsed with deionized water, and dried in an oven;
步骤四:把Co(OH)2-TiO2 NTAs放入反应釜中,以N,N-二甲基甲酰胺为溶剂的二甲基咪唑溶液倒入反应釜进行水热反应,使Co(OH)2与二甲基咪唑有机配位进行反应生成ZIF-67,使其原位生长于TiO2 NTAs上,反应后清洗、干燥,再通过煅烧将ZIF-67衍生为多孔纳米结构的Co3O4,制得金属有机框架衍生多孔四氧化三钴修饰二氧化钛纳米管阵列。Step 4: Put Co(OH) 2 -TiO 2 NTAs into the reactor, and pour the dimethylimidazole solution with N,N-dimethylformamide as the solvent into the reactor for hydrothermal reaction, so that Co(OH) ) 2 reacts with dimethylimidazole organically to form ZIF-67, which grows in situ on TiO 2 NTAs, washes and dries after the reaction, and then derivates ZIF-67 into porous nanostructured Co 3 O by calcination 4. Prepare metal-organic framework-derived porous cobalt tetroxide-modified titania nanotube arrays.
在一个实施例中,该步骤可以具体如下执行:将Co(OH)2-TiO2 NTAs放入50ml反应釜中,以N,N-二甲基甲酰胺为溶剂的二甲基咪唑溶液倒入反应釜进行水热反应,二甲基咪唑质量百分比浓度为0.05~0.2wt%,使Co(OH)2与二甲基咪唑有机配位进行反应生成ZIF-67,使其原位生长于TiO2 NTAs上,反应温度为60~150℃,反应时间为12~24h,反应结束后依次用乙醇与去离子水冲洗,放入烘箱进行干燥,最后将ZIF-67/TiO2 NTAs通过在空气中煅烧,煅烧的温度为300~600℃,煅烧的时间为1~5h,煅烧的升温和降温速率均为2~5℃/min,制得金属有机框架衍生多孔四氧化三钴修饰二氧化钛纳米管阵列。In one embodiment, this step can be specifically performed as follows: put Co(OH) 2 -TiO 2 NTAs into a 50ml reaction kettle, and pour the dimethylimidazole solution using N,N-dimethylformamide as a solvent The reaction kettle is subjected to hydrothermal reaction, and the mass percentage concentration of dimethylimidazole is 0.05-0.2wt%, so that Co(OH) 2 and dimethylimidazole are organically coordinated to react to form ZIF-67, which makes it grow in situ on TiO 2 On NTAs, the reaction temperature is 60-150°C, and the reaction time is 12-24 hours. After the reaction is completed, it is washed with ethanol and deionized water in sequence, and dried in an oven. Finally, the ZIF-67/TiO 2 NTAs are calcined in the air , the calcination temperature is 300-600°C, the calcination time is 1-5h, and the calcination heating and cooling rates are both 2-5°C/min, and the metal-organic framework-derived porous tricobalt tetroxide-modified titanium dioxide nanotube array is prepared.
在上述四个步骤后,完成制作金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列。在这四个步骤后,还可以对结构进行测试。After the above four steps, the metal-organic framework-derived tricobalt tetroxide-modified titanium dioxide nanotube array is completed. After these four steps, the structure can also be tested.
步骤五:在试管中加入亚甲基蓝溶液,将所得的多孔四氧化三钴修饰二氧化钛纳米管阵列基底放入溶液中,避光一段时间达到吸附平衡,取出后利用光化学反应仪器光照一段时间,即可降解亚甲基蓝。Step 5: Add methylene blue solution into the test tube, put the obtained porous tricobalt tetroxide-modified titanium dioxide nanotube array substrate into the solution, and keep away from light for a period of time to reach adsorption equilibrium. After taking it out, use photochemical reaction instrument to illuminate for a period of time to degrade methylene blue.
其中,所述甲基橙溶液的体积为10~50 ml,浓度为10~30 mg/L,pH值为8~10。所述避光时间为30~100 min,光照时间为0~120 min。Wherein, the volume of the methyl orange solution is 10-50 ml, the concentration is 10-30 mg/L, and the pH value is 8-10. The light-shielding time is 30-100 min, and the light-shielding time is 0-120 min.
如图1所示,钛片经过自组装形成TiO2 NTAs,然后通过金属有机框架衍生出多孔四氧化三钴纳米颗粒复合的TiO2 NTAs,在光照下催化降解亚甲基蓝使其脱色。As shown in Figure 1, titanium sheets are self-assembled to form TiO 2 NTAs, and then porous TiO 2 NTAs composed of cobalt trioxide nanoparticles are derived through metal-organic frameworks, and methylene blue is decolorized by catalytic degradation under light.
请参阅图2,图2为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,阳极氧化2 h制备的高度有序的TiO2 NTAs的SEM形貌图(a),电沉积Co(OH)2-TiO2 NTAs的SEM形貌图(b),ZIF-67-TiO2 NTAs的SEM形貌图(c),ZIF-67衍生出Co3O4-TiO2 NTAs的SEM形貌图(d)。如图2所示,未被修饰的TiO2 NTAs展现出均匀统一的,管壁排列紧密一致的形貌特征。Please refer to Fig. 2. Fig. 2 is the SEM topography (a) of highly ordered TiO 2 NTAs prepared by anodic oxidation for 2 h in the method for preparing metal-organic framework-derived tricobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention (a), electrodeposition SEM morphology of Co(OH) 2 -TiO 2 NTAs (b), SEM morphology of ZIF-67-TiO 2 NTAs (c), SEM morphology of Co 3 O 4 -TiO 2 NTAs derived from ZIF-67 Map (d). As shown in Fig. 2, the unmodified TiO 2 NTAs exhibit uniform and uniform morphology with closely aligned tube walls.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和实施例进一步说明本发明的技术方案。但是本发明不限于所列出的实施例,还应包括在本发明所要求的权利范围内其他任何公知的改变。In order to make the above objects, features and advantages of the present invention more comprehensible, the technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and embodiments. But the present invention is not limited to the listed embodiments, but also includes any other known changes within the claimed scope of the present invention.
首先,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。First of all, "one embodiment" or "embodiment" referred to herein refers to a specific feature, structure or characteristic that may be included in at least one implementation of the present invention. "In one embodiment" appearing in different places in this specification does not all refer to the same embodiment, nor is it a separate or selective embodiment that is mutually exclusive with other embodiments.
其次,本发明利用结构示意图等进行详细描述,在详述本发明实施例时,为便于说明,示意图会不依一般比例作局部放大,而且所述示意图只是实例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间。Secondly, the present invention is described in detail using structural schematic diagrams, etc. When describing the embodiments of the present invention in detail, for the convenience of explanation, the schematic diagrams will not be partially enlarged according to the general scale, and the schematic diagrams are only examples, which should not limit the protection of the present invention. range. In addition, the three-dimensional space of length, width and depth should be included in actual production.
另外,本发明中所讲的字母简称,均为本领域固定简称,其中部分字母文解释如下:SEM图:电子扫描显像图; EDS图:能谱图; XPS谱图:X射线光电子能谱分析谱图;2-MI:二甲基咪唑;DMF:N,N-二甲基甲酰胺;Co3O4-TiO2 NTAs:直接法Co(OH)2煅烧后形成;ZIF-67衍生Co3O4-TiO2 NTAs-60:电沉积时间为60s;ZIF-67衍生Co3O4-TiO2 NTAs-90:电沉积时间为90s;ZIF-67衍生Co3O4-TiO2 NTAs-120:电沉积时间为120s;若未指明还原时间均为沉积时间90s样品。In addition, the letter abbreviations mentioned in the present invention are all fixed abbreviations in the field, and part of the letters are explained as follows: SEM diagram: electronic scanning imaging diagram; EDS diagram: energy spectrum diagram; XPS spectrum diagram: X-ray photoelectron energy spectrum Analytical spectrum; 2-MI: dimethylimidazole; DMF: N,N-dimethylformamide; Co 3 O 4 -TiO 2 NTAs: formed after direct method Co(OH) 2 calcination; ZIF-67 derived Co 3 O 4 -TiO 2 NTAs-60: electrodeposition time is 60s; ZIF-67 derived Co 3 O 4 -TiO 2 NTAs-90: electrodeposition time is 90s; ZIF-67 derived Co 3 O 4 -TiO 2 NTAs- 120: The electrodeposition time is 120s; if the reduction time is not specified, it is the sample with a deposition time of 90s.
实施例1Example 1
本实施案例按如下步骤展示一种金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法:This implementation case shows a method for preparing a metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube array according to the following steps:
(1)钛片的预处理:对纯钛片基底用丙酮、无水乙醇和水分别超声清洗20min。以铂片电极为阴极,同时***含有98v%乙二醇与 2v%水(氟化铵0.5wt%)的电解质溶液中,施加50V电压阳极氧化2h,制得TiO2 NTAs,在空气中450℃煅烧2h,使其从无定型状态转变成锐钛矿晶型。(1) Pretreatment of the titanium sheet: Ultrasonic cleaning of the pure titanium sheet substrate with acetone, absolute ethanol and water for 20 min respectively. Using a platinum sheet electrode as the cathode, insert it into an electrolyte solution containing 98v% ethylene glycol and 2v% water (ammonium fluoride 0.5wt%) at the same time, apply a voltage of 50V for anodic oxidation for 2h, and prepare TiO 2 NTAs at 450°C in air Calcined for 2h to transform from amorphous state to anatase crystal form.
(2)采用电沉积的方法制备Co(OH)2-TiO2 NTAs。配制0.005 wt%的六水合硝酸钴的水溶液,溶液分散均匀后作为电解液,将TiO2 NTAs作为工作电极、铂片作为对电极、银/氯化银作为参比电极,使用三电极电化学工作站CA模式施加电压为-1V,时间为60s将钴离子以Co(OH)2形式附着于TiO2 NTAs上,制得Co(OH)2-TiO2 NTAs,随后使用去离子水冲洗,放入烘箱进行干燥;(2) Co(OH) 2 -TiO 2 NTAs were prepared by electrodeposition. Prepare an aqueous solution of 0.005 wt% cobalt nitrate hexahydrate, the solution is uniformly dispersed as the electrolyte, TiO 2 NTAs are used as the working electrode, platinum sheets are used as the counter electrode, and silver/silver chloride is used as the reference electrode, using a three-electrode electrochemical workstation In CA mode, the applied voltage is -1V and the time is 60s. Cobalt ions are attached to TiO 2 NTAs in the form of Co(OH) 2 to prepare Co(OH) 2 -TiO 2 NTAs, which are then rinsed with deionized water and placed in an oven to dry;
(3)将Co(OH)2-TiO2 NTAs放入50ml反应釜中,配制0.13 wt%二甲基咪唑的N,N-二甲基甲酰胺溶液,溶液分散均匀后倒入反应釜没过钛片进行水热反应,反应温度为80℃,反应时间为24h,使Co(OH)2与二甲基咪唑反应原位生成ZIF-67,反应结束后依次用乙醇与去离子水冲洗,放入烘箱进行干燥,最后将ZIF-67-TiO2 NTAs通过在空气中煅烧,煅烧的温度为450℃,煅烧的时间为2h,煅烧的升温和降温速率均为5℃/min,即制得ZIF-67衍生Co3O4-TiO2 NTAs-60。(3) Put Co(OH) 2 -TiO 2 NTAs into a 50ml reactor, prepare 0.13 wt% dimethylimidazole in N,N-dimethylformamide solution, and pour the solution into the reactor after the solution is evenly dispersed The titanium sheet was subjected to a hydrothermal reaction at a reaction temperature of 80°C and a reaction time of 24 hours to react Co(OH) 2 with dimethylimidazole to generate ZIF-67 in situ. into an oven for drying, and finally the ZIF-67-TiO 2 NTAs are calcined in air at a temperature of 450°C for 2 hours, and the heating and cooling rates of the calcination are both 5°C/min to obtain ZIF -67 derived Co 3 O 4 -TiO 2 NTAs-60.
实施例2Example 2
本实施案例按如下步骤展示一种金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法:This implementation case shows a method for preparing a metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube array according to the following steps:
(1)钛片的预处理:对纯钛片基底用丙酮、无水乙醇和水分别超声清洗20min。以铂片电极为阴极,同时***含有98v%乙二醇与 2v%水(氟化铵0.5wt%)的电解质溶液中,施加50V电压阳极氧化2h,制得TiO2 NTAs,在空气中450℃煅烧2h,使其从无定型状态转变成锐钛矿晶型。(1) Pretreatment of the titanium sheet: Ultrasonic cleaning of the pure titanium sheet substrate with acetone, absolute ethanol and water for 20 min respectively. Using a platinum sheet electrode as the cathode, insert it into an electrolyte solution containing 98v% ethylene glycol and 2v% water (ammonium fluoride 0.5wt%) at the same time, apply a voltage of 50V for anodic oxidation for 2h, and prepare TiO 2 NTAs at 450°C in air Calcined for 2h to transform from amorphous state to anatase crystal form.
(2)采用电沉积的方法制备Co(OH)2-TiO2 NTAs。配制0.005 wt%的六水合硝酸钴的水溶液,溶液分散均匀后作为电解液,将TiO2 NTAs作为工作电极、铂片作为对电极、银/氯化银作为参比电极,使用三电极电化学工作站CA模式施加电压为-1V,时间为90s将钴离子以Co(OH)2形式附着于TiO2 NTAs上,制得Co(OH)2-TiO2 NTAs,随后使用去离子水冲洗,放入烘箱进行干燥;(2) Co(OH) 2 -TiO 2 NTAs were prepared by electrodeposition. Prepare an aqueous solution of 0.005 wt% cobalt nitrate hexahydrate, the solution is uniformly dispersed as the electrolyte, TiO 2 NTAs are used as the working electrode, platinum sheets are used as the counter electrode, and silver/silver chloride is used as the reference electrode, using a three-electrode electrochemical workstation In CA mode, the applied voltage is -1V, and the time is 90s. Cobalt ions are attached to TiO 2 NTAs in the form of Co(OH) 2 to prepare Co(OH) 2 -TiO 2 NTAs, which are then rinsed with deionized water and placed in an oven to dry;
(3)将Co(OH)2-TiO2 NTAs放入50ml反应釜中,配制0.13 wt%二甲基咪唑的N,N-二甲基甲酰胺溶液,溶液分散均匀后倒入反应釜没过钛片进行水热反应,反应温度为80℃,反应时间为24h,使Co(OH)2与二甲基咪唑反应原位生成ZIF-67,反应结束后依次用乙醇与去离子水冲洗,放入烘箱进行干燥,最后将ZIF-67-TiO2 NTAs通过在空气中煅烧,煅烧的温度为450℃,煅烧的时间为2h,煅烧的升温和降温速率均为5℃/min,即制得ZIF-67衍生Co3O4-TiO2 NTAs-90。(3) Put Co(OH) 2 -TiO 2 NTAs into a 50ml reactor, prepare 0.13 wt% dimethylimidazole in N,N-dimethylformamide solution, and pour the solution into the reactor after the solution is evenly dispersed The titanium sheet was subjected to a hydrothermal reaction at a reaction temperature of 80°C and a reaction time of 24 hours to react Co(OH) 2 with dimethylimidazole to generate ZIF-67 in situ. into an oven for drying, and finally the ZIF-67-TiO 2 NTAs are calcined in air at a temperature of 450°C for 2 hours, and the heating and cooling rates of the calcination are both 5°C/min to obtain ZIF -67 derived Co 3 O 4 -TiO 2 NTAs-90.
(4)将ZIF-67衍生Co3O4-TiO2 NTAs-90光催化降解亚甲基蓝:在试管中倒入亚甲基蓝溶液15ml,将TiO2 NTA、Co3O4-TiO2 NTAs-90、ZIF-67-TiO2 NTAs 和ZIF-67衍生Co3O4-TiO2 NTAs-90基底放入溶液中,避光处理60min达到吸附平衡,光照120min后,测试其光催化降解亚甲基蓝的效率。(4) Photocatalytic degradation of methylene blue by ZIF-67 derived Co 3 O 4 -TiO 2 NTAs-90: Pour 15ml of methylene blue solution into a test tube, and add TiO 2 NTA, Co 3 O 4 -TiO 2 NTAs-90, ZIF- 67-TiO 2 NTAs and ZIF-67 derived Co 3 O 4 -TiO 2 NTAs-90 substrates were put into the solution and treated in the dark for 60 minutes to reach adsorption equilibrium. After 120 minutes of light irradiation, the photocatalytic degradation efficiency of methylene blue was tested.
实施例3Example 3
本实施案例按如下步骤展示一种金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法:This implementation case shows a method for preparing a metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube array according to the following steps:
(1)钛片的预处理:对纯钛片基底用丙酮、无水乙醇和水分别超声清洗20min。以铂片电极为阴极,同时***含有98v%乙二醇与 2v%水(氟化铵0.5wt%)的电解质溶液中,施加50V电压阳极氧化2h,制得TiO2 NTAs,在空气中450℃煅烧2h,使其从无定型状态转变成锐钛矿晶型。(1) Pretreatment of the titanium sheet: Ultrasonic cleaning of the pure titanium sheet substrate with acetone, absolute ethanol and water for 20 min respectively. Using a platinum sheet electrode as the cathode, insert it into an electrolyte solution containing 98v% ethylene glycol and 2v% water (ammonium fluoride 0.5wt%) at the same time, apply a voltage of 50V for anodic oxidation for 2h, and prepare TiO 2 NTAs at 450°C in air Calcined for 2h to transform from amorphous state to anatase crystal form.
(2)采用电沉积的方法制备Co(OH)2-TiO2 NTAs。配制0.005 wt%的六水合硝酸钴的水溶液,溶液分散均匀后作为电解液,将TiO2 NTAs作为工作电极、铂片作为对电极、银/氯化银作为参比电极,使用三电极电化学工作站CA模式施加电压为-1V,时间为120s将钴离子以Co(OH)2形式附着于TiO2 NTAs上,制得Co(OH)2-TiO2 NTAs,随后使用去离子水冲洗,放入烘箱进行干燥;(2) Co(OH) 2 -TiO 2 NTAs were prepared by electrodeposition. Prepare an aqueous solution of 0.005 wt% cobalt nitrate hexahydrate, the solution is uniformly dispersed as the electrolyte, TiO 2 NTAs are used as the working electrode, platinum sheets are used as the counter electrode, and silver/silver chloride is used as the reference electrode, using a three-electrode electrochemical workstation In CA mode, the applied voltage is -1V, and the time is 120s. Cobalt ions are attached to TiO 2 NTAs in the form of Co(OH) 2 to prepare Co(OH) 2 -TiO 2 NTAs, which are then rinsed with deionized water and placed in an oven to dry;
(3)将Co(OH)2-TiO2 NTAs放入50ml反应釜中,配制0.13 wt%二甲基咪唑的N,N-二甲基甲酰胺溶液,溶液分散均匀后倒入反应釜没过钛片进行水热反应,反应温度为80℃,反应时间为24h,使Co(OH)2与二甲基咪唑反应原位生成ZIF-67,反应结束后依次用乙醇与去离子水冲洗,放入烘箱进行干燥,最后将ZIF-67-TiO2 NTAs通过在空气中煅烧,煅烧的温度为450℃,煅烧的时间为2h,煅烧的升温和降温速率均为5℃/min,即制得ZIF-67衍生Co3O4-TiO2 NTAs-120。(3) Put Co(OH) 2 -TiO 2 NTAs into a 50ml reactor, prepare 0.13 wt% dimethylimidazole in N,N-dimethylformamide solution, and pour the solution into the reactor after the solution is evenly dispersed The titanium sheet was subjected to a hydrothermal reaction at a reaction temperature of 80°C and a reaction time of 24 hours to react Co(OH) 2 with dimethylimidazole to generate ZIF-67 in situ. into an oven for drying, and finally the ZIF-67-TiO 2 NTAs are calcined in air at a temperature of 450°C for 2 hours, and the heating and cooling rates of the calcination are both 5°C/min to obtain ZIF -67 derived Co 3 O 4 -TiO 2 NTAs-120.
实施例4Example 4
本实施案例按如下步骤展示一种金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法:This implementation case shows a method for preparing a metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube array according to the following steps:
(1)钛片的预处理:对纯钛片基底用丙酮、无水乙醇和水分别超声清洗20min。以铂片电极为阴极,同时***含有98v%乙二醇与 2v%水(氟化铵0.5wt%)的电解质溶液中,施加50V电压阳极氧化2h,制得TiO2 NTAs,在空气中450℃煅烧2h,使其从无定型状态转变成锐钛矿晶型。(1) Pretreatment of the titanium sheet: Ultrasonic cleaning of the pure titanium sheet substrate with acetone, absolute ethanol and water for 20 min respectively. Using a platinum sheet electrode as the cathode, insert it into an electrolyte solution containing 98v% ethylene glycol and 2v% water (ammonium fluoride 0.5wt%) at the same time, apply a voltage of 50V for anodic oxidation for 2h, and prepare TiO 2 NTAs at 450°C in air Calcined for 2h to transform from amorphous state to anatase crystal form.
(2)采用电沉积的方法制备Co(OH)2-TiO2 NTAs。配制0.005 wt%的六水合硝酸钴的水溶液,溶液分散均匀后作为电解液,将TiO2 NTAs作为工作电极、铂片作为对电极、银/氯化银作为参比电极,使用三电极电化学工作站CA模式施加电压为-0.1V,时间为90s将钴离子以Co(OH)2形式附着于TiO2 NTAs上,制得Co(OH)2-TiO2 NTAs,随后使用去离子水冲洗,放入烘箱进行干燥;(2) Co(OH) 2 -TiO 2 NTAs were prepared by electrodeposition. Prepare an aqueous solution of 0.005 wt% cobalt nitrate hexahydrate, the solution is uniformly dispersed as the electrolyte, TiO 2 NTAs are used as the working electrode, platinum sheets are used as the counter electrode, and silver/silver chloride is used as the reference electrode, using a three-electrode electrochemical workstation In CA mode, the applied voltage is -0.1V, and the time is 90s. Cobalt ions are attached to TiO 2 NTAs in the form of Co(OH) 2 to prepare Co(OH) 2 -TiO 2 NTAs, which are then rinsed with deionized water and placed in oven for drying;
(3)将Co(OH)2-TiO2 NTAs放入50ml反应釜中,配制0.13 wt%二甲基咪唑的N,N-二甲基甲酰胺溶液,溶液分散均匀后倒入反应釜没过钛片进行水热反应,反应温度为80℃,反应时间为24h,使Co(OH)2与二甲基咪唑反应原位生成ZIF-67,反应结束后依次用乙醇与去离子水冲洗,放入烘箱进行干燥,最后将ZIF-67-TiO2 NTAs通过在空气中煅烧,煅烧的温度为450℃,煅烧的时间为2h,煅烧的升温和降温速率均为5℃/min,即制得ZIF-67衍生Co3O4-TiO2 NTAs。(3) Put Co(OH) 2 -TiO 2 NTAs into a 50ml reactor, prepare 0.13 wt% dimethylimidazole in N,N-dimethylformamide solution, and pour the solution into the reactor after the solution is evenly dispersed The titanium sheet was subjected to a hydrothermal reaction at a reaction temperature of 80°C and a reaction time of 24 hours to react Co(OH) 2 with dimethylimidazole to generate ZIF-67 in situ. into an oven for drying, and finally the ZIF-67-TiO 2 NTAs are calcined in air at a temperature of 450°C for 2 hours, and the heating and cooling rates of the calcination are both 5°C/min to obtain ZIF -67 derived Co 3 O 4 -TiO 2 NTAs.
为保证实验严谨性,上述四个实施例中仅控制变量(三电极电化学工作站施加电压、处理时间不同),其余参数保持相同,在权利要求书范围中的其他参数同样适用于上述实施例操作方式,在此不再赘述。In order to ensure the rigor of the experiment, in the above four embodiments, only the variables are controlled (the voltage applied by the three-electrode electrochemical workstation and the processing time are different), and the rest of the parameters remain the same, and other parameters within the scope of the claims are also applicable to the operations of the above embodiments method, which will not be repeated here.
上述实施例所制得的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列具体结论如下:The specific conclusions of the metal-organic framework-derived tricobalt tetroxide-modified titanium dioxide nanotube array prepared in the above examples are as follows:
请参阅图2与图3,图2为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,阳极氧化2 h制备的高度有序的TiO2 NTAs的SEM形貌图(a),电沉积Co(OH)2-TiO2 NTAs的SEM形貌图(b),ZIF-67-TiO2 NTAs的SEM形貌图(c),ZIF-67衍生出Co3O4-TiO2 NTAs的SEM形貌图(d);图3为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,ZIF-67-TiO2 NTAs(a),ZIF-67衍生Co3O4-TiO2 NTAs的元素分布能谱图(b)以及元素含量能谱图(c)。由图2(b)可见,Co(OH)2以片状的形式附着于TiO2 NTAs表面,在图2(c)中可见Co(OH)2与二甲基咪唑反应生成具有正十二面体结构的ZIF-67,元素分布如图3(a),经过高温煅烧形成多孔结构的衍生物四氧化三钴,如图2(d)所示,其EDS元素分布如图3(b)、(c)。Please refer to Figure 2 and Figure 3, Figure 2 is the SEM image of highly ordered TiO 2 NTAs prepared by anodic oxidation for 2 h in the method for preparing metal-organic framework-derived tricobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention (a) , SEM image of electrodeposited Co(OH) 2 -TiO 2 NTAs (b), SEM image of ZIF-67-TiO 2 NTAs (c), ZIF-67 derived Co 3 O 4 -TiO 2 NTAs SEM image (d); Figure 3 shows the preparation method of metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention, ZIF-67-TiO 2 NTAs (a), ZIF-67-derived Co 3 O 4 - Element distribution energy spectrum (b) and element content energy spectrum (c) of TiO 2 NTAs. It can be seen from Figure 2(b) that Co(OH) 2 is attached to the surface of TiO 2 NTAs in the form of sheets, and in Figure 2(c) it can be seen that Co(OH) 2 reacts with dimethylimidazole to form a regular dodecahedron The structure of ZIF-67, the element distribution is shown in Figure 3 (a), and the porous structure of the derivative cobalt tetroxide is formed after high-temperature calcination, as shown in Figure 2 (d), and its EDS element distribution is shown in Figure 3 (b), (c).
请参阅图4至图7,图4为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,未修饰TiO2 NTAs和ZIF-67衍生Co3O4-TiO2 NTAs的XPS谱图( a, b,c, d );图5为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,未修饰TiO2 NTAs和ZIF-67衍生Co3O4-TiO2 NTAs的拉曼谱图;图6为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,(a)为未修饰TiO2 NTAs和ZIF-67衍生Co3O4-TiO2 NTAs的紫外-可见光漫反射图谱,(b)为禁带宽度图谱;图7为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,未修饰TiO2 NTAs和ZIF-67衍生Co3O4-TiO2 NTAs的荧光图谱。如图4(a)所示,除O 1s (538.31 eV), Ti 2p(459.35 eV)峰外,Co 2p峰的存在证明了Co3O4纳米颗粒修饰的TiO2 NTAs,从Co 2p高分辨XPS图谱(d)中看出,Co 2p3/2 (778.89eV)和Co 2p1/2 (795.19eV)的峰值,证明Co离子存在+3价和+4价两种形式,在715.36eV、836.15eV处为Co 2p的伴峰,在O 1s峰中也存在Co-O键证明Co3O4纳米颗粒的存在,如图(c),在Ti 2p峰中,Ti 2p1/2(464.42eV)与Ti 2p3/2(458.42eV)证明Ti+4价存在。如图5所示,在681 cm-1 和477cm-1处为Co3O4的典型特征峰A1g、Eg,进一步证明Co3O4的存在。如图6所示,ZIF-67衍生Co3O4-TiO2 NTAs对太阳光的吸收明显大于未修饰TiO2 NTAs,如图7所示,ZIF-67衍生Co3O4-TiO2 NTAs的荧光强度比未修饰TiO2 NTAs低,与紫外可见光吸收光谱结论相符,且由图6(b)可知在Co3O4的修饰后TiO2的禁带宽度由2.66eV降至1.99eV,意味着TiO2 NTAs在Co3O4的修饰后不仅增加了对可见光的吸收率,并且降低了禁带宽度促进了电子空穴对的分离,从两方面增强了其光催化效率。Please refer to Fig. 4 to Fig. 7, Fig. 4 is the XPS spectrum of unmodified TiO 2 NTAs and ZIF-67 derived Co 3 O 4 -TiO 2 NTAs in the preparation method of metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention Figures ( a, b, c, d ); Figure 5 shows unmodified TiO 2 NTAs and ZIF-67 derived Co 3 O 4 -TiO 2 NTAs in the preparation method of metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention Figure 6 is the preparation method of metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention, (a) is the unmodified TiO 2 NTAs and ZIF-67 derived Co 3 O 4 -TiO 2 NTAs UV-Vis diffuse reflectance spectrum, (b) is the forbidden band width spectrum; Figure 7 shows the preparation method of the metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube array of the present invention, unmodified TiO 2 NTAs and ZIF-67 derived Co 3 O Fluorescence spectra of 4 -TiO 2 NTAs. As shown in Fig. 4(a), in addition to the O 1s (538.31 eV), Ti 2p (459.35 eV) peaks, the existence of Co 2p peaks proves that Co 3 O 4 nanoparticles modified TiO 2 NTAs, with high resolution from Co 2p It can be seen from the XPS spectrum (d) that the peaks of Co 2p 3/2 (778.89eV) and Co 2p 1/2 (795.19eV) prove that Co ions exist in two forms of +3 valence and +4 valence, at 715.36eV, 836.15eV is the accompanying peak of Co 2p, and Co-O bonds also exist in the O 1s peak to prove the existence of Co 3 O 4 nanoparticles, as shown in figure (c), in the Ti 2p peak, Ti 2p 1/2 (464.42 eV) and Ti 2p 3/2 (458.42eV) prove the existence of Ti +4 valence. As shown in Figure 5, there are typical characteristic peaks A1g and Eg of Co 3 O 4 at 681 cm -1 and 477 cm -1 , further proving the existence of Co 3 O 4 . As shown in Figure 6, the absorption of ZIF-67 derived Co 3 O 4 -TiO 2 NTAs to sunlight is significantly greater than that of unmodified TiO 2 NTAs, and as shown in Figure 7, the absorption of ZIF-67 derived Co 3 O 4 -TiO 2 NTAs The fluorescence intensity is lower than that of unmodified TiO 2 NTAs, which is consistent with the conclusion of the ultraviolet-visible light absorption spectrum, and it can be seen from Figure 6(b) that the forbidden band width of TiO 2 is reduced from 2.66eV to 1.99eV after Co 3 O 4 modification, which means The modification of TiO 2 NTAs with Co 3 O 4 not only increases the absorption rate of visible light, but also reduces the forbidden band width and promotes the separation of electron-hole pairs, which enhances its photocatalytic efficiency from two aspects.
请参阅图8,图8为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,未修饰TiO2 NTAs和ZIF-67衍生Co3O4-TiO2 NTAs的光电流图谱,图中(a)代表未修饰TiO2 NTAs,(b)为直接法Co(OH)2煅烧后形成Co3O4-TiO2 NTAs, (c)为ZIF-67衍生Co3O4-TiO2 NTAs-60,其中60代表电沉积60s,(d)为ZIF-67衍生Co3O4-TiO2 NTAs-90,其中90代表电沉积90s,(e)为ZIF-67衍生Co3O4-TiO2 NTAs-120,其中60代表电沉积120s。以0.1 M的硫酸钠为电解质液,氙灯作为光源,光源到烧杯的距离为15 cm,光照强度为100 mW/cm2,在CHI660D电化学工作站三电极体系下经行光电流测试。ZIF-67衍生Co3O4-TiO2 NTAs-60、90和120的光电流为0.72 mA/ cm2、0.88 mA/ cm2和0.74 mA/ cm2,直接法Co(OH)2煅烧后形成Co3O4-TiO2 NTAs的光电流为0.49 mA/ cm2,分别是未修饰TiO2 NTAs的光电流(0.13mA/ cm2)的5.5倍、6.7倍、5.6倍和3,7倍,表示TiO2 NTAs在多孔四氧化三钴纳米颗粒修饰后提高了电子空穴对的分离效率,且ZIF-67衍生Co3O4-TiO2 NTAs-90效果最佳,所以下列测试以ZIF-67衍生Co3O4-TiO2 NTAs-90进行。Please refer to Fig. 8, Fig. 8 is the photocurrent spectrum of unmodified TiO 2 NTAs and ZIF-67 derived Co 3 O 4 -TiO 2 NTAs in the preparation method of metal-organic framework-derived tricobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention, Fig. (a) represents unmodified TiO 2 NTAs, (b) is Co 3 O 4 -TiO 2 NTAs formed after direct method Co(OH) 2 calcination, (c) is ZIF-67 derived Co 3 O 4 -TiO 2 NTAs -60, where 60 represents electrodeposition for 60s, (d) is ZIF-67 derived Co 3 O 4 -TiO 2 NTAs-90, where 90 represents electrodeposition for 90s, (e) is ZIF-67 derived Co 3 O 4 -TiO 2 NTAs-120, where 60 represents electrodeposition 120s. Using 0.1 M sodium sulfate as the electrolyte solution, a xenon lamp as the light source, the distance from the light source to the beaker is 15 cm, and the light intensity is 100 mW/cm 2 , the photocurrent test is carried out under the three-electrode system of CHI660D electrochemical workstation. The photocurrents of ZIF-67 derived Co 3 O 4 -TiO 2 NTAs-60, 90 and 120 were 0.72 mA/cm2, 0.88 mA/cm2 and 0.74 mA/cm2, and Co3O was formed after direct method Co(OH) 2 calcination The photocurrent of 4 -TiO 2 NTAs is 0.49 mA/cm2, which is 5.5 times, 6.7 times, 5.6 times and 3,7 times that of unmodified TiO 2 NTAs (0.13 mA/cm 2 ), respectively, indicating that TiO 2 NTAs The separation efficiency of electron-hole pairs is improved after the modification of porous cobalt trioxide nanoparticles, and ZIF-67 derived Co 3 O 4 -TiO 2 NTAs-90 has the best effect, so the following tests use ZIF-67 derived Co 3 O 4 -TiO 2 NTAs-90 performed.
请参阅图9至图11,图9为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,(a)为未修饰TiO2纳米管阵列和ZIF-67衍生Co3O4-TiO2 NTAs的光催化效果图,(b)为光催化动力学方程图;图10为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,ZIF-67衍生Co3O4-TiO2 NTAs光催化循环次数降解图;图11为本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法中,ZIF-67衍生Co3O4-TiO2 NTAs光催化影响因子对降解效率效果图。如图9(a)所示,300W氙灯作为光源,光源与样品的距离为12cm,亚甲基蓝的浓度为10mg/L,体积为15ml,pH为8.5。光照120min后,未修饰TiO2 NTAs降解了30.2%,直接法Co3O4-TiO2 NTAs降解了40%,ZIF-67-TiO2 NTAs与ZIF-67衍生Co3O4-TiO2 NTAs-90分别降解了62.8%、84.9%,从降解量可以看出ZIF-67衍生Co3O4-TiO2 NTAs-90的比表面积与反应位点>ZIF-67- TiO2 NTAs>直接Co(OH)2煅烧后形成Co3O4- TiO2 NTAs>未修饰TiO2 NTAs。如图9(b)所示,利用动力学方程公式:ln(C0/Ct)=kt,即可计算出ZIF-67衍生Co3O4- TiO2 NTAs -90与ZIF-67- TiO2 NTAs、直接Co(OH)2煅烧后形成Co3O4- TiO2 NTAs中的动力学系数分别为0.01457、0.00757、0.0037267min-1,远高于亚甲基蓝自降解(0.00228min-1)和未修饰TiO2 NTAs(0.00265 min-1)。Co3O4与TiO2所形成的p-n异质结有效提高了光催化效率,并由于ZIF-67衍生Co3O4-TiO2 NTAs-90的比表面积与反应位点较大导致光降解速率增加,由此可知,由ZIF-67衍生Co3O4-TiO2 NTAs-90效果高于直接法Co(OH)2煅烧后形成Co3O4-TiO2 NTAs,ZIF-67衍生Co3O4-TiO2 NTAs-90的光催化效率是未修饰TiO2纳米管阵列和直接法Co3O4-TiO2 NTAs的5.5倍和3.9倍,证明经过ZIF-67衍生出的Co3O4相比较于直接煅烧Co(OH)2所形成的Co3O4具有更优异的性能以提高光催化效率。由图10可知,在ZIF-67衍生Co3O4-TiO2 NTAs-90循环降解10mg/LMB后,其降解速率基本没有改变,证明其循环利用性强,由图11可以观察出,当没有加入捕获剂时,ZIF-67衍生Co3O4-TiO2 NTAs-90可降解84.91%的MB,根据加入的对h+、O2-和·OH影响因子的捕获剂可以看出O2-对光催化降解效率影响最大,降解效率降至25%,可以得出结论,在ZIF-67衍生Co3O4-TiO2 NTAs-90光催化过程中,起主要作用的因子是O2-。Please refer to Figures 9 to 11. Figure 9 shows the preparation method of the metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube array of the present invention, (a) is the unmodified TiO2 nanotube array and ZIF-67 derived Co 3 O 4 -TiO 2 The photocatalytic effect diagram of NTAs, (b) is the photocatalytic kinetic equation diagram; Figure 10 is the preparation method of the metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube array of the present invention, ZIF-67 derived Co 3 O 4 -TiO 2 Degradation diagram of photocatalytic cycles of NTAs; Figure 11 shows the effect of photocatalytic factors of ZIF-67 derived Co 3 O 4 -TiO 2 NTAs on degradation efficiency in the preparation method of metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube arrays of the present invention picture. As shown in Figure 9(a), a 300W xenon lamp was used as the light source, the distance between the light source and the sample was 12cm, the concentration of methylene blue was 10mg/L, the volume was 15ml, and the pH was 8.5. After 120 min of light irradiation, unmodified TiO 2 NTAs degraded by 30.2%, direct method Co 3 O 4 -TiO 2 NTAs degraded by 40%, ZIF-67-TiO 2 NTAs and ZIF-67 derived Co 3 O 4 -TiO 2 NTAs- 90 were degraded by 62.8% and 84.9%, respectively. From the amount of degradation, it can be seen that the specific surface area and reaction site of ZIF-67-derived Co 3 O 4 -TiO 2 NTAs-90 > ZIF-67-TiO 2 NTAs > direct Co(OH ) 2 formed Co 3 O 4 - TiO 2 NTAs after calcination > unmodified TiO 2 NTAs. As shown in Figure 9(b), using the kinetic equation formula: ln(C 0 /C t )=kt, the ZIF-67 derived Co 3 O 4 -TiO 2 NTAs -90 and ZIF-67-TiO The kinetic coefficients of 2 NTAs and Co 3 O 4 - TiO 2 NTAs after direct calcination of Co(OH) 2 are 0.01457, 0.00757, 0.0037267min -1 , which are much higher than those of methylene blue self-degradation (0.00228min -1 ) and without Modified TiO 2 NTAs (0.00265 min -1 ). The pn heterojunction formed by Co 3 O 4 and TiO 2 effectively improves the photocatalytic efficiency and leads to the photodegradation rate due to the larger specific surface area and larger reaction sites of ZIF-67 derived Co 3 O 4 -TiO 2 NTAs-90 It can be seen that the effect of Co 3 O 4 -TiO 2 NTAs-90 derived from ZIF-67 is higher than that of Co 3 O 4 -TiO 2 NTAs formed by direct method Co(OH) 2 calcination, and that Co 3 O derived from ZIF-67 The photocatalytic efficiency of 4 -TiO 2 NTAs-90 is 5.5 times and 3.9 times that of unmodified TiO2 nanotube arrays and direct method Co 3 O 4 -TiO 2 NTAs, which proves that the comparison of Co 3 O 4 derived from ZIF-67 The Co 3 O 4 formed by direct calcination of Co(OH) 2 has more excellent properties to improve the photocatalytic efficiency. It can be seen from Figure 10 that after cyclic degradation of 10 mg/LMB of ZIF-67 derived Co 3 O 4 -TiO 2 NTAs-90, its degradation rate basically does not change, which proves that its recyclability is strong. It can be observed from Figure 11 that when there is no When the trapping agent was added, ZIF-67 derived Co 3 O 4 -TiO 2 NTAs-90 could degrade 84.91% of MB, according to the added trapping agent on h + , O 2- and OH, it can be seen that O 2- It has the greatest impact on the photocatalytic degradation efficiency, and the degradation efficiency drops to 25%. It can be concluded that O 2- plays a major role in the photocatalytic process of ZIF-67 derived Co 3 O 4 -TiO 2 NTAs-90.
与现有技术相比,本发明的有益效果是:本发明的金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法,本发明首次采用的Co3O4在TiO2 NTAs上进行修饰构成p-n结,且Co3O4是由金属有机框架ZIF-67衍生出的多孔纳米结构,具备更大比表面积与更多反应位点,有利于增强光催化反应效率,并且制备方法简单方便,可重复利用性强,亦可通过控制金属有机框架结构来控制Co3O4的分散和尺寸大小。与未复合的TiO2 NTAs相比较,制得的ZIF-67衍生Co3O4-TiO2 NTAs在太阳光下降解亚甲基蓝是其光催化速率的5.5倍,光催化降解污染物的效率明显提高,具有良好的化学稳定性和可回收性,同时在光解水产氢,储能方面,太阳能电池等领域也具有广泛的应用。Compared with the prior art, the beneficial effect of the present invention is: the preparation method of the metal-organic framework-derived cobalt tetroxide-modified titanium dioxide nanotube array of the present invention, the Co 3 O 4 used in the present invention for the first time is modified on TiO 2 NTAs to form a pn junction , and Co 3 O 4 is a porous nanostructure derived from metal-organic framework ZIF-67, which has a larger specific surface area and more reaction sites, which is conducive to enhancing the efficiency of photocatalytic reactions, and the preparation method is simple and convenient, and can be reused It has strong properties, and the dispersion and size of Co 3 O 4 can also be controlled by controlling the structure of the metal-organic framework. Compared with uncomposited TiO 2 NTAs, the photocatalytic rate of the prepared ZIF-67-derived Co 3 O 4 -TiO 2 NTAs in degrading methylene blue under sunlight is 5.5 times that of its photocatalytic rate, and the efficiency of photocatalytic degradation of pollutants is significantly improved. It has good chemical stability and recyclability, and it also has a wide range of applications in the photolysis of water to produce hydrogen, energy storage, solar cells and other fields.
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。It should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention without limitation, although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be carried out Modifications or equivalent replacements without departing from the spirit and scope of the technical solution of the present invention shall be covered by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810315665.XA CN108525667A (en) | 2018-04-10 | 2018-04-10 | Metal organic frame derives the preparation method of the TiO 2 nanotubes modified array of cobaltosic oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810315665.XA CN108525667A (en) | 2018-04-10 | 2018-04-10 | Metal organic frame derives the preparation method of the TiO 2 nanotubes modified array of cobaltosic oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108525667A true CN108525667A (en) | 2018-09-14 |
Family
ID=63479760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810315665.XA Pending CN108525667A (en) | 2018-04-10 | 2018-04-10 | Metal organic frame derives the preparation method of the TiO 2 nanotubes modified array of cobaltosic oxide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108525667A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109772330A (en) * | 2019-02-14 | 2019-05-21 | 安庆北化大科技园有限公司 | A kind of boron doping cobalt hydroxide is carried on the multilevel structure material and preparation method thereof of Porous Cu substrate |
CN110031528A (en) * | 2019-05-07 | 2019-07-19 | 福建师范大学 | A kind of TiO based on ZnO thin film2The ovarian cancer cell electrogenerated chemiluminescence sensing platform of mesomorphic nanometer plate catalysis enhancing |
CN110040820A (en) * | 2019-05-23 | 2019-07-23 | 天津市大陆制氢设备有限公司 | The tin dioxide coating on titanium antimony electrode and preparation method thereof of titanium dioxide reticular structure modification |
CN110055542A (en) * | 2019-05-05 | 2019-07-26 | 中国科学院海洋研究所 | A kind of nano Co3O4/TiO2Semiconductor composite film and its application |
CN111139511A (en) * | 2020-01-20 | 2020-05-12 | 烟台大学 | A kind of using anodic oxidation method to assemble cobalt tetroxide nanotube array and method |
CN111450858A (en) * | 2020-04-11 | 2020-07-28 | 天津工业大学 | A kind of preparation method of composite photocatalyst Ag/AgCl@Co3O4 and composite photocatalyst prepared thereby |
CN111613787A (en) * | 2020-05-29 | 2020-09-01 | 扬州大学 | Titanium dioxide-coated carbon-cobalt tetroxide composite material, preparation method and application thereof |
CN111607808A (en) * | 2020-05-19 | 2020-09-01 | 首都师范大学 | Core-shell structure of ultrathin metal organic framework material UiO-67 coated titanium dioxide nanorod and preparation method thereof |
CN112619647A (en) * | 2020-11-16 | 2021-04-09 | 江苏大学 | Preparation method of Co-MOF derived cobaltosic oxide composite titanium dioxide heterojunction and application of electrolyzed water |
CN113862692A (en) * | 2021-09-29 | 2021-12-31 | 西安热工研究院有限公司 | A kind of silver-cobalt tetroxide and cobalt-based metal organic framework composite oxygen evolution catalytic material and preparation method thereof |
CN114460144A (en) * | 2022-03-10 | 2022-05-10 | 浙江大学 | Co-MOF array membrane derived cobalt oxide prototype gas sensor and large-area batch preparation method and application thereof |
CN114705737A (en) * | 2021-11-29 | 2022-07-05 | 苏州科技大学 | Carbon cloth surface-modified metal-organic framework-derived nickel cobalt oxide nanosheet array composites and their preparation and application |
CN114768809A (en) * | 2022-03-02 | 2022-07-22 | 东华大学 | A metal-organic framework-derived defective catalytic membrane and its preparation method and application |
CN115400794A (en) * | 2022-05-05 | 2022-11-29 | 河南大学 | A kind of preparation method and application of tricobalt tetroxide/niobate composite material with p-n junction |
CN115477370A (en) * | 2022-09-02 | 2022-12-16 | 中国科学院生态环境研究中心 | A method for preparing an electrode that efficiently reduces nitrate and significantly reduces the release of nitrous oxide |
WO2023138283A1 (en) * | 2022-01-24 | 2023-07-27 | 中国科学院深圳先进技术研究院 | Environmentally friendly and rapid preparation method for metal-organic framework compound thin film plating |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101204649A (en) * | 2006-12-20 | 2008-06-25 | 中国科学院金属研究所 | A method for preparing cation-doped titanium oxide nanotube arrays |
US20110155971A1 (en) * | 2009-12-14 | 2011-06-30 | Board of Regents of the Nevada System of Higher Education, | Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels |
CN104835648A (en) * | 2015-04-08 | 2015-08-12 | 苏州大学 | Preparation method for bismuth oxide nano-particle/titania nano-tube array |
CN105562111A (en) * | 2015-12-11 | 2016-05-11 | 长春工业大学 | Preparation method of Pd/ZIF-67/TiO2 nanotube composite catalyst |
CN106745534A (en) * | 2016-12-30 | 2017-05-31 | 浙江工商大学 | A kind of composite photocatalyst electrode of photo-reduction metal-modified cobaltosic oxide/titanium dioxide p n hetero-junctions and its preparation |
CN107159313A (en) * | 2017-06-14 | 2017-09-15 | 上海应用技术大学 | A kind of core shell structure TiO2The preparation method of nanotube@Ti MOF catalyst |
CN107723777A (en) * | 2017-10-16 | 2018-02-23 | 南通纺织丝绸产业技术研究院 | The preparation method of the TiO 2 nanotubes modified array of electro-deposition molybdenum disulfide quantum dot |
CN107715894A (en) * | 2017-09-08 | 2018-02-23 | 南通纺织丝绸产业技术研究院 | Bismuth sulfide modifies the preparation method and application of gold nano grain/titania nanotube structure |
-
2018
- 2018-04-10 CN CN201810315665.XA patent/CN108525667A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101204649A (en) * | 2006-12-20 | 2008-06-25 | 中国科学院金属研究所 | A method for preparing cation-doped titanium oxide nanotube arrays |
US20110155971A1 (en) * | 2009-12-14 | 2011-06-30 | Board of Regents of the Nevada System of Higher Education, | Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels |
CN104835648A (en) * | 2015-04-08 | 2015-08-12 | 苏州大学 | Preparation method for bismuth oxide nano-particle/titania nano-tube array |
CN105562111A (en) * | 2015-12-11 | 2016-05-11 | 长春工业大学 | Preparation method of Pd/ZIF-67/TiO2 nanotube composite catalyst |
CN106745534A (en) * | 2016-12-30 | 2017-05-31 | 浙江工商大学 | A kind of composite photocatalyst electrode of photo-reduction metal-modified cobaltosic oxide/titanium dioxide p n hetero-junctions and its preparation |
CN107159313A (en) * | 2017-06-14 | 2017-09-15 | 上海应用技术大学 | A kind of core shell structure TiO2The preparation method of nanotube@Ti MOF catalyst |
CN107715894A (en) * | 2017-09-08 | 2018-02-23 | 南通纺织丝绸产业技术研究院 | Bismuth sulfide modifies the preparation method and application of gold nano grain/titania nanotube structure |
CN107723777A (en) * | 2017-10-16 | 2018-02-23 | 南通纺织丝绸产业技术研究院 | The preparation method of the TiO 2 nanotubes modified array of electro-deposition molybdenum disulfide quantum dot |
Non-Patent Citations (2)
Title |
---|
GAOPENG DAI ET AL.: "Synthesis and enhanced photoelectrocatalytic activity of p-n junction Co3O4/TiO2 nanotube arrays", 《APPLIED SURFACE SCIENCE》 * |
RUI TANG ET AL.: "Metal-Organic Framework Derived Co3O4/TiO2/Si Heterostructured Nanorod Array Photoanodes for Efficient Photoelectrochemical Water Oxidation", 《ADVANCED FUNCTIONAL MATERIALS》 * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109772330A (en) * | 2019-02-14 | 2019-05-21 | 安庆北化大科技园有限公司 | A kind of boron doping cobalt hydroxide is carried on the multilevel structure material and preparation method thereof of Porous Cu substrate |
CN109772330B (en) * | 2019-02-14 | 2021-11-05 | 安庆北化大科技园有限公司 | Multilevel structure material with boron-doped cobalt hydroxide loaded on porous copper substrate and preparation method thereof |
CN110055542A (en) * | 2019-05-05 | 2019-07-26 | 中国科学院海洋研究所 | A kind of nano Co3O4/TiO2Semiconductor composite film and its application |
CN110055542B (en) * | 2019-05-05 | 2021-10-29 | 中国科学院海洋研究所 | A kind of nanometer Co3O4/TiO2 semiconductor composite film and its application |
CN110031528A (en) * | 2019-05-07 | 2019-07-19 | 福建师范大学 | A kind of TiO based on ZnO thin film2The ovarian cancer cell electrogenerated chemiluminescence sensing platform of mesomorphic nanometer plate catalysis enhancing |
CN110031528B (en) * | 2019-05-07 | 2021-07-16 | 福建师范大学 | A catalytically enhanced electrochemiluminescent sensing platform for ovarian cancer cells based on cobalt ion-doped TiO2 mesogenic nanodiscs |
CN110040820B (en) * | 2019-05-23 | 2021-09-21 | 天津市大陆制氢设备有限公司 | Titanium-based tin antimony oxide electrode modified by titanium dioxide net structure and preparation method thereof |
CN110040820A (en) * | 2019-05-23 | 2019-07-23 | 天津市大陆制氢设备有限公司 | The tin dioxide coating on titanium antimony electrode and preparation method thereof of titanium dioxide reticular structure modification |
CN111139511A (en) * | 2020-01-20 | 2020-05-12 | 烟台大学 | A kind of using anodic oxidation method to assemble cobalt tetroxide nanotube array and method |
CN111139511B (en) * | 2020-01-20 | 2021-06-29 | 烟台大学 | A kind of using anodic oxidation method to assemble cobalt tetroxide nanotube array and method |
CN111450858A (en) * | 2020-04-11 | 2020-07-28 | 天津工业大学 | A kind of preparation method of composite photocatalyst Ag/AgCl@Co3O4 and composite photocatalyst prepared thereby |
CN111607808B (en) * | 2020-05-19 | 2021-11-16 | 首都师范大学 | Core-shell structure of ultrathin metal organic framework material UiO-67 coated titanium dioxide nanorod and preparation method thereof |
CN111607808A (en) * | 2020-05-19 | 2020-09-01 | 首都师范大学 | Core-shell structure of ultrathin metal organic framework material UiO-67 coated titanium dioxide nanorod and preparation method thereof |
CN111613787A (en) * | 2020-05-29 | 2020-09-01 | 扬州大学 | Titanium dioxide-coated carbon-cobalt tetroxide composite material, preparation method and application thereof |
CN111613787B (en) * | 2020-05-29 | 2023-03-28 | 扬州大学 | Titanium dioxide coated carbon-cobaltosic oxide composite material, preparation method and application thereof |
CN112619647A (en) * | 2020-11-16 | 2021-04-09 | 江苏大学 | Preparation method of Co-MOF derived cobaltosic oxide composite titanium dioxide heterojunction and application of electrolyzed water |
CN113862692B (en) * | 2021-09-29 | 2022-08-30 | 西安热工研究院有限公司 | Silver-cobaltosic oxide and cobalt-based metal organic framework composite oxygen evolution catalytic material and preparation method thereof |
CN113862692A (en) * | 2021-09-29 | 2021-12-31 | 西安热工研究院有限公司 | A kind of silver-cobalt tetroxide and cobalt-based metal organic framework composite oxygen evolution catalytic material and preparation method thereof |
CN114705737B (en) * | 2021-11-29 | 2024-02-06 | 苏州科技大学 | Carbon cloth surface-modified metal-organic framework-derived nickel cobalt oxide nanosheet array composite and its preparation and application |
CN114705737A (en) * | 2021-11-29 | 2022-07-05 | 苏州科技大学 | Carbon cloth surface-modified metal-organic framework-derived nickel cobalt oxide nanosheet array composites and their preparation and application |
CN116516433B (en) * | 2022-01-24 | 2024-04-26 | 中国科学院深圳先进技术研究院 | A green and rapid preparation method for metal organic framework compound thin film coating |
CN116516433A (en) * | 2022-01-24 | 2023-08-01 | 中国科学院深圳先进技术研究院 | A green and rapid preparation method of metal organic framework compound thin film coating |
WO2023138283A1 (en) * | 2022-01-24 | 2023-07-27 | 中国科学院深圳先进技术研究院 | Environmentally friendly and rapid preparation method for metal-organic framework compound thin film plating |
CN114768809A (en) * | 2022-03-02 | 2022-07-22 | 东华大学 | A metal-organic framework-derived defective catalytic membrane and its preparation method and application |
CN114768809B (en) * | 2022-03-02 | 2023-06-16 | 东华大学 | Defect-state catalytic membrane derived from metal-organic framework, and preparation method and application thereof |
CN114460144A (en) * | 2022-03-10 | 2022-05-10 | 浙江大学 | Co-MOF array membrane derived cobalt oxide prototype gas sensor and large-area batch preparation method and application thereof |
CN114460144B (en) * | 2022-03-10 | 2024-07-30 | 浙江大学 | Co-MOF array membrane-derived cobalt oxide prototype gas sensor and large-scale batch preparation method and use thereof |
CN115400794B (en) * | 2022-05-05 | 2023-09-15 | 河南大学 | Preparation method and application of cobalt tetroxide/niobate composite material with p-n junction |
CN115400794A (en) * | 2022-05-05 | 2022-11-29 | 河南大学 | A kind of preparation method and application of tricobalt tetroxide/niobate composite material with p-n junction |
CN115477370A (en) * | 2022-09-02 | 2022-12-16 | 中国科学院生态环境研究中心 | A method for preparing an electrode that efficiently reduces nitrate and significantly reduces the release of nitrous oxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108525667A (en) | Metal organic frame derives the preparation method of the TiO 2 nanotubes modified array of cobaltosic oxide | |
Zhang et al. | Accelerated charge transfer via a nickel tungstate modulated cadmium sulfide p–n heterojunction for photocatalytic hydrogen evolution | |
CN108499585B (en) | Phosphorus-containing compound and preparation and application thereof | |
CN103433060B (en) | Core-shell type TiO2/ZnIn2S4 composite photocatalyst and its preparation method and application | |
CN108103525B (en) | N doping carbon dots modify tungstic acid complex light electrode and preparation method thereof and decompose the application in water in photoelectrocatalysis | |
WO2022144043A1 (en) | Preparation method for heterojunction of mof-derived zinc oxide and titanium dioxide composite, and use in photoelectric water splitting | |
CN106435635A (en) | Preparation method and application of efficient photoelectrocatalytic water-decomposition oxygen-production electrode | |
Gai et al. | 2D-2D heterostructured CdS–CoP photocatalysts for efficient H2 evolution under visible light irradiation | |
CN108505098B (en) | Preparation method of Pt-loaded sulfur-rich molybdenum disulfide boundary site modified titanium dioxide nanotube array | |
CN103225097A (en) | Preparation of Cu2O/TNTs Heterostructure Nanocomposites and Photoreduction of CO2 | |
Wang et al. | When MoS 2 meets TiO 2: facile synthesis strategies, hybrid nanostructures, synergistic properties, and photocatalytic applications | |
Chen et al. | A solar responsive cubic nanosized CuS/Cu2O/Cu photocathode with enhanced photoelectrochemical activity | |
CN107761127B (en) | A kind of preparation method of nanoporous bismuth vanadate oxygen evolution electrode co-modified with polyacid and phthalocyanine | |
CN104971720A (en) | Bismuth tungstate nanocomposite, and preparation method and application thereof | |
CN107723777A (en) | The preparation method of the TiO 2 nanotubes modified array of electro-deposition molybdenum disulfide quantum dot | |
CN105986292B (en) | Preparation method of cobalt-nickel double-layer hydroxide modified titanium dioxide nanotube array and application of photoelectrochemical hydrolysis hydrogen production | |
CN112619647A (en) | Preparation method of Co-MOF derived cobaltosic oxide composite titanium dioxide heterojunction and application of electrolyzed water | |
Li et al. | Chemical etching and phase transformation of Nickel-Cobalt Prussian blue analogs for improved solar-driven water-splitting applications | |
CN108654607A (en) | The preparation method of silver nano-grain/carbon/nano titania compound of nucleocapsid | |
CN110965073B (en) | WO containing defects3Preparation method of photoelectrode | |
Zhang et al. | Photothermal effect and application of photothermal materials in photocatalysis and photoelectric catalysis | |
Shen et al. | Interesting molecular adsorption strategy induced surface charge redistribution of commercial TiO2: Boosting 9 times photocatalytic hydrogen production performance | |
CN111111634A (en) | A kind of titanium dioxide macroporous microsphere/metal titanium composite material and its preparation method and application | |
CN113106484B (en) | A kind of hydrothermal preparation method of photoanode based on α-type iron oxide worm-like nanostructure array, its product and application | |
CN103521244A (en) | A kind of material CdS/Sr1.6Zn0.4Nb2O7 photocatalytic decomposition of water to produce hydrogen and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180914 |