CN108107726A - 一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法 - Google Patents

一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法 Download PDF

Info

Publication number
CN108107726A
CN108107726A CN201711274132.3A CN201711274132A CN108107726A CN 108107726 A CN108107726 A CN 108107726A CN 201711274132 A CN201711274132 A CN 201711274132A CN 108107726 A CN108107726 A CN 108107726A
Authority
CN
China
Prior art keywords
formula
rotor aircraft
derivative
equation
representing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711274132.3A
Other languages
English (en)
Other versions
CN108107726B (zh
Inventor
陈强
胡忠君
朱健宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201711274132.3A priority Critical patent/CN108107726B/zh
Publication of CN108107726A publication Critical patent/CN108107726A/zh
Application granted granted Critical
Publication of CN108107726B publication Critical patent/CN108107726B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/047Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators the criterion being a time optimal performance criterion

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法,针对四旋翼飞行器的动力学***,选择一种对称时变障碍李雅普诺夫函数,设计一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法。对称时变障碍李雅普诺夫函数的设计是为了保证***的输出能够限制在一定的范围内,避免过大的超调,同时还能减少到达时间。从而改善四旋翼飞行器***的动态响应性能。本发明提供一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法,使***具有较好的动态响应过程。

Description

一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出 受限反步控制方法
技术领域
本发明涉及一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法,使四旋翼飞行器***有较好的动态响应过程。
背景技术
四旋翼飞行器作为旋翼式飞行器的一种,以其体积小、机动性能好、设计简单、制造成本低廉等优点,吸引了国内外大学、研究机构、公司的广泛关注。然而,由于四旋翼飞行器体积小且重量轻,飞行中易受到外部干扰,如何实现对四旋翼飞行器的高性能运动控制已经成为一个热点问题。针对四旋翼飞行器的控制问题,存在很多控制方法,例如PID控制、自抗扰控制、滑模控制、反步控制等。
其中反步控制已经广泛应用于非线性***,其优点包括响应速度快、实施方便、对***不确定和外部干扰的鲁棒性等。传统的反步控制,只是考虑了四旋翼飞行器的稳态性能,并没有过多地关注其瞬态响应性能。因此,传统的反步控制方法使得四旋翼飞行器***在实际情况中的应用有很大阻碍。为解决这一问题,基于障碍李雅普诺夫函数的反步控制方法被提出,这种方法在实际情况中能够有效地改善四旋翼飞行器***的瞬态性能。
发明内容
为了改善四旋翼飞行器***瞬态性能,本发明提供了一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限步控制方法,减少了超调量和超调时间,使四旋翼飞行器***具有一个良好的动态响应性能。
为了解决上述技术问题提出的技术方案如下:
一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法,包括以下步骤:
步骤1,建立四旋翼飞行器***的动态模型,设定***的初始值、采样时间以及相关控制参数,过程如下:
1.1确定从基于四旋翼飞行器***的机体坐标系到基于地球的惯性坐标的转移矩阵T:
其中φ,θ,ψ分别是四旋翼飞行器的翻滚角、俯仰角、偏航角,表示无人机依次绕惯性坐标系的各坐标轴旋转的角度;
1.2四旋翼飞行器平动过程中的动态模型如下:
其中x,y,z分别表示四旋翼飞行器在惯性坐标系下的三个位置,Uf表示四旋翼飞行器的输入力矩,m为四旋翼飞行器的质量,g表示重力加速度,
将式(1)代入式(2)得:
1.3四旋翼飞行器转动过程中的动态模型为:
其中τxyz分别代表机体坐标系上各个轴的力矩分量,Ixx,Iyy,Izz分别表示机体坐标系下的各个轴的转动惯量的分量,×表示叉乘,ωp表示翻滚角速度,ωq表示俯仰角速度,ωr表示偏航角速度,表示翻滚角加速度,表示俯仰角加速度,表示偏航角加速度;
考虑到无人机一般处于低速飞行或者悬停状态,姿态角变化较小,认为因此式(4)改写为:
联立式(3)和式(5),得到四旋翼飞行器的动力学模型为:
其中ux=cosφsinθcosψ+sinφsinψ,uy=cosφsinθsinψ-sinφcosψ;
1.4根据式(6),定义φ,θ的期望值为:
其中φd为φ的期望信号值,θd为θ期望信号值,arcsin为反正弦函数;
步骤2,在每一个采样时刻,计算位置跟踪误差及其一阶导数;计算姿态角跟踪误差及其一阶导数;设计位置和姿态角控制器,过程如下:
2.1定义z跟踪误差及其一阶导数:
其中zd表示z的期望信号;
2.2设计障碍李雅普诺夫函数并求解其一阶导数:
其中Kb1为时变参数,满足为虚拟控制量,其表达式为:
其中k11为正常数;
将式(10)代入式(9),得:
2.3设计李雅普诺夫函数V12为:
求解式(12)的一阶导数,得:
其中
将式(14)和式(6)代入式(13),得:
2.4设计Uf
其中k12为正常数;
2.5定义x,y跟踪误差分别为e2,e3,则有:
其中xd,yd分别表示x,y的期望信号;
2.6设计障碍李雅普诺夫函数分别求解其一阶导数,得:
其中Kb2为时变参数,满足Kb2>|e2|;Kb3为时变参数,满足Kb3>|e3|;α23为虚拟控制量,其表达式为:
其中k21,k31为正常数;
将式(19)代入式(18),得:
2.7设计李雅普诺夫函数V22,V32
求解式(21)的一阶导数,得:
其中
将式(23),(6)代入式(22),分别得:
2.8通过式(24),(25)分别设计ux,uy
其中k22,k32为正常数;
2.9定义姿态角跟踪误差及其一阶导数:
其中j=4,5,6,x4=φ,x5=θ,x6=ψ,x4d表示φ的期望值,x5d表示θ的期望值,x6d表示ψ的期望值,e4表示φ的跟踪误差,e5表示θ的跟踪误差,e6表示ψ的跟踪误差;
2.10设计障碍李雅普诺夫函数并求解其一阶导数:
其中kj为时变参数,满足为姿态角的虚拟控制量,其表达式为:
其中kj1为正常数;
将式(29)代入式(28),得:
2.11设计障碍李雅普诺夫函数:
求解式(31)的一阶导数,得:
其中
将式(33)和式(6)代入式(32),分别得:
2.12通过式(34),(35),(36)分别设计τxyz
其中k42,k52,k62为正常数。
进一步,所述方法还包括以下步骤:
步骤3,验证四旋翼飞行器***的稳定性;
3.1将式(16)代入式(15),得:
3.2将式(26)代入式(24)、(25),得:
3.3把式(37)代入式(34)、(35)、(36),得:
3.4通过(38),(39),(40)可知四旋翼飞行器***是稳定的。
本发明基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法,改善了***的瞬态性能,减少了超调量和到达时间。
本发明的技术构思为:针对四旋翼飞行器的动力学***,设计一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法。对称时变障碍李雅普诺夫函数的设计是为了保证***的输出能够限制在一定的范围内,避免过大的超调,同时还能减少到达时间。从而改善四旋翼飞行器***的动态响应性能。
本发明优点为:降低超调量,减少到达时间,改善瞬态性能。
附图说明
图1为本发明的位置跟踪效果示意图。
图2为本发明的姿态角跟踪效果示意图。
图3为本发明的位置控制器输入示意图。
图4为本发明的姿态角控制器输入示意图。
图5为本发明的控制流程示意图。
具体实施方式
下面结合附图对本发明做进一步说明。
参照图1-图5,一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法,包括以下步骤:
步骤1,建立四旋翼飞行器***的动态模型,设定***的初始值、采样时间以及相关控制参数,过程如下:
1.1确定从基于四旋翼飞行器***的机体坐标系到基于地球的惯性坐标的转移矩阵T:
其中φ,θ,ψ分别是四旋翼飞行器的翻滚角、俯仰角、偏航角,表示无人机依次绕惯性坐标系的各坐标轴旋转的角度;
1.2四旋翼飞行器平动过程中的动态模型如下:
其中x,y,z分别表示四旋翼飞行器在惯性坐标系下的三个位置,Uf表示四旋翼飞行器的输入力矩,m为四旋翼飞行器的质量,g表示重力加速度,
将式(1)代入式(2)得:
1.3四旋翼飞行器转动过程中的动态模型为:
其中τxyz分别代表机体坐标系上各个轴的力矩分量,Ixx,Iyy,Izz分别表示机体坐标系下的各个轴的转动惯量的分量,×表示叉乘,ωp表示翻滚角速度,ωq表示俯仰角速度,ωr表示偏航角速度,表示翻滚角加速度,表示俯仰角加速度,表示偏航角加速度;
考虑到无人机一般处于低速飞行或者悬停状态,姿态角变化较小,认为因此式(4)改写为:
联立式(3)和式(5),得到四旋翼飞行器的动力学模型为:
其中ux=cosφsinθcosψ+sinφsinψ,uy=cosφsinθsinψ-sinφcosψ;
1.4根据式(6),定义φ,θ的期望值为:
其中φd为φ的期望信号值,θd为θ期望信号值,arcsin为反正弦函数;
步骤2,在每一个采样时刻,计算位置跟踪误差及其一阶导数;计算姿态角跟踪误差及其一阶导数;设计位置和姿态角控制器,过程如下:
2.1定义z跟踪误差及其一阶导数:
其中zd表示z的期望信号;
2.2设计障碍李雅普诺夫函数并求解其一阶导数:
其中Kb1为时变参数,满足为虚拟控制量,其表达式为:
其中k11为正常数;
将式(10)代入式(9),得:
2.3设计李雅普诺夫函数V12为:
求解式(12)的一阶导数,得:
其中
将式(14)和式(6)代入式(13),得:
2.4设计Uf
其中k12为正常数;
2.5定义x,y跟踪误差分别为e2,e3,则有:
其中xd,yd分别表示x,y的期望信号;
2.6设计障碍李雅普诺夫函数分别求解其一阶导数,得:
其中Kb2为时变参数,满足Kb2>|e2|;Kb3为时变参数,满足Kb3>|e3|;α23为虚拟控制量,其表达式为:
其中k21,k31为正常数;
将式(19)代入式(18),得:
2.7设计李雅普诺夫函数V22,V32
求解式(21)的一阶导数,得:
其中
将式(23),(6)代入式(22),分别得:
2.8通过式(24),(25)分别设计ux,uy
其中k22,k32为正常数;
2.9定义姿态角跟踪误差及其一阶导数:
其中j=4,5,6,x4=φ,x5=θ,x6=ψ,x4d表示φ的期望值,x5d表示θ的期望值,x6d表示ψ的期望值,e4表示φ的跟踪误差,e5表示θ的跟踪误差,e6表示ψ的跟踪误差;
2.10设计障碍李雅普诺夫函数并求解其一阶导数:
其中kj为时变参数,满足Kbj>|ej|;αj为姿态角的虚拟控制量,其表达式为:
其中kj1为正常数;
将式(29)代入式(28),得:
2.11设计障碍李雅普诺夫函数:
求解式(31)的一阶导数,得:
其中
将式(33)和式(6)代入式(32),分别得:
2.12通过式(34),(35),(36)分别设计τxyz
其中k42,k52,k62为正常数;
步骤3,验证四旋翼飞行器***的稳定性;
3.1将式(16)代入式(15),得:
3.2将式(26)代入式(24)、(25),得:
3.3把式(37)代入式(34)、(35)、(36),得:
3.4通过(38),(39),(40)可知四旋翼飞行器***是稳定的。
为了验证所提方法的可行性,本发明给出了该控制方法在MATLAB平台上的仿真结果:
参数给定如下:式(2)中m=1.1kg,g=9.81N/kg;式(4)中,Ixx=1.22kg·m2,Iyy=1.22kg·m2,Izz=2.2kg·m2;式(8),式(17)和式(27)中zd=0.5,xd=0.5,yd=0.5,ψd=0.5;式(10),式(19)和式(29)中k11=1,k21=1,k31=1,k41=1,k51=1,k61=1;式(16),式(26)和式(37)中k12=1,k22=1,k32=1,k42=1,k52=1,k62=1;式(9),式(18)和式(28)kb1=3+0.9sint,kb2=3+0.9sint,kb3=3+0.9sint,kb4=0.5+0.1cost,kb5=0.8+0.1sint,kb6=2+0.1cost。
从图1和2可知,***具有良好的瞬态特性,到达时间为8.15秒,超调量为0。
综上所述,基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法能有效地改善四旋翼飞行器***的瞬态性能。
以上阐述的是本发明给出的一个实施例表现出的优良优化效果,显然本发明不只是限于上述实施例,在不偏离本发明基本精神及不超出本发明实质内容所涉及范围的前提下对其可作种种变形加以实施。

Claims (2)

1.一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法,其特征在于,包括以下步骤:
步骤1,建立四旋翼飞行器***的动态模型,设定***的初始值、采样时间以及相关控制参数,过程如下:
1.1确定从基于四旋翼飞行器***的机体坐标系到基于地球的惯性坐标的转移矩阵T:
<mrow> <mi>T</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>cos</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;psi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <mi>&amp;phi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;psi;</mi> <mo>-</mo> <mi>cos</mi> <mi>&amp;phi;</mi> <mi>sin</mi> <mi>&amp;psi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;phi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;psi;</mi> <mo>+</mo> <mi>sin</mi> <mi>&amp;phi;</mi> <mi>sin</mi> <mi>&amp;psi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>cos</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;psi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <mi>&amp;phi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;psi;</mi> <mo>+</mo> <mi>cos</mi> <mi>&amp;phi;</mi> <mi>cos</mi> <mi>&amp;psi;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;phi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;psi;</mi> <mo>-</mo> <mi>sin</mi> <mi>&amp;phi;</mi> <mi>cos</mi> <mi>&amp;psi;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>sin</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <mi>&amp;phi;</mi> <mi>cos</mi> <mi>&amp;theta;</mi> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <mi>&amp;phi;</mi> <mi>cos</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
其中φ,θ,ψ分别是四旋翼飞行器的翻滚角、俯仰角、偏航角,表示无人机依次绕惯性坐标系的各坐标轴旋转的角度;
1.2四旋翼飞行器平动过程中的动态模型如下:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>m</mi> <mi>g</mi> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mi>T</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>U</mi> <mi>f</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>m</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <mi>z</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
其中x,y,z分别表示四旋翼飞行器在惯性坐标系下的三个位置,Uf表示四旋翼飞行器的输入力矩,m为四旋翼飞行器的质量,g表示重力加速度,
将式(1)代入式(2)得:
<mrow> <mfenced open = "(" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <msub> <mi>U</mi> <mi>f</mi> </msub> <mrow> <mi>m</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>&amp;phi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>cos</mi> <mi>&amp;psi;</mi> <mo>+</mo> <mi>sin</mi> <mi>&amp;phi;</mi> <mi>sin</mi> <mi>&amp;psi;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <msub> <mi>U</mi> <mi>f</mi> </msub> <mrow> <mi>m</mi> <mrow> <mo>(</mo> <mi>cos</mi> <mi>&amp;phi;</mi> <mi>sin</mi> <mi>&amp;theta;</mi> <mi>sin</mi> <mi>&amp;psi;</mi> <mo>-</mo> <mi>sin</mi> <mi>&amp;phi;</mi> <mi>cos</mi> <mi>&amp;psi;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>z</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <msub> <mi>U</mi> <mi>f</mi> </msub> <mi>m</mi> </mfrac> <mi>cos</mi> <mi>&amp;phi;</mi> <mi>cos</mi> <mi>&amp;theta;</mi> <mo>-</mo> <mi>g</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
1.3四旋翼飞行器转动过程中的动态模型为:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;tau;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;tau;</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;tau;</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>p</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>p</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;times;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>p</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
其中τxyz分别代表机体坐标系上各个轴的力矩分量,Ixx,Iyy,Izz分别表示机体坐标系下的各个轴的转动惯量的分量,×表示叉乘,ωp表示翻滚角速度,ωq表示俯仰角速度,ωr表示偏航角速度,表示翻滚角加速度,表示俯仰角加速度,表示偏航角加速度;
考虑到无人机处于低速飞行或者悬停状态,姿态角变化较小,认为因此式(4)改写为:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;tau;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;tau;</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;tau;</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;times;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
联立式(3)和式(5),得到四旋翼飞行器的动力学模型为:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>z</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <msub> <mi>U</mi> <mi>f</mi> </msub> <mi>m</mi> </mfrac> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;phi;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;theta;</mi> <mo>-</mo> <mi>g</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <msub> <mi>U</mi> <mi>f</mi> </msub> <mi>m</mi> </mfrac> <msub> <mi>u</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <msub> <mi>U</mi> <mi>f</mi> </msub> <mi>m</mi> </mfrac> <msub> <mi>u</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <msub> <mi>&amp;tau;</mi> <mi>x</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <msub> <mi>&amp;tau;</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <msub> <mi>&amp;tau;</mi> <mi>z</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
其中ux=cosφsinθcosψ+sinφsinψ,uy=cosφsinθsinψ-sinφcosψ;a1
1.4根据式(6),定义φ,θ的期望值为:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;phi;</mi> <mi>d</mi> </msub> <mo>=</mo> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mo>&amp;lsqb;</mo> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;psi;</mi> <mo>-</mo> <msub> <mi>u</mi> <mi>y</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;psi;</mi> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;theta;</mi> <mi>d</mi> </msub> <mo>=</mo> <mi>arcsin</mi> <mo>&amp;lsqb;</mo> <mfrac> <msub> <mi>u</mi> <mi>x</mi> </msub> <mrow> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;psi;</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> <mi>sin</mi> <mi>&amp;psi;</mi> </mrow> <mrow> <mi>cos</mi> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> <mi>cos</mi> <mi>&amp;psi;</mi> </mrow> </mfrac> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
其中φd为φ的期望信号值,θd为θ期望信号值,arcsin为反正弦函数;
步骤2,在每一个采样时刻,计算位置跟踪误差及其一阶导数;计算姿态角跟踪误差及其一阶导数;设计位置和姿态角控制器,过程如下:
2.1定义z跟踪误差及其一阶导数:
<mrow> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>z</mi> <mo>-</mo> <msub> <mi>z</mi> <mi>d</mi> </msub> <mo>,</mo> <msub> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
其中zd表示z的期望信号;
2.2设计障碍李雅普诺夫函数并求解其一阶导数:
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>11</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>e</mi> <mn>1</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mover> <mi>K</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>e</mi> <mn>1</mn> </msub> </mrow> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
其中Kb1为时变参数,满足Kb1>|e1|,为虚拟控制量,其表达式为:
<mrow> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>11</mn> </msub> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mover> <mi>K</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>e</mi> <mn>1</mn> </msub> </mrow> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
其中k11为正常数;
将式(10)代入式(9),得:
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>11</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>11</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>e</mi> <mn>1</mn> </msub> <msub> <mi>s</mi> <mn>1</mn> </msub> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
2.3设计李雅普诺夫函数V12为:
<mrow> <msub> <mi>V</mi> <mn>12</mn> </msub> <mo>=</mo> <msub> <mi>V</mi> <mn>11</mn> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <msub> <mi>s</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
求解式(12)的一阶导数,得:
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>12</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>11</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>e</mi> <mn>1</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
其中
<mrow> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <mover> <mi>z</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
将式(14)和式(6)代入式(13),得:
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>12</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>11</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>e</mi> <mn>1</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>U</mi> <mi>f</mi> </msub> <mi>m</mi> </mfrac> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;phi;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;theta;</mi> <mo>-</mo> <mi>g</mi> <mo>-</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
2.4设计Uf
<mrow> <msub> <mi>U</mi> <mi>f</mi> </msub> <mo>=</mo> <mfrac> <mi>m</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;phi;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;theta;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>g</mi> <mo>-</mo> <msub> <mi>k</mi> <mn>12</mn> </msub> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mfrac> <msub> <mi>e</mi> <mn>1</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
其中k12为正常数;
2.5定义x,y跟踪误差分别为e2,e3,则有:
<mrow> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>d</mi> </msub> <mo>,</mo> <msub> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>;</mo> <msub> <mi>e</mi> <mn>3</mn> </msub> <mo>=</mo> <mi>y</mi> <mo>-</mo> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>,</mo> <msub> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
其中xd,yd分别表示x,y的期望信号;
2.6设计障碍李雅普诺夫函数分别求解其一阶导数,得:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>21</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>e</mi> <mn>2</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>2</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mover> <mi>K</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>e</mi> <mn>2</mn> </msub> </mrow> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>2</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>31</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>e</mi> <mn>3</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>3</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mover> <mi>K</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>e</mi> <mn>3</mn> </msub> </mrow> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>3</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
其中Kb2为时变参数,满足Kb2>|e2|;Kb3为时变参数,满足Kb3>|e3|;α23为虚拟控制量,其表达式为:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>21</mn> </msub> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mover> <mi>K</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>e</mi> <mn>2</mn> </msub> </mrow> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;alpha;</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>k</mi> <mn>31</mn> </msub> <msub> <mi>e</mi> <mn>3</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mover> <mi>K</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>e</mi> <mn>3</mn> </msub> </mrow> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>3</mn> </mrow> </msub> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
其中k21,k31为正常数;
将式(19)代入式(18),得:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>21</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>21</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>2</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>e</mi> <mn>2</mn> </msub> <msub> <mi>s</mi> <mn>2</mn> </msub> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>2</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>31</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>31</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>3</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>e</mi> <mn>3</mn> </msub> <msub> <mi>s</mi> <mn>3</mn> </msub> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>3</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
2.7设计李雅普诺夫函数V22,V32
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>V</mi> <mn>22</mn> </msub> <mo>=</mo> <msub> <mi>V</mi> <mn>21</mn> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <msub> <mi>s</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>V</mi> <mn>32</mn> </msub> <mo>=</mo> <msub> <mi>V</mi> <mn>31</mn> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <msub> <mi>s</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
求解式(21)的一阶导数,得:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>22</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>21</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>2</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>e</mi> <mn>2</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>2</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>32</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>31</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>3</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>s</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>e</mi> <mn>3</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>3</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
其中
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
将式(23),(6)代入式(22),分别得:
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>22</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>21</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>2</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>e</mi> <mn>2</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>2</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>U</mi> <mi>f</mi> </msub> <mi>m</mi> </mfrac> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>32</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>31</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>3</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>s</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>e</mi> <mn>3</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>3</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>U</mi> <mi>f</mi> </msub> <mi>m</mi> </mfrac> <msub> <mi>u</mi> <mi>y</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow>
2.8通过式(24),(25)分别设计ux,uy
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>=</mo> <mfrac> <mi>m</mi> <msub> <mi>U</mi> <mi>f</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>22</mn> </msub> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <mfrac> <msub> <mi>e</mi> <mn>2</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>2</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mi>y</mi> </msub> <mo>=</mo> <mfrac> <mi>m</mi> <msub> <mi>U</mi> <mi>f</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>32</mn> </msub> <msub> <mi>s</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>-</mo> <mfrac> <msub> <mi>e</mi> <mn>3</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>3</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow>
其中k22,k32为正常数;
2.9定义姿态角跟踪误差及其一阶导数:
<mrow> <msub> <mi>e</mi> <mi>j</mi> </msub> <mo>=</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>j</mi> <mi>d</mi> </mrow> </msub> <mo>,</mo> <msub> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>j</mi> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>j</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>j</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow>
其中j=4,5,6,x4=φ,x5=θ,x6=ψ,x4d表示φ的期望值,x5d表示θ的期望值,x6d表示ψ的期望值,e4表示φ的跟踪误差,e5表示θ的跟踪误差,e6表示ψ的跟踪误差;
2.10设计障碍李雅普诺夫函数并求解其一阶导数:
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>e</mi> <mn>2</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mi>j</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>j</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mover> <mi>K</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>e</mi> <mi>j</mi> </msub> </mrow> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mi>j</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow>
其中kj为时变参数,满足Kbj>|ej|;αj为姿态角的虚拟控制量,其表达式为:
<mrow> <msub> <mi>&amp;alpha;</mi> <mi>j</mi> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>j</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>k</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>e</mi> <mi>j</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>k</mi> <mrow> <mi>b</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>e</mi> <mi>j</mi> </msub> </mrow> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mi>j</mi> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow>
其中kj1为正常数;
将式(29)代入式(28),得:
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mi>j</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mi>j</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>e</mi> <mi>j</mi> </msub> <msub> <mi>s</mi> <mi>j</mi> </msub> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mi>j</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow>
2.11设计障碍李雅普诺夫函数:
<mrow> <msub> <mi>V</mi> <mrow> <mi>j</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <msub> <mi>s</mi> <mi>j</mi> </msub> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>31</mn> <mo>)</mo> </mrow> </mrow>
求解式(31)的一阶导数,得:
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>j</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mi>j</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mi>j</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>s</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>e</mi> <mi>j</mi> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mi>j</mi> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mi>j</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>32</mn> <mo>)</mo> </mrow> </mrow>
其中 <mrow> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>j</mi> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>j</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> </mrow>
将式(33)和式(6)代入式(32),分别得:
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>42</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>41</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>4</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>s</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>e</mi> <mn>4</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>4</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <msub> <mi>&amp;tau;</mi> <mi>x</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>4</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>34</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>52</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>51</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>5</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>5</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>5</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>s</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>e</mi> <mn>5</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>5</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>5</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <msub> <mi>&amp;tau;</mi> <mi>y</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>5</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>35</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>62</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>61</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>6</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>6</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>6</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>s</mi> <mn>6</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>e</mi> <mn>6</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>6</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>6</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <msub> <mi>&amp;tau;</mi> <mi>z</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>6</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>36</mn> <mo>)</mo> </mrow> </mrow>
2.12通过式(34),(35),(36)分别设计τxyz
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;tau;</mi> <mi>x</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>b</mi> <mn>1</mn> </msub> </mfrac> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mi>k</mi> <mn>42</mn> </msub> <msub> <mi>s</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>4</mn> </msub> <mo>-</mo> <mfrac> <msub> <mi>e</mi> <mn>4</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>4</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;tau;</mi> <mi>y</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>b</mi> <mn>2</mn> </msub> </mfrac> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mi>k</mi> <mn>52</mn> </msub> <msub> <mi>s</mi> <mn>5</mn> </msub> <mo>+</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>5</mn> </msub> <mo>-</mo> <mfrac> <msub> <mi>e</mi> <mn>5</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>5</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>5</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;tau;</mi> <mi>z</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>b</mi> <mn>3</mn> </msub> </mfrac> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mover> <mi>&amp;phi;</mi> <mo>&amp;CenterDot;</mo> </mover> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mi>k</mi> <mn>62</mn> </msub> <msub> <mi>s</mi> <mn>6</mn> </msub> <mo>+</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>6</mn> </msub> <mo>-</mo> <mfrac> <msub> <mi>e</mi> <mn>6</mn> </msub> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>6</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>6</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>37</mn> <mo>)</mo> </mrow> </mrow>
其中k42,k52,k62为正常数。
2.如权利要求1所述的一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法,其特征在于,所述方法还包括以下步骤:
步骤3,验证四旋翼飞行器***的稳定性;
3.1将式(16)代入式(15),得:
<mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>12</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>11</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <msub> <mi>k</mi> <mn>12</mn> </msub> <msup> <msub> <mi>s</mi> <mn>1</mn> </msub> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>38</mn> <mo>)</mo> </mrow> </mrow>
3.2将式(26)代入式(24)、(25),得:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>22</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>21</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>2</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <msub> <mi>k</mi> <mn>22</mn> </msub> <msup> <msub> <mi>s</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>32</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>31</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>3</mn> </mrow> </msub> <mn>2</mn> </msup> <mo>-</mo> <msup> <msub> <mi>e</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <msub> <mi>k</mi> <mn>32</mn> </msub> <msup> <msub> <mi>s</mi> <mn>3</mn> </msub> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>39</mn> <mo>)</mo> </mrow> </mrow>
3.3把式(37)代入式(34)、(35)、(36),得:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>42</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>41</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>4</mn> </mrow> </msub> <mn>2</mn> </msup> <msup> <msub> <mi>e</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <msub> <mi>k</mi> <mn>42</mn> </msub> <msup> <msub> <mi>s</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>52</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>51</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>5</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>5</mn> </mrow> </msub> <mn>2</mn> </msup> <msup> <msub> <mi>e</mi> <mn>5</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <msub> <mi>k</mi> <mn>52</mn> </msub> <msup> <msub> <mi>s</mi> <mn>5</mn> </msub> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>V</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>62</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mn>61</mn> </msub> <mfrac> <mrow> <msup> <msub> <mi>e</mi> <mn>6</mn> </msub> <mn>2</mn> </msup> </mrow> <mrow> <msup> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mn>6</mn> </mrow> </msub> <mn>2</mn> </msup> <msup> <msub> <mi>e</mi> <mn>6</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <msub> <mi>k</mi> <mn>62</mn> </msub> <msup> <msub> <mi>s</mi> <mn>6</mn> </msub> <mn>2</mn> </msup> <mo>&amp;le;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>40</mn> <mo>)</mo> </mrow> </mrow>
3.4通过(38),(39),(40)可知四旋翼飞行器***是稳定的。
CN201711274132.3A 2017-12-06 2017-12-06 一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法 Active CN108107726B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711274132.3A CN108107726B (zh) 2017-12-06 2017-12-06 一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711274132.3A CN108107726B (zh) 2017-12-06 2017-12-06 一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法

Publications (2)

Publication Number Publication Date
CN108107726A true CN108107726A (zh) 2018-06-01
CN108107726B CN108107726B (zh) 2020-06-02

Family

ID=62208132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711274132.3A Active CN108107726B (zh) 2017-12-06 2017-12-06 一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法

Country Status (1)

Country Link
CN (1) CN108107726B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111679684A (zh) * 2020-06-16 2020-09-18 江苏师范大学 具有输入时滞的四旋翼无人机反步控制方法
CN112327897A (zh) * 2020-11-04 2021-02-05 江苏师范大学 一种具有输入死区的四旋翼无人机姿态控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094855A (zh) * 2016-07-27 2016-11-09 浙江工业大学 一种四旋翼无人机的终端协同控制方法
CN107368088A (zh) * 2017-07-11 2017-11-21 浙江工业大学 一种基于误差指数型函数的四旋翼飞行器非线性滑模位姿控制方法
CN107368089A (zh) * 2017-07-11 2017-11-21 浙江工业大学 一种基于双指数型函数的四旋翼飞行器非线性滑模位姿控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094855A (zh) * 2016-07-27 2016-11-09 浙江工业大学 一种四旋翼无人机的终端协同控制方法
CN107368088A (zh) * 2017-07-11 2017-11-21 浙江工业大学 一种基于误差指数型函数的四旋翼飞行器非线性滑模位姿控制方法
CN107368089A (zh) * 2017-07-11 2017-11-21 浙江工业大学 一种基于双指数型函数的四旋翼飞行器非线性滑模位姿控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
吴琛等: "四旋翼飞行器的轨迹跟踪抗干扰控制", 《控制理论与应用》 *
薛晨琛: "高超声速飞行器分数阶滑模姿态控制方法研究", 《中国优秀硕士学位论文全文数据库工程科技II辑》 *
陈强等: "四旋翼飞行器的轨迹跟踪抗干扰控制", 《2016(第六届)中国国际无人驾驶航空器***大会论文集》 *
陈强等: "基于全阶滑模的四旋翼无人机有限时间控制", 《探索 创新 交流(第7集)-第七届中国航空学会青年科学论坛文集》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111679684A (zh) * 2020-06-16 2020-09-18 江苏师范大学 具有输入时滞的四旋翼无人机反步控制方法
CN112327897A (zh) * 2020-11-04 2021-02-05 江苏师范大学 一种具有输入死区的四旋翼无人机姿态控制方法
CN112327897B (zh) * 2020-11-04 2022-07-29 江苏师范大学 一种具有输入死区的四旋翼无人机姿态控制方法

Also Published As

Publication number Publication date
CN108107726B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
CN108037662A (zh) 一种基于积分滑模障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法
CN107976902B (zh) 一种四旋翼无人机***的增强型等速趋近律滑模控制方法
CN107688295B (zh) 一种基于快速终端滑模的四旋翼飞行器有限时间自适应控制方法
CN105911866B (zh) 四旋翼无人飞行器的有限时间全阶滑模控制方法
CN107976903B (zh) 一种四旋翼无人机***的增强型双幂次趋近律滑模控制方法
CN107831671B (zh) 一种基于非对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法
CN107831670B (zh) 一种基于非对称时不变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法
CN107957682B (zh) 一种四旋翼无人机***的增强型快速幂次趋近律滑模控制方法
CN107942672B (zh) 一种基于对称时不变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法
CN111026160A (zh) 一种四旋翼无人机轨迹跟踪控制方法
CN109032156A (zh) 一种基于状态观测的吊挂载荷四旋翼无人机悬停控制方法
CN108107726B (zh) 一种基于对称时变障碍李雅普诺夫函数的四旋翼飞行器输出受限反步控制方法
CN108153148B (zh) 一种四旋翼无人机***的增强型指数趋近律滑模控制方法
CN113625730B (zh) 一种基于超扭滑模的四旋翼自适应容错控制方法
CN108107900B (zh) 一种基于对称时不变障碍李雅普诺夫函数的四旋翼飞行器全状态受限反步控制方法
CN109917650A (zh) 一种非对称时变约束的飞行器姿态控制方法
CN108388118A (zh) 基于非对称时变正切型约束李雅普诺夫函数的四旋翼飞行器全状态受限控制方法
CN109917651A (zh) 一种对称时变输出受限的飞行器姿态控制方法
CN109613829A (zh) 一种四旋翼飞行器全状态受限控制方法
CN109870913A (zh) 一种带有时变指数正切约束的飞行器全状态受限控制方法
Bose et al. Hexacopter using MATLAB Simulink and MPU Sensing
CN108427279A (zh) 基于对称时变指数正切复合型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法
CN108549216A (zh) 基于非对称时不变对数正割复合型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法
CN108333950A (zh) 基于对称时变正切余弦复合型约束李雅普诺夫函数的四旋翼飞行器输出受限控制方法
CN109828470A (zh) 一种四旋翼飞行器指数正切输出约束控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant