CN107503801A - 一种高效阵列射流冷却结构 - Google Patents

一种高效阵列射流冷却结构 Download PDF

Info

Publication number
CN107503801A
CN107503801A CN201710710525.8A CN201710710525A CN107503801A CN 107503801 A CN107503801 A CN 107503801A CN 201710710525 A CN201710710525 A CN 201710710525A CN 107503801 A CN107503801 A CN 107503801A
Authority
CN
China
Prior art keywords
impact opening
cooling structure
jet
impact
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710710525.8A
Other languages
English (en)
Inventor
李润东
孙哲
贺业光
李少白
刘学斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Aerospace University
Original Assignee
Shenyang Aerospace University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Aerospace University filed Critical Shenyang Aerospace University
Priority to CN201710710525.8A priority Critical patent/CN107503801A/zh
Publication of CN107503801A publication Critical patent/CN107503801A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明属于燃气轮机及航空发动机高温部件冷却及其他一些涉及到阵列冲击射流冷却的领域,具体为一种高效阵列射流冷却结构。提供三种阵列射流冲击孔结构设计和一种锥形肋结构设计,包括一种多孔阵列排布的渐缩型射流冲击孔孔板,一种有不同孔径阵列排布的冲击孔孔板,一种带有倒(圆)角阵列排布的冲击孔孔板,以及一种上锥形肋阵列排布的射流靶板。本次设计目的在于使用最少的冷却空气量,最大程度的提高冷却效率,同时降低了冷却壁面整体的温度梯度,使传热更加均匀稳定。

Description

一种高效阵列射流冷却结构
技术领域:
本发明属于燃气轮机及航空发动机高温部件冷却及其他一些涉及到阵列冲击射流冷却的领域,具体为一种高效阵列射流冷却结构。
背景技术:
提升燃气轮机热效率的关键技术是提高燃机透平转子的进口温度,现在燃气轮机透平一级动叶的燃气温度已经达到了1800K以上,如此高的温度下,燃气轮机的热端部件(燃烧室、火焰筒、过渡段、涡轮叶片等)无法在如此高的温度下长时间工作,必须采用有效的冷却技术。
目前,燃气轮机的发展趋势是提高温升和降低污染物的排放,二者都需要较大范围的提高用于燃气轮机燃烧室的空气比例,由此导致用于燃机热端部件的冷却空气比例降低。在保证燃气轮机热效率的情况下,如何通过更少的冷却空气量,更有效的冷却燃机的热端部件是目前迫切需要解决的问题。
在所有的传热强化技术中,阵列射流冲击冷却是提高局部换热系数中最重要也是最有效的方法,也是最早应用于燃气轮机涡轮叶片冷却的技术手段之一。影响壁面换热最直接的原因是由于壁面存在气体边界层,影响了壁面的换热效果,而冲击冷却可以在射流驻点区域最大程度的降低边界层的厚度,达到增强换热的目的。
现有的阵列射流冷却***中具有如下局限性:
(1)实验冷却***没有考虑到在实际工作情况下,冷却空气量是有限的。没有办法大幅度的提升冲击射流的雷诺数。
(2)现有阵列射流冷却***,有效冷却面积是四倍冲击孔范围内,其他区域***流靶板壁面边界层较厚,换热效果不好。
(3)冲击射流冲击靶板之后,会在靶板壁面出产生一定量的横流,横流会对后***流产生影响,使得后排冲击射流产生偏移,导致靶板整体的冷却温度不均,产生较大的温度梯度,影响材料的使用寿命。
发明内容:
本次设计目的在于使用最少的冷却空气量,最大程度的提高冷却效率,同时降低了冷却壁面整体的温度梯度,使传热更加均匀稳定。为实现上述目的,本次设计提供了三种冲击孔结构设计以及一种射流靶板上锥形肋(冷却肋)的结构设计,方案如下:
一种高效阵列射流冷却结构,包括射流孔板及射流靶板,所述的射流孔板上设有多个阵列排列的冲击孔;所述射流孔板位于所述射流靶板的上部,二者之间为空腔设计。
进一步地,流靶板上面设有多个凸起的锥形肋。
进一步地,冲击孔由上至下为渐缩孔设计,所述渐缩型冲击孔上、下两端口圆直径的差值为1.5D,冲击孔的法线与冲击孔壁面所成倾斜角度θ为45°~90°。
进一步地,冲击孔的上部为倒角或倒圆角设计,下部为圆柱孔设计;所述倒角冲击孔的倒角角度α为30~45°,倒角的尺寸为0.1D~0.3D。
进一步地,冲击孔为3种不同孔径阵列排布,三种孔径分别为1D、1.5D及2D。
进一步地,锥形肋的锥面为直面或者为曲面。
进一步地,锥形肋底圆直径为0.5D,锥形肋高度为0.5D~1D。
进一步地,锥形肋与所述的冲击孔的数量相互匹配,所述锥形肋位于所述冲击孔在所述射流靶板的上垂直投影区域之内。
进一步地,所述的射流孔板与所述的射流靶板平行。
本发明的主要优点:
1、在冷空气来流量一定的情况下,渐缩孔设计一定程度上增加了冲击雷诺数,加强了换热系数。
2、不同孔径排布的方式使得不同孔径的冲击射流具有不同的射流雷诺数,对射流靶板的冷却更加均匀。
3、倒(圆)角冲击孔可以增加冲击孔的流量系数,降低冲击腔室内,即射流孔板与射流靶板之间空腔的回流涡旋情况,改善其内部工作条件。
4、对于一般的冲击孔而言,只有冲击孔垂直投影区域的壁面边界层很薄,故冲击驻点区域的具有很强的换热效果,在射流靶板上增加了锥形肋,使得冲击射流在更大的范围内降低了靶板壁面边界层的厚度,所说的边界层是指的在靠近壁面处的地方,流体会产生一种层流的流动状态,类似一种薄膜,边界层越厚,传热效果越差,达到了增强换热的效果
5、同时本发明设计的孔结构及锥形肋的制造工艺简单,容易实现。
附图说明:
图1是本发明的结构示意图;
图2是渐缩孔型孔板结构示意图;
图3是不同孔径排布的孔板结构示意图;
图4是倒角孔板结构示意图;
图5是倒圆角孔板结构示意图;
图6是锥形肋为直面的靶板结构示意图;
图7是锥形肋为弧面的靶板结构示意图;
图8是带有锥形肋靶板的射流流场示意图;
图9为圆柱孔冲击孔形状与渐缩孔形射流靶板Nu数分布对比图;
图10为有无锥形肋结构射流靶板Nu数的分布对比图;
具体实施方式:
下面结合附图与具体实例对发明做进一步详细说明,但本发明并不限于以下实施例。
参考图1,一种高效阵列射流冷却结构,包括射流孔板1及射流靶板3,射流孔板1上设有多个阵列排列的冲击孔2;所述射流孔板1位于所述射流靶板3的上部,二者之间为空腔设计。
作为方案的改进,参考图2与图9,冲击孔2由上至下为渐缩孔设计,所述渐缩型冲击孔上、下两端口圆直径的差值为1.5D,冲击孔2间距为3D,冲击距离(冲击孔板到冲击靶板的距离)为2D,冲击孔2的法线与冲击孔2壁面所成倾斜角度为45°~90°。结果发现:在初始冷却空气流量、压强等条件相同的情况下,相比于一般圆柱形冲击孔,渐缩孔结构产生的冲击射流冷却面积相同,冷却效率提升了10%以上,
作为方案的改进,参考图4-5,冲击孔2的上部为倒角或倒圆角设计,下部为圆柱孔设计;相邻冲击孔2间距为3D,冲击距离为2D,倒角冲击孔2的倒角角度α为45°,倒角的长度尺寸为0.2D。结果发现:在初始冷却空气流量、压强等条件相同的情况下,相比于普通圆柱冲击孔,冲击腔室内回流涡旋情况有明显的好转,冲击孔2的流量系数增加,换热系数提高了5.5%以上。
作为方案的改进,参考图3,冲击孔2为3种不同孔径阵列排布,相邻冲击孔2间距为3D,冲击距离为2D。三种孔径分别为1D、1.5D及2D,具体分布为3排6列共计18个冲击孔。此设计在初始冷却空气流量、压强等条件相同的情况下,相比于普通圆柱冲击孔,冷却效率虽然没有明显的提升,但是靶板整体的温度梯度有明显的降低,整体的换热系数更加均匀。
作为方案的改进,参考图6-7及图10,射流靶板3上面设有多个凸起的锥形肋4,锥形肋4的锥面为直面或者为曲面。相邻冲击孔2间距为3D,冲击距离为2D,使用普通圆柱形冲击孔和锥形肋4与渐缩孔型冲击孔2和锥形肋4两种组合结构相对比,所述锥形肋4底圆直径为0.5D,锥形肋高度为D,锥面为直面和曲面两种。结果发现:在初始冷却空气流量、压强等条件相同的情况下,普通圆柱冲击孔和锥形肋组合的方式,有效冷却面积在4倍D的区域内;渐缩孔与锥形肋4的组合,有效冷却面积在4.5倍D的区域内。同时,曲面锥形肋4相比于直面锥形肋4有效冷却面积提高了25%~35%。
作为方案的改进,参考图8,锥形肋4与所述的冲击孔3的数量相互匹配,所述锥形肋4位于所述冲击孔2在所述射流靶板3的上垂直投影区域之内。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种高效阵列射流冷却结构,其特征在于:包括射流孔板及射流靶板,所述的射流孔板上设有多个阵列排列的冲击孔;所述射流孔板位于所述射流靶板的上部,二者之间为空腔设计。
2.如权利要求1所述的一种高效阵列射流冷却结构,其特征在于:所述的射流靶板上面设有多个凸起的锥形肋。
3.如权利要求1所述的一种高效阵列射流冷却结构,其特征在于:所述的冲击孔由上至下为渐缩孔设计,所述渐缩型冲击孔上、下两端口圆直径的差值为1.5D,冲击孔的法线与冲击孔壁面所成倾斜角度θ为45°~90°。
4.如权利要求1所述的一种高效阵列射流冷却结构,其特征在于:所述冲击孔的上部为倒角或倒圆角设计,下部为圆柱孔设计;所述倒角冲击孔的倒角角度α为30~45°,倒角的尺寸为0.1D~0.3D。
5.如权利要求1-4任一所述的一种高效阵列射流冷却结构,其特征在于:所述的冲击孔为3种不同孔径阵列排布,三种孔径分别为1D、1.5D及2D。
6.如权利要求2所述的一种高效阵列射流冷却结构,其特征在于:所述锥形肋的锥面为直面或者为曲面。
7.如权利要求2所述的一种高效阵列射流冷却结构,其特征在于:所述的锥形肋底圆直径为0.5D,锥形肋高度为0.5D~1D。
8.如权利要求2所述的一种高效阵列射流冷却结构,其特征在于:所述的锥形肋与所述的冲击孔的数量相互匹配,所述锥形肋位于所述冲击孔在所述射流靶板的上垂直投影区域之内。
CN201710710525.8A 2017-08-18 2017-08-18 一种高效阵列射流冷却结构 Pending CN107503801A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710710525.8A CN107503801A (zh) 2017-08-18 2017-08-18 一种高效阵列射流冷却结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710710525.8A CN107503801A (zh) 2017-08-18 2017-08-18 一种高效阵列射流冷却结构

Publications (1)

Publication Number Publication Date
CN107503801A true CN107503801A (zh) 2017-12-22

Family

ID=60691955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710710525.8A Pending CN107503801A (zh) 2017-08-18 2017-08-18 一种高效阵列射流冷却结构

Country Status (1)

Country Link
CN (1) CN107503801A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108223022A (zh) * 2018-01-04 2018-06-29 沈阳航空航天大学 一种阵列射流冷却中的扰流结构
CN109737788A (zh) * 2018-12-21 2019-05-10 西北工业大学 一种减小流动损失、强化冲击换热的凸起靶板结构
CN109931114A (zh) * 2019-03-15 2019-06-25 南京航空航天大学 一种新型冲击冷却扰流结构
CN110195615A (zh) * 2019-05-20 2019-09-03 沈阳航空航天大学 一种靶面带槽的冲击溢流双层壁结构
CN112234938A (zh) * 2020-10-14 2021-01-15 景德镇陶瓷大学 一种用于聚光太阳能电池的冲击射流冷却***以及太阳能电池装置
CN113225997A (zh) * 2021-05-13 2021-08-06 西北工业大学 一种带多级圆柱形凸台的强化冲击换热结构
CN113374546A (zh) * 2021-06-27 2021-09-10 西北工业大学 一种基于圆台加圆柱形凸起的阵列冲击结构
US11499435B2 (en) * 2018-10-18 2022-11-15 Mitsubishi Heavy Industries, Ltd. Gas turbine stator vane, gas turbine provided with same, and method of manufacturing gas turbine stator vane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1126795A (zh) * 1994-08-26 1996-07-17 Abb管理有限公司 折流冷却的壁体
EP0905353A1 (de) * 1997-09-30 1999-03-31 Abb Research Ltd. Mit einer Prallströmung gekühltes Wandteil
EP1574669A2 (en) * 2004-03-10 2005-09-14 Rolls-Royce Plc Impingement cooling arrangement witin turbine blades
EP3054113A1 (en) * 2015-02-09 2016-08-10 United Technologies Corporation Impingement cooled component, corresponding cooling method and gas turbine engine component
US20170191417A1 (en) * 2016-01-06 2017-07-06 General Electric Company Engine component assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1126795A (zh) * 1994-08-26 1996-07-17 Abb管理有限公司 折流冷却的壁体
EP0905353A1 (de) * 1997-09-30 1999-03-31 Abb Research Ltd. Mit einer Prallströmung gekühltes Wandteil
EP1574669A2 (en) * 2004-03-10 2005-09-14 Rolls-Royce Plc Impingement cooling arrangement witin turbine blades
EP3054113A1 (en) * 2015-02-09 2016-08-10 United Technologies Corporation Impingement cooled component, corresponding cooling method and gas turbine engine component
US20170191417A1 (en) * 2016-01-06 2017-07-06 General Electric Company Engine component assembly

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108223022A (zh) * 2018-01-04 2018-06-29 沈阳航空航天大学 一种阵列射流冷却中的扰流结构
US11499435B2 (en) * 2018-10-18 2022-11-15 Mitsubishi Heavy Industries, Ltd. Gas turbine stator vane, gas turbine provided with same, and method of manufacturing gas turbine stator vane
CN109737788A (zh) * 2018-12-21 2019-05-10 西北工业大学 一种减小流动损失、强化冲击换热的凸起靶板结构
CN109931114A (zh) * 2019-03-15 2019-06-25 南京航空航天大学 一种新型冲击冷却扰流结构
CN110195615A (zh) * 2019-05-20 2019-09-03 沈阳航空航天大学 一种靶面带槽的冲击溢流双层壁结构
CN112234938A (zh) * 2020-10-14 2021-01-15 景德镇陶瓷大学 一种用于聚光太阳能电池的冲击射流冷却***以及太阳能电池装置
CN113225997A (zh) * 2021-05-13 2021-08-06 西北工业大学 一种带多级圆柱形凸台的强化冲击换热结构
CN113374546A (zh) * 2021-06-27 2021-09-10 西北工业大学 一种基于圆台加圆柱形凸起的阵列冲击结构

Similar Documents

Publication Publication Date Title
CN107503801A (zh) 一种高效阵列射流冷却结构
CN211715181U (zh) 一种带开缝圆形扰流柱的层板冷却结构
CN108223022B (zh) 一种阵列射流冷却中的扰流结构
CN202202899U (zh) 涡轮冷却叶片及其涡轮
CN103437889B (zh) 一种用于燃气涡轮发动机冷却的分支气膜孔结构
CN202203987U (zh) 涡轴发动机的回流燃烧室火焰筒冷却结构
CN105042640A (zh) 航空发动机燃烧室火焰筒的冷却结构
WO2021217792A1 (zh) 一种涡喷发动机燃烧组件结构
CN103291459B (zh) 一种用于燃气涡轮发动机冷却的气膜孔
CN110185554A (zh) 一种用于喷气发动机矢量喷管的双层壁冷却结构
CN102828781B (zh) 燃气涡轮冷却叶片
CN113090335A (zh) 一种用于涡轮转子叶片的冲击加气膜双层壁冷却结构
CN110030036A (zh) 一种涡轮叶片尾缘的冲击劈缝气膜冷却结构
CN202203988U (zh) 涡轴发动机的回流燃烧室
CN111120008A (zh) 一种新型透平叶片旋流冷却结构
CN113374536B (zh) 燃气涡轮导向叶片
CN109931114A (zh) 一种新型冲击冷却扰流结构
CN110081466A (zh) 一种采用微通道冷却的火焰筒壁面结构
CN113047912A (zh) 一种带梅花形扰流柱的层板冷却结构
CN111207412A (zh) 一种采用浮动瓦块的燃烧室火焰筒
CN108979754B (zh) 一种阵列冲击射流冷却中的扰流结构
CN202209695U (zh) 具有新型火焰筒冷却结构的涡轴发动机回流燃烧室
CN110344886B (zh) 一种带有分形沟槽的冲击-气膜复合冷却结构
CN108870445A (zh) 一种采用y形多斜孔冷却方式的燃烧室火焰筒壁面
CN208918602U (zh) 一种阵列冲击射流冷却中的扰流结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171222

RJ01 Rejection of invention patent application after publication