CN107502870B - 一种提高锂电池正极铝箔集电极电性能的方法 - Google Patents

一种提高锂电池正极铝箔集电极电性能的方法 Download PDF

Info

Publication number
CN107502870B
CN107502870B CN201710667756.5A CN201710667756A CN107502870B CN 107502870 B CN107502870 B CN 107502870B CN 201710667756 A CN201710667756 A CN 201710667756A CN 107502870 B CN107502870 B CN 107502870B
Authority
CN
China
Prior art keywords
aluminium foil
lithium battery
film
aluminium
electrical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710667756.5A
Other languages
English (en)
Other versions
CN107502870A (zh
Inventor
赵斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huizhou engu New Energy Industry Technology Research Institute Co., Ltd.
Original Assignee
Huizhou Engu New Energy Industry Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Engu New Energy Industry Technology Research Institute Co Ltd filed Critical Huizhou Engu New Energy Industry Technology Research Institute Co Ltd
Publication of CN107502870A publication Critical patent/CN107502870A/zh
Application granted granted Critical
Publication of CN107502870B publication Critical patent/CN107502870B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种利用真空磁控溅射沉积铝膜的方法在传统锂电池用正极集电极用的铝箔表面沉积一层纳米铝膜。该方法包括有步骤:将要处理的铝箔裁切到需要的尺寸,固定在镀膜设备的放卷辊位置;调整设备至可镀膜工艺条件;调整设备卷绕***,将在放卷辊上的待镀膜铝箔展开,调整铝箔卷绕张力至铝箔运行稳定;利用离子源对铝箔表面进行等离子体轰击处理;利用卷绕式真空磁控溅射镀膜设备的离子源实行等离子体轰击,在铝箔表面沉积一定厚度的薄膜铝;铝箔表面沉积铝膜后,在真空状态下进行加热退火处理。它利用真空磁控溅射镀膜技术减小轧制铝箔粗糙度及提高其导电性能。减小了。锂电池正极集电极铝箔粗糙度及提高其导电性能。

Description

一种提高锂电池正极铝箔集电极电性能的方法
技术领域
本发明涉及锂电池器件及锂电池材料制造技术领域,具体涉及一种提高锂电池正极铝箔集电极电性能的方法。
背景技术
锂离子电池主要由正极、负极、隔膜和电解液组成。充电时加在电池两极的电势迫使正极的嵌锂化合物释放出锂离子,通过隔膜后嵌入六方片层结构的石墨负极中;放电时锂离子则从片层结构的石墨中析出,重新和正极的嵌锂化合物结合,锂离子的移动产生了电流。锂离子电池的结构和充放电过程化学反应原理虽然很简单,然而在实际的商业化应用中需要考虑很多问题。例如,正负极材料的导电性能、充放电电位、活性、脱插锂的结构稳定性能、倍率性能和安全性能等,以及电解液的稳定性、导电性和环境适应性等。
除上述因素外,锂离子电池的内阻必须足够小,只有这样才能保证使用的可靠性和较长的循环寿命。这不仅取决于正负极活性,而且与集流体有着相当大的关系。锂离子电池集流体的主要材料是金属箔(如铜箔、铝箔),其功用是将电池活性物质产生的电流汇集起来,以便形成较大的电流输出,因此集流体应与活性物质充分接触,并且内阻应尽可能小,这也是锂离子电池为什么选用价格较高的铜箔和铝箔的主要原因。
另外,在锂电池批量生产中,由于磷酸亚锂和钛酸锂等材料的粒径很小、比表面积非常高,铝箔间的粘结性很差,非常容易发生掉粉等不良,造成生产困难、电池成品率低等。我们通过实验发现,电极铝箔的亲水性与本身的组织结构及表面粗糙度相关,直接影响到与正极活性物质的接触能力、附着能力。铝箔对正极活性物质必须具备较好的粘结强度,以便均匀地涂敷正极物质而不脱落,否则会影响到电池内阻和循环使用寿命等,这就要求作为电极集电极的箔材表面要有一定的粗糙度,但表面粗糙度并不是越大越好夹具,夹具随着表面粗糙程度的增加夹具,容易润湿的表面变得更容易润湿、亲水性更好夹具,夹具而难润湿的表面变得更难润湿、亲水性更差。正极材料活性物质与表面粗糙度大的集电极箔材接触性差、附着力低、易脱落,夹具会直接影响电池的电性能及寿命。
锂电池正极集电极铝箔目前还没有国际标准和国家技术标准,锂电池行业一般要求铝箔表面粗糙度Rz≦2.0um,并且使用轧制铝箔。
综上,本领域需要一种能减小传统轧制锂电池正极集电极铝箔粗糙度及提高其导电性能的制作方法。
发明内容
本发明的目的在于针对现有技术的缺陷和不足,提供一种提高锂电池正极铝箔集电极电性能的方法,它利用真空磁控溅射镀膜技术减小轧制铝箔粗糙度及提高其导电性能。
为实现上述目的,本发明采用的技术方案是:
一种提高锂电池正极铝箔集电极电性能的方法,利用真空磁控溅射沉积铝膜的方法在传统锂电池用正极集电极用的铝箔表面沉积一层纳米铝膜,用以提高正极集电极的导电性能。
作为本发明的优选方案,该方法它包括以下步骤:
a、利用卷绕式真空磁控溅射镀膜设备,将要处理的传统锂电池集电极用铝箔在净化房内裁切到需要的尺寸,再将铝箔卷绕到可拆卸的夹具上,将要镀膜铝箔固定在卷绕式真空磁控溅射镀膜设备的放卷辊位置,准备磁控溅镀铝膜;
b、操作卷绕式真空磁控溅射镀膜设备,调整设备至可镀膜工艺条件;
c、调整设备卷绕***,将在放卷辊上的待镀膜铝箔展开,调整铝箔卷绕张力至铝箔运行稳定;
d、利用卷绕式真空磁控溅射镀膜设备的离子源对铝箔表面进行等离子体轰击处理,剥离铝箔表面氧化层、去除表面尖峰,降低铝箔表面粗糙度;
e、利用卷绕式真空磁控溅射镀膜设备的离子源实行等离子体轰击,在铝箔表面沉积一定厚度的薄膜铝;
f、铝箔表面沉积铝膜后,在真空状态下进行加热退火处理,消除铝箔内部的金属应力。
作为本发明的优选方案,所述步骤a中铝箔裁切后的幅宽尺寸为:0.2-0.6m。
作为本发明的优选方案,所述步骤b中可镀膜工艺条件为:本底真空度5x10-3Pa、镀膜真空度3x10-1Pa。
作为本发明的优选方案,所述步骤c中调整设备卷绕***包括:设置卷绕速度:0.5-1.5m/s、设置铝箔卷绕张力控制范围:5-30N。
作为本发明的优选方案,所述步骤d中离子源轰击处理工艺条件为:设置离子源功率0.2-3kw、轰击速度:0.5-1.5m/s。
作为本发明的优选方案,所述步骤e中经等离子体轰击溅镀的铝膜厚度范围是:250nm-350nm;
作为本发明的优选方案,所述步骤f中铝箔表面沉积铝膜后,真空退火处理温度设置范围:80-200℃;
作为本发明的优选方案,还包括有步骤:将镀膜后的铝箔卸下,对其性能检查,检查后进行真空包装,包装真空度保持小于600Pa。
采用上述技术后,本发明有益效果为:1、利用离子源对铝箔表面进行等离子体轰击处理,使得铝箔表面的粗糙度降低,表面的氧化层被去除,提高了铝箔集电极的导电性能。2、利用直流真空磁控溅射工艺在铝箔表面沉积薄膜铝,轧制铝箔经过等离子沉积铝膜后,粗糙的表面凹坑被填平,进一步降低了铝箔表面粗糙度;表面沉积的薄膜铝,提高了铝箔的导电性能。3、铝箔表面沉积铝膜后,在真空状态下进行退火处理,消除铝箔内部的金属应力,改善铝箔的机械性能。4、镀膜后的铝箔卸下,对其性能检查后进行真空包装,防止空气氧化。
说明书附图
下面结合附图对本发明作进一步的说明。
图1是本发明的工艺原理图;
图2是本发明实施例的结构及处理原理示意图;
具体实施方式
下面将结合本发明实施方案,对本发明实施方案中的技术进行清楚、完整地描述,显然,所描述的实施方案仅仅是本发明一部分方案,而不是全部的实施方案。基于本发明中的实施方案,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方案,都属于本发明保护的范围。
参考图1所示,本实施例利用真空磁控溅射沉积铝膜的方法在传统锂电池用正极集电极用的铝箔表面沉积一层纳米铝膜,用以提高正极集电极的导电性能。为了实现本发明的目的,本实施1采用了SJ-RTR-SDH350卷绕式真空磁控溅射镀膜设备,参考图2所示,本实施例的试验步骤如下:
a、利用SJ-RTR-SDH350卷绕式真空磁控溅射镀膜设备,将要处理的传统锂电池集电极用整卷铝箔在净化房内裁切0.2-0.6M的幅宽尺寸,再将铝箔卷绕到SJ-RTR-SDH350设备专用的3寸夹具上,将要镀膜铝箔及夹具固定在卷绕式真空磁控溅射镀膜设备的放卷辊位置,将铝箔展开约6米长度绕镀膜主辊牵引穿过离子源、DC阴极、加热器、到达收卷辊,将铝箔头部用高温胶带固在收卷辊上,手动调整铝箔松紧程度,使铝箔完全贴紧镀膜主辊后准备磁控溅镀铝膜;
b、操作SJ-RTR-SDH350卷绕式真空磁控溅射镀膜设备,抽本底真空度达到5x10-3Pa后开启质量流量计充入高纯氩气,调整流量控制器使真空腔室真空度稳定在3x10-1Pa;
c、运行SJ-RTR-SDH350卷绕式真空磁控溅射镀膜设备卷绕***,将在放卷辊上的待镀膜铝箔在镀膜主辊上展开,在5-30N的张力范围内精密调整铝箔卷绕张力,至铝箔运行稳定后准备投入镀膜;
d、运行SJ-RTR-SDH350卷绕式真空磁控溅射镀膜设备卷离子源***对铝箔表面进行等离子体轰击处理,调整离子源功率0.2-3kw、轰击速度:0.5-1.5m/s,离子源发生的等离子体对铝箔表面实施等离子轰击,剥离铝箔表面氧化层、去除表面尖峰,使得铝箔表面的粗糙度降低;
e、运行SJ-RTR-SDH350卷绕式真空磁控溅射镀膜设备直流真空磁控溅镀铝靶***,在铝箔表面选择性沉积180nm、300nm、500nm厚度的薄膜铝,铝箔表面经过铝离子沉积后,粗糙的表面凹坑被铝离子填平,进一步降低铝箔表面粗糙度;
f、运行SJ-RTR-SDH350卷绕式真空磁控溅射镀膜设备真空极热***,在真空状态下对沉积铝膜完成后的铝箔表面进行加热退火处理,消除铝箔内部的金属应力;
g、铝箔镀膜完成后,操作SJ-RTR-SDH350卷绕式真空磁控溅射镀膜设备破真空,将镀膜后的铝箔卸下,取样检查导电率、电阻率及粗糙度等性能,检查后进行聚乙烯真空带真空密封包装、袋内真空保持小于600Pa。
通过上述方法,得出的结果如表1至表3所示。
表1:铝箔溅镀铝膜前后表面电性能比较
如表1所示,通过180nm、300nm、500nm厚度的铝膜沉积,发现随着膜厚度增加铝箔电导率也逐渐提高,在沉积铝膜厚度超过300nm后电导率不再增大,反而有减小趋势;同时电阻率也随着铝膜厚度的增加逐渐减小,在沉积铝膜厚度超过300nm时,电阻率不再减小而呈现增大趋势,优选镀膜的厚度为250-350nm,最佳的取值为300nm。
表2:铝箔溅镀铝膜前后表面粗糙度比较
如表2所示,通过180nm、300nm、500nm厚度的铝膜沉积,发现随着膜厚度增加铝箔表面粗糙度也逐渐降低,在沉积铝膜厚度超过300nm后粗糙度不再减小,反而有增大趋势。
表3:铝箔溅镀铝膜前后正极材料黏附程度比较
如表3所示,通过180nm、300nm、500nm厚度的铝膜沉积,发现经过表面镀铝膜的铝箔,在涂覆活性电极材料后的材料黏附能力均有提高。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换。

Claims (8)

1.一种提高锂电池正极铝箔集电极电性能的方法,其特征在于利用真空磁控溅射沉积铝膜的方法在传统锂电池用正极集电极用的铝箔表面沉积一层纳米铝膜,用以提高正极集电极的导电性能;包括以下步骤:
a、利用卷绕式真空磁控溅射镀膜设备,将要处理的传统锂电池集电极用铝箔在净化房内裁切到需要的尺寸,再将铝箔卷绕到可拆卸的夹具上,将要镀膜铝箔固定在卷绕式真空磁控溅射镀膜设备的放卷辊位置,准备磁控溅镀铝膜;
b、操作卷绕式真空磁控溅射镀膜设备,调整设备至可镀膜工艺条件;
c、调整设备卷绕***,将在放卷辊上的待镀膜铝箔展开,调整铝箔卷绕张力至铝箔运行稳定;
d、利用卷绕式真空磁控溅射镀膜设备的离子源对铝箔表面进行等离子体轰击处理,剥离铝箔表面氧化层、去除表面尖峰,降低铝箔表面粗糙度;
e、利用卷绕式真空磁控溅射镀膜设备的离子源实行等离子体轰击,在铝箔表面沉积一定厚度的薄膜铝;
f、铝箔表面沉积铝膜后,在真空状态下进行加热退火处理,消除铝箔内部的金属应力。
2.根据权利要求1所述的一种提高锂电池正极铝箔集电极电性能的方法,其特征在于所述步骤a中铝箔裁切后的幅宽尺寸为:0.2-0.6m。
3.根据权利要求1所述的一种提高锂电池正极铝箔集电极电性能的方法,其特征在于所述步骤b中可镀膜工艺条件为:本底真空度5x10-3Pa、镀膜真空度3x10-1Pa。
4.根据权利要求1所述的一种提高锂电池正极铝箔集电极电性能的方法,其特征在于所述步骤c中调整设备卷绕***包括:设置卷绕速度:0.5-1.5m/s、设置铝箔卷绕张力控制范围:5-30N。
5.根据权利要求1所述的一种提高锂电池正极铝箔集电极电性能的方法,其特征在于所述步骤d中离子源轰击处理工艺条件为:设置离子源功率0.2-3kw、轰击速度:0.5-1.5m/s。
6.根据权利要求1所述的一种提高锂电池正极铝箔集电极电性能的方法,其特征在于所述步骤e中经等离子体轰击溅镀的铝膜厚度范围是:250nm-350nm。
7.根据权利要求1所述的一种提高锂电池正极铝箔集电极电性能的方法,其特征在于所述步骤f中铝箔表面沉积铝膜后,真空退火处理温度设置范围:80-200℃。
8.根据权利要求1所述的一种提高锂电池正极铝箔集电极电性能的方法,其特征在于还包括有步骤:将镀膜后的铝箔卸下,对其性能检查,检查后进行真空包装,包装真空度保持小于600Pa。
CN201710667756.5A 2016-08-12 2017-08-07 一种提高锂电池正极铝箔集电极电性能的方法 Active CN107502870B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610665447.XA CN106435494A (zh) 2016-08-12 2016-08-12 一种改善锂电池正极集电极电性能的方法
CN201610665447X 2016-08-12

Publications (2)

Publication Number Publication Date
CN107502870A CN107502870A (zh) 2017-12-22
CN107502870B true CN107502870B (zh) 2019-09-03

Family

ID=58185040

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610665447.XA Pending CN106435494A (zh) 2016-08-12 2016-08-12 一种改善锂电池正极集电极电性能的方法
CN201710667756.5A Active CN107502870B (zh) 2016-08-12 2017-08-07 一种提高锂电池正极铝箔集电极电性能的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201610665447.XA Pending CN106435494A (zh) 2016-08-12 2016-08-12 一种改善锂电池正极集电极电性能的方法

Country Status (1)

Country Link
CN (2) CN106435494A (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282950A (zh) * 2016-08-12 2017-01-04 深圳市第四能源科技有限公司 一种提高锂电池负极铝箔集电极电性能的方法
CN106960960A (zh) * 2017-05-11 2017-07-18 天津理工大学 一种提高锂离子电池负极材的循环性能的柔性集流体的制备方法
CN109402589A (zh) * 2019-01-02 2019-03-01 重庆天齐锂业有限责任公司 一种磁控溅射制备超薄金属锂薄膜的方法及***
CN111082004A (zh) * 2019-12-05 2020-04-28 重庆天齐锂业有限责任公司 一种锂铜复合箔的制备方法
CN113278934A (zh) * 2021-04-26 2021-08-20 深圳市新邦薄膜科技有限公司 一种真空溅射连续沉积镀铜膜方法
CN116179978A (zh) * 2023-02-22 2023-05-30 安徽华创新材料股份有限公司 一种锂电铜箔退火工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250900A (ja) * 1998-02-26 1999-09-17 Sony Corp 非水電解液二次電池用電極の製造方法、製造装置、および電極ならびにこの電極を用いた非水電解液二次電池
CN101958418A (zh) * 2010-03-04 2011-01-26 常德力元新材料有限责任公司 锂离子电池的电极集流体材料及制备方法
CN102203993A (zh) * 2008-11-13 2011-09-28 丰田自动车株式会社 正极集电体及其制造方法
KR20150009285A (ko) * 2013-07-16 2015-01-26 삼성에스디아이 주식회사 집전체 구조 및 이를 채용한 전극과 리튬 전지
CN104662713A (zh) * 2012-09-26 2015-05-27 昭和电工株式会社 二次电池用负极和二次电池
CN105186004A (zh) * 2015-10-09 2015-12-23 南阳师范学院 一种锂离子电池负极用铜集流体及其制备方法和应用
KR101631838B1 (ko) * 2009-03-17 2016-06-20 도요 알루미늄 가부시키가이샤 도전물 피복 알루미늄재와 그 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250900A (ja) * 1998-02-26 1999-09-17 Sony Corp 非水電解液二次電池用電極の製造方法、製造装置、および電極ならびにこの電極を用いた非水電解液二次電池
CN102203993A (zh) * 2008-11-13 2011-09-28 丰田自动车株式会社 正极集电体及其制造方法
KR101631838B1 (ko) * 2009-03-17 2016-06-20 도요 알루미늄 가부시키가이샤 도전물 피복 알루미늄재와 그 제조 방법
CN101958418A (zh) * 2010-03-04 2011-01-26 常德力元新材料有限责任公司 锂离子电池的电极集流体材料及制备方法
CN104662713A (zh) * 2012-09-26 2015-05-27 昭和电工株式会社 二次电池用负极和二次电池
KR20150009285A (ko) * 2013-07-16 2015-01-26 삼성에스디아이 주식회사 집전체 구조 및 이를 채용한 전극과 리튬 전지
CN105186004A (zh) * 2015-10-09 2015-12-23 南阳师范学院 一种锂离子电池负极用铜集流体及其制备方法和应用

Also Published As

Publication number Publication date
CN106435494A (zh) 2017-02-22
CN107502870A (zh) 2017-12-22

Similar Documents

Publication Publication Date Title
CN107502870B (zh) 一种提高锂电池正极铝箔集电极电性能的方法
Neudecker et al. “Lithium‐Free” thin‐film battery with in situ plated Li anode
WO2020125516A1 (zh) 锂金属电极及其制备方法、锂电池
CN107768677A (zh) 一种提高锂离子电池正极集电极耐蚀性能的方法
JP4850405B2 (ja) リチウムイオン二次電池及びその製造方法
Zhou et al. Development of reliable lithium microreference electrodes for long-term in situ studies of lithium-based battery systems
CN109950476A (zh) 一种金属锂负极材料及其制备方法和应用
CN107452964A (zh) 一种提高锂电池负极铜箔集电极电性能的方法
CN102290595B (zh) 一种全固态高循环寿命薄膜锂电池及其制作方法
CN106207099B (zh) 一种三维LiMn2O4薄膜正电极及三维全固态薄膜锂离子电池的制备方法
CN106654350A (zh) 锂离子电池及其制备方法
CN110568363A (zh) 一种基于sei膜阻抗变化的退役电池产生锂枝晶预判方法
CN108232108B (zh) 一种锂电池正极结构及其制备方法、锂电池结构
CN109148894A (zh) 锂离子电池正极、全固态锂离子电池及其制备方法与用电器件
CN109742323A (zh) 一种复合锂金属负极及其制备方法和电池
Takahara et al. Elemental distribution analysis of LiFePO4/graphite cells studied with glow discharge optical emission spectroscopy (GD-OES)
KR102656071B1 (ko) 사이클 효율이 높은 전극을 제조하는 시스템, 사이클 효율이 높은 전극을 제조하는 방법 및 이의 응용
CN108448065A (zh) 一种抗弯折的金属锂负极的制备方法
CN107123795A (zh) 二氧化锡‑二氧化钛复合薄膜材料、锂电池及制备方法
WO2024125266A1 (zh) 脉冲换向化成方法、锂离子电池和存储介质
WO2018131824A1 (ko) 리튬 메탈 표면의 불화리튬의 증착 및 이를 이용한 리튬 이차전지
CN107482160A (zh) 利用真空磁控溅射镀膜技术制备锂电池C‑Si负极涂层的方法
WO2023151335A1 (zh) 一种锂离子电池参比电极及其制备方法和应用
Smith et al. Interfacial storage of lithium in the nanostructure of SnO2 nanobaskets for capacities exceeding theoretical values
CN207624803U (zh) 一种锂离子电池正极结构和锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20180326

Address after: 516000 Building No. 108, building No. 108, Dongxin Avenue, Dongxing section, Dongjiang high tech Zone, Huizhou City, Guangdong

Applicant after: Huizhou engu New Energy Industry Technology Research Institute Co., Ltd.

Address before: 518000 D, E, unit, building 1, Merchants Plaza, No. 1166, hope road, Shekou, Shenzhen, Guangdong, China

Applicant before: Shenzhen Valley Energy Holdings Co., Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant